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Notation and Conventions

All parameters either passed in or out of a decoding procedure are given in
bold face.

The prefix b indicates that the following value is to be interpreted as a binary
number (base 2).

Example: The value b1110100 is equal to the decimal value 116.

The prefix 0x indicates the the following value is to be interpreted as a
hexadecimal number (base 16).

Example: The value 0x74 is equal to the decimal value 116.

All arithmetic defined by this specification is exact. However, any real num-
bers that do arise will always be converted back to integers again in short order.
The entire specification can be implemented using only normal integer opera-
tions. All operations are to be implemented with sufficiently large integers so
that overflow cannot occur. Where the result of a computation is to be trun-
cated to a fixed-sized binary representation, this will be explicitly noted. The
size given for all variables is the maximum number of bits needed to store any
value in that variable. Intermediate computations involving that variable may
require more bits.

The following operators are defined:

|a| The absolute value of a number a.

|a| =
{
−a, a < 0
a, a ≥ 0

a ∗ b Multiplication of a number a by a number b.

a
b Exact division of a number a by a number b, producing a potentially non-

integer result.

bac The largest integer less than or equal to a real number a.

dae The smallest integer greater than or equal to a real number a.

ix



x Notation and Conventions

a//b Integer division of a by b.

a//b =
{ ⌈

a
b

⌉
, a < 0⌊

a
b

⌋
, a ≥ 0

a%b The remainder from the integer division of a by b.

a%b = a− |b| ∗
⌊

a

|b|

⌋
Note that with this definition, the result is always non-negative and less
than |b|.

a << b The value obtained by left-shifting the two’s complement integer a by
b bits. For purposes of this specification, overflow is ignored, and so this
is equivalent to integer multiplication of a by 2b.

a >> b The value obtained by right-shifting the two’s complement integer a by
b bits, filling in the leftmost bits of the new value with 0 if a is non-negative
and 1 if a is negative. This is not equivalent to integer division of a by 2b.
Instead,

a >> b =
⌊ a

2b

⌋
.

round(a) Rounds a number a to the nearest integer, with ties rounded away
from 0.

round(a) =
{
da− 1

2e a ≤ 0
ba + 1

2c a > 0

sign(a) Returns the sign of a given number.

sign(a) =

 −1 a < 0
0 a = 0
1 a > 0

ilog(a) The minimum number of bits required to store a positive integer a in
two’s complement notation, or 0 for a non-positive integer a.

ilog(a) =
{

0, a ≤ 0
blog2 ac+ 1, a > 0

Examples:

� ilog(−1) = 0
� ilog(0) = 0
� ilog(1) = 1
� ilog(2) = 2
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� ilog(3) = 2
� ilog(4) = 3
� ilog(7) = 3

min(a, b) The minimum of two numbers a and b.

max(a, b) The maximum of two numbers a and b.
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Key words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be intrepreted as described in RFC
2119 [Bra97].

Where such assertions are placed on the contents of a Theora bitstream itself,
implementations should be prepared to encounter bitstreams that do not follow
these requirements. An application’s behavior in the presecence of such non-
conforming bitstreams is not defined by this specification, but any reasonable
method of handling them MAY be used. By way of example, applications MAY
discard the current frame, retain the current output thus far, or attempt to
continue on by assuming some default values for the erroneous bits. When such
an error occurs in the bitstream headers, an application MAY refuse to decode
the entire stream. An application SHOULD NOT allow such non-conformant
bitstreams to overflow buffers and potentially execute arbitrary code, as this
represents a serious security risk.

An application MUST, however, ensure any bits marked as reserved have
the value zero, and refuse to decode the stream if they do not. These are used
as place holders for future bitstream features with which the current bitstream
is forward-compatible. Such features may not increment the bitstream version
number, and can only be recognized by checking the value of these reserved bits.

xiii
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Chapter 1

Introduction

Theora is a general purpose, lossy video codec. It is based on the VP3 video
codec produced by On2 Technologies (http://www.on2.com/). On2 donated
the VP3.1 source code to the Xiph.org Foundation and released it under a
BSD-like license. On2 also made an irrevocable, royalty-free license grant for
any patent claims it might have over the software and any derivatives. No formal
specification exists for the VP3 format beyond this source code, however Mike
Melanson maintains a detailed description [Mel04]. Portions of this specification
were adopted from that text with permission.

1.1 VP3 and Theora

Theora contains a superset of the features that were available in the original
VP3 codec. Content encoded with VP3.1 can be losslessly transcoded into the
Theora format. Theora content cannot, in general, be losslessly transcoded into
the VP3 format. If a feature is not available in the original VP3 format, this
is mentioned when that feature is defined. A complete list of these features
appears in Appendix B.1.

1.2 Video Formats

Theora currently supports progressive video data of arbitrary dimensions at a
constant frame rate in one of several Y ′CbCr color spaces. The precise definition
the supported color spaces appears in Section 4.3. Three different chroma sub-
sampling formats are supported: 4:2:0, 4:2:2, and 4:4:4. The precise details of
each of these formats and their sampling locations are described in Section 4.4.

The Theora format does not support interlaced material, variable frame
rates, bit-depths larger than 8 bits per component, nor alternate color spaces
such as RGB or arbitrary multi-channel spaces. Black and white content can
be efficiently encoded, however, because the uniform chroma planes compress
well. Support for interlaced material is planned for a future version.

1
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2 CHAPTER 1. INTRODUCTION

Note: Infrequently changing frame rates—as when film and video
sequences are cut together—can be supported in the Ogg con-
tainer format by chaining several Theora streams together.

Support for increased bit depths or additional color spaces is not planned.

1.3 Classification

Theora is a block-based lossy transform codec that utilizes an 8 × 8 Type-II
Discrete Cosine Transform and block-based motion compensation. This places
it in the same class of codecs as MPEG-1, -2, -4, and H.263. The details of
how individual blocks are organized and how DCT coefficients are stored in the
bitstream differ substantially from these codecs, however. Theora supports only
intra frames (I frames in MPEG) and inter frames (P frames in MPEG). There
is no equivalent to the bi-predictive frames (B frames) found in MPEG codecs.

1.4 Assumptions

The Theora codec design assumes a complex, psychovisually-aware encoder and
a simple, low-complexity decoder.

Theora provides none of its own framing, synchronization, or protection
against transmission errors. An encoder is solely a method of accepting input
video frames and compressing these frames into raw, unformatted ‘packets’.
The decoder then accepts these raw packets in sequence, decodes them, and
synthesizes a fascimile of the original video frames. Theora is a free-form variable
bit rate (VBR) codec, and packets have no minimum size, maximum size, or
fixed/expected size.

Theora packets are thus intended to be used with a transport mechanism that
provides free-form framing, synchronization, positioning, and error correction in
accordance with these design assumptions, such as Ogg (for file transport) or
RTP (for network multicast). For the purposes of a few examples in this doc-
ument, we will assume that Theora is embedded in an Ogg stream specifically,
although this is by no means a requirement or fundamental assumption in the
Theora design.

The specification for embedding Theora into an Ogg transport stream is
given in Appendix A.

1.5 Codec Setup and Probability Model

Theora’s heritage is the proprietary commerical codec VP3, and it retains a
fair amount of inflexibility when compared to Vorbis [Xip02], the first Xiph.org
codec, which began as a research codec. However, to provide additional scope
for encoder improvement, Theora adopts some of the configurable aspects of
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decoder setup that are present in Vorbis. This configuration data is not available
in VP3, which uses hardcoded values instead.

Theora makes the same controversial design decision that Vorbis made to
include the entire probability model for the DCT coefficients and all the quan-
tization parameters in the bitstream headers. This is often several hundred
fields. It is therefore impossible to decode any frame in the stream without
having previously fetched the codec info and codec setup headers.

Note: Theora can initiate decode at an arbitrary intra-frame packet
within a bitstream so long as the codec has been initialized with
the setup headers.

Thus, Theora headers are both required for decode to begin and relatively
large as bitstream headers go. The header size is unbounded, although as a
rule-of-thumb less than 16kB is recommended, and Xiph.org’s reference encoder
follows this suggestion.

Our own design work indicates that the primary liability of the required
header is in mindshare; it is an unusual design and thus causes some amount
of complaint among engineers as this runs against current design trends and
points out limitations in some existing software/interface designs. However, we
find that it does not fundamentally limit Theora’s suitable application space.

1.6 Format Conformance

The Theora format is well-defined by its decode specification; any encoder that
produces packets that are correctly decoded by an implementation following this
specification may be considered a proper Theora encoder. A decoder must faith-
fully and completely implement the specification defined herein to be considered
a conformant Theora decoder. A decoder need not be implemented strictly as
described, but the actual decoder process MUST be entirely mathematically
equivalent to the described process. Where appropriate, a non-normative de-
scription of encoder processes is included. These sections will be marked as
such, and a proper Theora encoder is not bound to follow them.
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Chapter 2

Coded Video Structure

Theora’s encoding and decoding process is based on 8× 8 blocks of pixels. This
sections describes how a video frame is laid out, divided into blocks, and how
those blocks are organized.

2.1 Frame Layout

A video frame in Theora is a two-dimensional array of pixels. Theora, like VP3,
uses a right-handed coordinate system, with the origin in the lower-left corner
of the frame. This is contrary to many video formats which use a left-handed
coordinate system with the origin in the upper-left corner of the frame.

Theora divides the pixel array up into three separate color planes, one for
each of the Y ′, Cb, and Cr components of the pixel. The Y ′ plane is also called
the luma plane, and the Cb and Cr planes are also called the chroma planes.
Each plane is assigned a numerical value, as shown in Table 2.1.

Index Color Plane

0 Y ′

1 Cb

2 Cr

Table 2.1: Color Plane Indices

In some pixel formats, the chroma planes are subsampled by a factor of two
in one or both directions. This means that the width or height of the chroma
planes may be half that of the total frame width and height. The luma plane is
never subsampled.

5
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2.2 Picture Region

An encoded video frame in Theora is required to have a width and height that are
multiples of sixteen, making an integral number of blocks even when the chroma
planes are subsampled. However, inside a frame a smaller picture region may
be defined to present material whose dimensions are not a multiple of sixteen
pixels, as shown in Figure 2.1. The picture region can be offset from the lower-
left corner of the frame by up to 255 pixels in each direction, and may have
an arbitrary width and height, provided that it is contained entirely within the
coded frame. It is this picture region that contains the actual video data. The
portions of the frame which lie outside the picture region may contain arbitrary
image data, so the frame must be cropped to the picture region before display.
The picture region plays no other role in the decode process, which operates on
the entire video frame.
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Figure 2.1: Location of frame and picture regions
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2.3 Blocks and Super Blocks

Each color plane is subdivided into blocks of 8 × 8 pixels. Blocks are grouped
into 4×4 arrays called super blocks as shown in Figure 2.2. Each color plane has
its own set of blocks and super blocks. If the chroma planes are subsampled,
they are still divided into 8 × 8 blocks of pixels; there are just fewer blocks
than in the luma plane. The boundaries of blocks and super blocks in the luma
plane do not necessarily coincide with those of the chroma planes, if the chroma
planes have been subsampled.

(0,0)

Frame

Super Block (4x4)

8x8

Block

...

...

Figure 2.2: Subdivision of a frame into blocks and super blocks

Blocks are accessed in two different orders in the various decoder processes.
The first is raster order, illustrated in Figure 2.3. This accesses each block in
row-major order, starting in the lower left of the frame and continuing along
the bottom row of the entire frame, followed by the next row up, starting on
the left edge of the frame, etc.

The second is coded order. In coded order, blocks are accessed by super
block. Within each frame, super blocks are traversed in raster order, similar to
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0 1 2 ...

...

m−1

2m−1
m

(n−1)*m
n*m−1

Figure 2.3: Raster ordering of n×m blocks

raster order for blocks. Within each super block, however, blocks are accessed
in a Hilbert curve pattern, illustrated in Figure 2.4. If a color plane does not
contain a complete super block on the top or right sides, the same ordering is
still used, simply with any blocks outside the frame boundary ommitted.

To illustrate this ordering, consider a frame that is 240 pixels wide and 48
pixels high. Each row of the luma plane has 30 blocks and 8 super blocks, and
there are 6 rows of blocks and two rows of super blocks.

When accessed in coded order, each block in the luma plane is assigned the
following indices:

123 122 125 124 . . . 179 178
120 121 126 127 . . . 176 177
5 6 9 10 . . . 117 118
4 7 8 11 . . . 116 119
3 2 13 12 . . . 115 114
0 1 14 15 . . . 112 113

Here the index values specify the order in which the blocks would be accessed.
The indices of the blocks are numbered continuously from one color plane to
the next. They do not reset to zero at the start of each plane. Instead, the
numbering increases continuously from the Y ′ plane to the Cb plane to the Cr
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0 1

23

4

5 6

7 8

9 10

11

1213

14 15

Figure 2.4: Hilbert curve ordering of blocks within a super block

plane. The implication is that the blocks from all planes are treated as a unit
during the various processing steps.

Although blocks are sometimes accessed in raster order, in this document
the index associated with a block is always its index in coded order.

2.4 Macro Blocks

A macro block contains a 2 × 2 array of blocks in the luma plane and the co-
located blocks in the chroma planes, as shown in Figure 2.5. Thus macro blocks
can represent anywhere from six to twelve blocks, depending on how the chroma
planes are subsampled. This is in contrast to super blocks, which only contain
blocks from a single color plane. Macro blocks contain information about coding
mode and motion vectors for the corresponding blocks in all color planes.

Macro blocks are also accessed in a coded order. This coded order proceeds by
examining each super block in the luma plane in raster order, and traversing the
four macro blocks inside using a smaller Hilbert curve, as shown in Figure 2.6.
If the luma plane does not contain a complete super block on the top or right
sides, the same ordering is still used, with any macro blocks outside the frame
boundary simply omitted. Because the frame size is constrained to be a multiple
of 16, there are never any partial macro blocks. Unlike blocks, macro blocks
need never be accessed in a pure raster order.



10 CHAPTER 2. CODED VIDEO STRUCTURE

(0,0)

Frame: chroma plane

Macroblock

Block

Block

8x8

Frame: chroma plane

Frame: luma plane

Figure 2.5: Subdivision of a frame into macro blocks

0

1 2

3

Figure 2.6: Hilbert curve ordering of macro blocks within a super block
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Using the same frame size as the example above, there are 15 macro blocks
in each row and 3 rows of macro blocks. The macro blocks are assigned the
following indices:

30 31 32 33 · · · 42 43 44
1 2 5 6 · · · 25 26 29
0 3 4 7 · · · 24 27 28

2.5 Coding Modes and Prediction

Each block is coded using one of a small, fixed set of coding modes that define
how the block is predicted from previous frames. A block is predicted using
one of two reference frames, selected according to the coding mode. A reference
frame is the fully decoded version of a previous frame in the stream. The first
available reference frame is the previous intra frame, called the golden frame.
The second available reference frame is the previous frame, whether it was an
intra frame or an inter frame. If the previous frame was an intra frame, then
both reference frames are the same. See Figure 2.7 for an illustration of the
reference frames used for an intra frame that does not follow an intra frame.

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

...
Intra Inter Inter Inter Inter Inter Inter

currentreference
frame frame

golden

frame

Figure 2.7: Example of reference frames for an inter frame

Two coding modes in particular are worth mentioning here. The INTRA
mode is used for blocks that are not predicted from either reference frame. This
is the only coding mode allowed in intra frames. The INTER NOMV coding
mode uses the co-located contents of the block in the previous frame as the
predictor. This is the default coding mode.

2.6 DCT Coefficients

A residual is added to the predicted contents of a block to form the final re-
construction. The residual is stored as a set of quantized coefficients from an
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integer approximation of a two-dimensional Type II Discrete Cosine Transform.
The DCT takes an 8×8 array of pixel values as input and returns an 8×8 array
of coefficient values. The natural ordering of these coefficients is defined to be
row-major order, from lowest to highest frequency. They are also often indexed
in zig-zag order, as shown in Figure 2.8.

c
0 1 2 3 4 5 6 7

0 0→ 1 5→ 6 14→15 27→28
↙ ↗ ↙ ↗ ↙ ↗ ↙

1 2 4 7 13 16 26 29 42
↓ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↓

2 3 8 12 17 25 30 41 43
↙ ↗ ↙ ↗ ↙ ↗ ↙

3 9 11 18 24 31 40 44 53
r ↓ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↓

4 10 19 23 32 39 45 52 54
↙ ↗ ↙ ↗ ↙ ↗ ↙

5 20 22 33 38 46 51 55 60
↓ ↗ ↙ ↗ ↙ ↗ ↙ ↗ ↓

6 21 34 37 47 50 56 59 61
↙ ↗ ↙ ↗ ↙ ↗ ↙

7 35→36 48→49 57→58 62→63

Figure 2.8: Zig-zag order

Note: the row and column indices refer to frequency number and
not pixel locations. The frequency numbers are defined inde-
pendently of the memory organization of the pixels. They have
been written from top to bottom here to follow conventional no-
tation, despite the right-handed coordinate system Theora uses
for pixel locations. Many implementations of the DCT operate
‘in-place’. That is, they return DCT coefficients in the same
memory buffer that the initial pixel values were stored in. Due
to the right-handed coordinate system used for pixel locations in
Theora, one must note carefully how both pixel values and DCT
coefficients are organized in memory in such a system.

DCT coefficient (0, 0) is called the DC coefficient. All the other coefficients
are called AC coefficients.



Chapter 3

Decoding Overview

This section provides a high level description of the Theora codec’s construction.
A bit-by-bit specification appears beginning in Section 5. The later sections as-
sume a high-level understanding of the Theora decode process, which is provided
below.

3.1 Decoder Configuration

Decoder setup consists of configuration of the quantization matrices and the
Huffman codebooks for the DCT coefficients, and a table of limit values for the
deblocking filter. The remainder of the decoding pipeline is not configurable.

3.1.1 Global Configuration

The global codec configuration consists of a few video related fields, such as
frame rate, frame size, picture size and offset, aspect ratio, color space, pixel
format, and a version number. The version number is divided into a major
version, a minor version, amd a minor revision number. For the format defined in
this specification, these are ‘3’, ‘2’, and ‘1’, respectively, in reference to Theora’s
origin as a successor to the VP3.1 format.

3.1.2 Quantization Matrices

Theora allows up to 384 different quantization matrices to be defined, one for
each quantization type, color plane (Y ′, Cb, or Cr), and quantization index, qi ,
which ranges from zero to 63, inclusive. There are currently two quantization
types defined, which depend on the coding mode of the block being dequantized,
as shown in Table 3.1.

The quantization index, on the other hand, nominally represents a progres-
sive range of quality levels, from low quality near zero to high quality near 63.
However, the interpretation is arbitrary, and it is possible, for example, to par-
tition the scale into two completely separate ranges with 32 levels each that are

13
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Quantization Type Usage

0 INTRA-mode blocks
1 Blocks in any other mode.

Table 3.1: Quantization Type Indices

meant to represent different classes of source material, or any other arrangement
that suits the encoder’s requirements.

Each quantization matrix is an 8×8 matrix of 16-bit values, which is used to
quantize the output of the 8×8 DCT. Quantization matrices are specified using
three components: a base matrix and two scale values. The first scale value is
the DC scale, which is applied to the DC component of the base matrix. The
second scale value is the AC scale, which is applied to all the other components
of the base matrix. There are 64 DC scale values and 64 AC scale values, one
for each qi value.

There are 64 elements in each base matrix, one for each DCT coefficient.
They are stored in natural order (cf. Section 2.6). There is a separate set
of base matrices for each quantization type and each color plane, with up to
64 possible base matrices in each set, one for each qi value. Typically the
bitstream contains matrices for only a sparse subset of the possible qi values.
The base matrices for the remainder of the qi values are computed using linear
interpolation. This configuration allows the encoder to adjust the quantization
matrices to approximate the complex, non-linear response of the human visual
system to different quantization errors.

Finally, because the in-loop deblocking filter strength depends on the strength
of the quantization matrices defined in this header, a table of 64 loop filter limit
values is defined, one for each qi value.

The precise specification of how all of this information is decoded appears
in Section 6.4.1 and Section 6.4.2.

3.1.3 Huffman Codebooks

Theora uses 80 configurable binary Huffman codes to represent the 32 tokens
used to encode DCT coefficients. Each of the 32 token values has a different
semantic meaning and is used to represent single coefficient values, zero runs,
combinations of the two, and End-Of-Block markers.

The 80 codes are divided up into five groups of 16, with each group corre-
sponding to a set of DCT coefficient indices. The first group corresponds to the
DC coefficient, while the remaining four groups correspond to different subsets
of the AC coefficients. Within each frame, two pairs of 4-bit codebook indices
are stored. The first pair selects which codebooks to use from the DC coefficient
group for the Y ′ coefficients and the Cb and Cr coefficients. The second pair
selects which codebooks to use from all four of the AC coefficient groups for the
Y ′ coefficients and the Cb and Cr coefficients.
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The precise specification of how the codebooks are decoded appears in Sec-
tion 6.4.4.

3.2 High-Level Decode Process

3.2.1 Decoder Setup

Before decoding can begin, a decoder MUST be initialized using the bitstream
headers corresponding to the stream to be decoded. Theora uses three header
packets; all are required, in order, by this specification. Once set up, decode
may begin at any intra-frame packet—or even inter-frame packets, provided the
appropriate decoded reference frames have already been decoded and cached—
belonging to the Theora stream. In Theora I, all packets after the three initial
headers are intra-frame or inter-frame packets.

The header packets are, in order, the identification header, the comment
header, and the setup header.

Identification Header The identification header identifies the stream as
Theora, provides a version number, and defines the characteristics of the video
stream such as frame size. A complete description of the identification header
appears in Section 6.2.

Comment Header The comment header includes user text comments (‘tags’)
and a vendor string for the application/library that produced the stream. The
format of the comment header is the same as that used in the Vorbis I and
Speex codecs, with slight modifications due to the use of a different bit pack-
ing mechanism. A complete description of how the comment header is coded
appears in Section 6.3, along with a suggested set of tags.

Setup Header The setup header includes extensive codec setup information,
including the complete set of quantization matrices and Huffman codebooks
needed to decode the DCT coefficients. A complete description of the setup
header appears in Section 6.4.

3.2.2 Decode Procedure

The decoding and synthesis procedure for all video packets is fundamentally the
same, with some steps omitted for intra frames.

� Decode packet type flag.

� Decode frame header.

� Decode coded block information (inter frames only).

� Decode macro block mode information (inter frames only).
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� Decode motion vectors (inter frames only).

� Decode block-level qi information.

� Decode DC coefficient for each coded block.

� Decode 1st AC coefficient for each coded block.

� Decode 2nd AC coefficient for each coded block.

� . . .

� Decode 63rd AC coefficient for each coded block.

� Perform DC coefficient prediction.

� Reconstruct coded blocks.

� Copy uncoded bocks.

� Perform loop filtering.

Note: clever rearrangement of the steps in this process is possi-
ble. As an example, in a memory-constrained environment, one
can make multiple passes through the DCT coefficients to avoid
buffering them all in memory. On the first pass, the starting
location of each coefficient is identified, and then 64 separate get
pointers are used to read in the 64 DCT coefficients required to
reconstruct each coded block in sequence. This operation pro-
duces entirely equivalent output and is naturally perfectly legal.
It may even be a benefit in non-memory-constrained environ-
ments due to a reduced cache footprint.

Theora makes equivalence easy to check by defining all decoding operations
in terms of exact integer operations. No floating-point math is required, and
in particular, the implementation of the iDCT transform MUST be followed
precisely. This prevents the decoder mismatch problem commonly associated
with codecs that provide a less rigorous transform specification. Such a mis-
match problem would be devastating to Theora, since a single rounding error in
one frame could propagate throughout the entire succeeding frame due to DC
prediction.

Packet Type Decode Theora uses four packet types. The first three packet
types mark each of the three Theora headers described above. The fourth packet
type marks a video packet. All other packet types are reserved; packets marked
with a reserved type should be ignored.

Additionally, zero-length packets are treated as if they were an inter frame
with no blocks coded. That is, as a duplicate frame.
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Frame Header Decode The frame header contains some global information
about the current frame. The first is the frame type field, which specifies if
this is an intra frame or an inter frame. Inter frames predict their contents
from previously decoded reference frames. Intra frames can be independently
decoded with no established reference frames.

The next piece of information in the frame header is the list of qi values
allowed in the frame. Theora allows from one to three different qi values to be
used in a single frame, each of which selects a set of six quantization matrices,
one for each quantization type (inter or intra), and one for each color plane.
The first qi value is always used when dequantizing DC coefficients. The qi
value used when dequantizing AC coefficients, however, can vary from block to
block. VP3, in contrast, only allows a single qi value per frame for both the DC
and AC coefficients.

Coded Block Information This stage determines which blocks in the frame
are coded and which are uncoded. A coded block list is constructed which lists
all the coded blocks in coded order. For intra frames, every block is coded, and
so no data needs to be read from the packet.

Macro Block Mode Information For intra frames, every block is coded in
INTRA mode, and this stage is skipped. In inter frames a coded macro block list
is constructed from the coded block list. Any macro block which has at least
one of its luma blocks coded is considered coded; all other macro blocks are
uncoded, even if they contain coded chroma blocks. A coding mode is decoded
for each coded macro block, and assigned to all its constituent coded blocks. All
coded chroma blocks in uncoded macro blocks are assigned the INTER NOMV
coding mode.

Motion Vectors Intra frames are coded entirely in INTRA mode, and so
this stage is skipped. Some inter coding modes, however, require one or more
motion vectors to be specified for each macro block. These are decoded in this
stage, and an appropriate motion vector is assigned to each coded block in the
macro block.

Block-Level qi Information If a frame allows multiple qi values, the qi
value assigned to each block is decoded here. Frames that use only a single qi
value have nothing to decode.

DCT Coefficients Finally, the quantized DCT coefficients are decoded. A
list of DCT coefficients in zig-zag order for a single block is represented by a list
of tokens. A token can take on one of 32 different values, each with a different
semantic meaning. A single token can represent a single DCT coefficient, a
run of zero coefficients within a single block, a combination of a run of zero
coefficients followed by a single non-zero coefficient, an End-Of-Block marker,
or a run of EOB markers. EOB markers signify that the remainder of the block
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is one long zero run. Unlike JPEG and MPEG, there is no requirement for each
block to end with a special marker. If non-EOB tokens yield values for all 64 of
the coefficients in a block, then no EOB marker occurs.

Each token is associated with a specific token index in a block. For single-
coefficient tokens, this index is the zig-zag index of the token in the block. For
zero-run tokens, this index is the zig-zag index of the first coefficient in the
run. For combination tokens, the index is again the zig-zag index of the first
coefficient in the zero run. For EOB markers, which signify that the remainder
of the block is one long zero run, the index is the zig-zag index of the first zero
coefficient in that run. For EOB runs, the token index is that of the first EOB
marker in the run. Due to zero runs and EOB markers, a block does not have
to have a token for every zig-zag index.

Tokens are grouped in the stream by token index, not by the block they
originate from. This means that for each zig-zag index in turn, the tokens with
that index from all the coded blocks are coded in coded block order. When
decoding, a current token index is maintained for each coded block. This index
is advanced by the number of coefficients that are added to the block as each
token is decoded. After fully decoding all the tokens with token index ti , the
current token index of every coded block will be ti or greater.

If an EOB run of n blocks is decoded at token index ti , then it ends the
next n blocks in coded block order whose current token index is equal to ti , but
not greater. If there are fewer than n blocks with a current token index of ti ,
then the decoder goes through the coded block list again from the start, ending
blocks with a current token index of ti + 1, and so on, until n blocks have been
ended.

Tokens are read by parsing a Huffman code that depends on ti and the color
plane of the next coded block whose current token index is equal to ti , but not
greater. The Huffman codebooks are selected on a per-frame basis from the 80
codebooks defined in the setup header. Many tokens have a fixed number of
extra bits associated with them. These bits are read from the packet immediately
after the token is decoded. These are used to define things such as coefficient
magnitude, sign, and the length of runs.

DC Prediction After the coefficients for each block are decoded, the quan-
tized DC value of each block is adjusted based on the DC values of its neighbors.
This adjustment is performed by scanning the blocks in raster order, not coded
block order.

Reconstruction Finally, using the coding mode, motion vector (if applica-
ble), quantized coefficient list, and qi value defined for each block, all the coded
blocks are reconstructed. The DCT coefficients are dequantized, an inverse
DCT transform is applied, and the predictor is formed from the coding mode
and motion vector and added to the result.
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Loop Filtering To complete the reconstructed frame, an “in-loop” deblocking
filter is applied to the edges of all coded blocks.
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Chapter 4

Video Formats

This section gives a precise description of the video formats that Theora is ca-
pable of storing. The Theora bitstream is capable of handling video at any
arbitrary resolution up to 1048560 × 1048560. Such video would require al-
most three terabytes of storage per frame for uncompressed data, so compliant
decoders MAY refuse to decode images with sizes beyond their capabilities.

The remainder of this section talks about two specific aspects of the video
format: the color space and the pixel format. The first describes how color
is represented and how to transform that color representation into a device
independent color space such as CIE XY Z (1931). The second describes the
various schemes for sampling the color values in time and space.

4.1 Color Space Conventions

There are a large number of different color standards used in digital video. Since
Theora is a lossy codec, it restricts itself to only a few of them to simplify play-
back. Unlike the alternate method of describing all the parameters of the color
model, this allows a few dedicated routines for color conversion to be written
and heavily optimized in a decoder. More flexible conversion functions should
instead be specified in an encoder, where additional computational complexity
is more easily tolerated. The color spaces were selected to give a fair represen-
tation of color standards in use around the world today. Most of the standards
that do not exactly match one of these can be converted to one fairly easily.

All Theora color spaces are Y ′CbCr color spaces with one luma channel
and two chroma channels. Each channel contains 8-bit discrete values in the
range 0 . . . 255, which represent non-linear gamma pre-corrected signals. The
Theora identification header contains an 8-bit value that describes the color
space. This merely selects one of the color spaces available from an enumerated
list. Currently, only two color spaces are defined, with a third possibility that
indicates the color space is “unknown”.

21
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4.2 Color Space Conversions and Parameters

The parameters which describe the conversions between each color space are
listed below. These are the parameters needed to map colors from the encoded
Y ′CbCr representation to the device-independent color space CIE XY Z (1931).
These parameters define abstract mathematical conversion functions which are
infinitely precise. The accuracy and precision with which the conversions are
performed in a real system is determined by the quality of output desired and the
available processing power. Exact decoder output is defined by this specification
only in the original Y ′CbCr space.

Y ′CbCr to Y ′PbPr:

This conversion takes 8-bit discrete values in the range [0 . . . 255] and maps
them to real values in the range [0 . . . 1] for Y and [− 1

2 . . . 1
2 ] for Pb and

Pr. Because some values may fall outside the offset and excursion defined
for each channel in the Y ′CbCr space, the results may fall outside these
ranges in Y ′PbPr space. No clamping should be done at this stage.

Y ′
out =

Y ′
in −OffsetY

ExcursionY
(4.1)

Pb =
Cb −OffsetCb

ExcursionCb

(4.2)

Pr =
Cr −OffsetCr

ExcursionCr

(4.3)

Parameters: OffsetY,Cb,Cr , ExcursionY,Cb,Cr .

Y ′PbPr to R′G′B′:

This conversion takes the one luma and two chroma channel representation
and maps it to the non-linear R′G′B′ space used to drive actual output
devices. Values should be clamped into the range [0 . . . 1] after this stage.

R′ = Y ′ + 2(1−Kr)Pr (4.4)

G′ = Y ′ − 2
(1−Kb)Kb

1−Kb −Kr
Pb − 2

(1−Kr)Kr

1−Kb −Kr
Pr (4.5)

B′ = Y ′ + 2(1−Kb)Pb (4.6)

Parameters: Kb,Kr.

R′G′B′ to RGB (Output device gamma correction):
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This conversion takes the non-linear R′G′B′ voltage levels and maps them
to linear light levels produced by the actual output device. Note that this
conversion is only that of the output device, and its inverse is not that
used by the input device. Because a dim viewing environment is assumed
in most television standards, the overall gamma between the input and
output devices is usually around 1.1 to 1.2, and not a strict 1.0.

For calibration with actual output devices, the model

L = (E′ + ∆)γ (4.7)

should be used, with ∆ the free parameter and γ held fixed to the value
specified in this document. The conversion function presented here is an
idealized version with ∆ = 0.

R = R′γ (4.8)
G = G′γ (4.9)
B = B′γ (4.10)

Parameters: γ.

RGB to R′G′B′ (Input device gamma correction):

This conversion takes linear light levels and maps them to the non-linear
voltage levels produced in the actual input device. This information is
merely informative. It is not required for building a decoder or for con-
verting between the various formats and the actual output capabilities of
a particular device.

A linear segment is introduced on the low end to reduce noise in dark
areas of the image. The rest of the scale is adjusted so that the power
segment of the curve intersects the linear segment with the proper slope,
and so that it still maps 0 to 0 and 1 to 1.

R′ =
{

αR, 0 ≤ R < δ
(1 + ε)Rβ − ε, δ ≤ R ≤ 1 (4.11)

G′ =
{

αG, 0 ≤ G < δ
(1 + ε)Gβ − ε, δ ≤ G ≤ 1 (4.12)

B′ =
{

αB, 0 ≤ B < δ
(1 + ε)Bβ − ε, δ ≤ B ≤ 1 (4.13)

Parameters: β, α, δ, ε.

RGB to CIE XY Z (1931):
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This conversion maps a device-dependent linear RGB space to the device-
independent linear CIE XY Z space. The parameters are the CIE chro-
maticity coordinates of the three primaries—red, green, and blue—as well
as the chromaticity coordinates of the white point of the device. This is
how hardware manufacturers and standards typically describe a particular
RGB space. The math required to convert these parameters into a useful
transformation matrix is reproduced below.

F =


xr

yr

xg

yg

xb

yb

1 1 1
1−xr−yr

yr

1−xg−yg

yg

1−xb−yb

yb

 (4.14)

 sr

sg

sb

 = F−1

 xw

yw

1
1−xw−yw

yw

 (4.15)

 X
Y
Z

 = F

 srR
sgG
sbB

 (4.16)

Parameters: xr, xg, xb, xw, yr, yg, yb, yw.

4.3 Available Color Spaces

These are the color spaces currently defined for use by Theora video. Each one
has a short name, with which it is referred to in this document, and a more
detailed specification of the standards from which its parameters are derived.
Some standards do not specify all the parameters necessary. For these unspeci-
fied parameters, this document serves as the definition of what should be used
when encoding or decoding Theora video.

4.3.1 Rec. 470M (Rec. ITU-R BT.470-6 System M/NTSC
with Rec. ITU-R BT.601-5)

This color space is used by broadcast television and DVDs in much of the
Americas, Japan, Korea, and the Union of Myanmar [ITU98]. This color space
may also be used for System M/PAL (Brazil), with an appropriate conversion
supplied by the encoder to compensate for the different gamma value. See
Section 4.3.2 for an appropriate gamma value to assume for M/PAL input.

In the US, studio monitors are adjusted to a D65 white point (xw, yw =
0.313, 0.329). In Japan, studio monitors are adjusted to a D white of 9300K
(xw, yw = 0.285, 0.293).

Rec. 470 does not specify a digital encoding of the color signals. For Theora,
Rec. ITU-R BT.601-5 [ITU95] is used, starting from the R′G′B′ signals specified
by Rec. 470.
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Rec. 470 does not specify an input gamma function. For Theora, the Rec. 709
[ITU02] input function is assumed. This is the same as that specified by SMPTE
170M [SMP94], which claims to reflect modern practice in the creation of NTSC
signals circa 1994.

The parameters for all the color transformations defined in Section 4.2 are
given in Table 4.1.

OffsetY,Cb,Cr = (16, 128, 128)
ExcursionY,Cb,Cr

= (219, 224, 224)
Kr = 0.299
Kb = 0.114

γ = 2.2
β = 0.45
α = 4.5
δ = 0.018
ε = 0.099

xr, yr = 0.67, 0.33
xg, yg = 0.21, 0.71
xb, yb = 0.14, 0.08

(Illuminant C) xw, yw = 0.310, 0.316

Table 4.1: Rec. 470M Parameters

4.3.2 Rec. 470BG (Rec. ITU-R BT.470-6 Systems B and
G with Rec. ITU-R BT.601-5)

This color space is used by the PAL and SECAM systems in much of the rest
of the world [ITU98] This can be used directly by systems (B, B1, D, D1, G, H,
I, K, N)/PAL and (B, D, G, H, K, K1, L)/SECAM.

Note: the Rec. 470BG chromaticity values are different from those
specified in Rec. 470M. When PAL and SECAM systems were
first designed, they were based upon the same primaries as NTSC.
However, as methods of making color picture tubes have changed,
the primaries used have changed as well. The U.S. recommends
using correction circuitry to approximate the existing, standard
NTSC primaries. Current PAL and SECAM systems have stan-
dardized on primaries in accord with more recent technology.
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Rec. 470 provisionally permits the use of the NTSC chromaticity values
(given in Section 4.3.1) with legacy PAL and SECAM equipment. In Theora,
material must be decoded assuming the new PAL and SECAM primaries. Ma-
terial intended for display on old legacy devices should be converted by the
decoder.

The official Rec. 470BG specifies a gamma value of γ = 2.8. However, in
practice this value is unrealistically high [Poy97]. Rec. 470BG states that the
overall system gamma should be approximately γβ = 1.2. Since most cameras
pre-correct with a gamma value of β = 0.45, this suggests an output device
gamma of approximately γ = 2.67. This is the value recommended for use with
PAL systems in Theora.

Rec. 470 does not specify a digital encoding of the color signals. For Theora,
Rec. ITU-R BT.601-5 [ITU95] is used, starting from the R′G′B′ signals specified
by Rec. 470.

Rec. 470 does not specify an input gamma function. For Theora, the Rec
709 [ITU02] input function is assumed.

The parameters for all the color transformations defined in Section 4.2 are
given in Table 4.2.

OffsetY,Cb,Cr = (16, 128, 128)
ExcursionY,Cb,Cr = (219, 224, 224)

Kr = 0.299
Kb = 0.114

γ = 2.67
β = 0.45
α = 4.5
δ = 0.018
ε = 0.099

xr, yr = 0.64, 0.33
xg, yg = 0.29, 0.60
xb, yb = 0.15, 0.06

(D65) xw, yw = 0.313, 0.329

Table 4.2: Rec. 470BG Parameters

4.4 Pixel Formats

Theora supports several different pixel formats, each of which uses different
subsampling for the chroma planes relative to the luma plane. A decoder may
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need to recover a full resolution chroma plane with samples co-sited with the
luma plane in order to convert to RGB for display or perform other process-
ing. Decoders can assume that the chroma signal satisfies the Nyquist-Shannon
sampling theorem. The ideal low-pass reconstruction filter this implies is not
practical, but any suitable approximation can be used, depending on the avail-
able computing power. Decoders MAY simply use a box filter, assigning to each
luma sample the chroma sample closest to it. Encoders would not go wrong in
assuming that this will be the most common approach.

4.4.1 4:4:4 Subsampling

All three color planes are stored at full resolution—each pixel has a Y ′, a Cb

and a Cr value (see Figure 4.1). The samples in the different planes are all at
co-located sites.

Frame: chroma plane Cb

Frame: chroma plane Cr

Frame: luma planeY’

Pixels

(0,0)

Figure 4.1: Pixels encoded 4:4:4

4.4.2 4:2:2 Subsampling

The Cb and Cr planes are stored with half the horizontal resolution of the Y ′

plane. Thus, each of these planes has half the number of horizontal blocks as the
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luma plane (see Figure 4.2). Similarly, they have half the number of horizontal
super blocks, rounded up. Macro blocks are defined across color planes, and
so their number does not change, but each macro block contains half as many
chroma blocks.

The chroma samples are vertically aligned with the luma samples, but hor-
izontally centered between two luma samples. Thus, each luma sample has a
unique closest chroma sample. A horizontal phase shift may be required to
produce signals which use different horizontal chroma sampling locations for
compatibility with different systems.

Frame: chroma plane Cb

Frame: chroma plane Cr

Frame: luma planeY’

Pixels

(0,0)

Figure 4.2: Pixels encoded 4:2:2

4.4.3 4:2:0 Subsampling

The Cb and Cr planes are stored with half the horizontal and half the vertical
resolution of the Y ′ plane. Thus, each of these planes has half the number of
horizontal blocks and half the number of vertical blocks as the luma plane, for a
total of one quarter the number of blocks (see Figure 4.3). Similarly, they have
half the number of horizontal super blocks and half the number of vertical super
blocks, rounded up. Macro blocks are defined across color planes, and so their
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number does not change, but each macro block contains within it one quarter
as many chroma blocks.

The chroma samples are vertically and horizontally centered between four
luma samples. Thus, each luma sample has a unique closest chroma sample.
This is the same sub-sampling pattern used with JPEG, MJPEG, and MPEG-
1, and was inherited from VP3. A horizontal or vertical phase shift may be
required to produce signals which use different chroma sampling locations for
compatibility with different systems.

Frame: chroma plane Cb

Frame: chroma plane Cr

Frame: luma planeY’

Pixels

(0,0)

Figure 4.3: Pixels encoded 4:2:0

4.4.4 Subsampling and the Picture Region

Although the frame size must be an integral number of macro blocks, and thus
both the number of pixels and the number of blocks in each direction must be
even, no such requirement is made of the picture region. Thus, when using sub-
sampled pixel formats, careful attention must be paid to which chroma samples
correspond to which luma samples.

As mentioned above, for each pixel format, there is a unique chroma sample
that is the closest to each luma sample. When cropping the chroma planes to
the picture region, all the chroma samples corresponding to a luma sample in
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the cropped picture region must be included. Thus, when dividing the width or
height of the picture region by two to obtain the size of the subsampled chroma
planes, they must be rounded up.

Furthermore, the sampling locations are defined relative to the frame, not
the picture region. When using the 4:2:2 and 4:2:0 formats, the locations of
chroma samples relative to the luma samples depends on whether or not the X
offset of the picture region is odd. If the offset is even, each column of chroma
samples corresponds to two columns of luma samples (see Figure 4.4 for an
example). The only exception is if the width is odd, in which case the last
column corresponds to only one column of luma samples (see Figure 4.5). If
the offset is odd, then the first column of chroma samples corresponds to only
one column of luma samples, while the remaining columns each correspond to
two (see Figure 4.6). In this case, if the width is even, the last column again
corresponds to only one column of luma samples (see Figure 4.7).

A similar process is followed with the rows of a picture region of odd height
encoded in the 4:2:0 format. If the Y offset is even, each row of chroma samples
corresponds to two rows of luma samples (see Figure 4.4), except with an odd
height, where the last row corresponds to one row of chroma luna samples only
(see Figure 4.5). If the offset is odd, then it is the first row of chroma samples
which corresponds to only one row of luma samples, while the remaining rows
each correspond to two (Figure 4.6), except with an even height, where the last
row also corresponds to one (Figure 4.7).

Encoders should be aware of these differences in the subsampling when using
an even or odd offset. In the typical case, with an even width and height, where
one expects two rows or columns of luma samples for every row or column of
chroma samples, the encoder must take care to ensure that the offsets used are
both even.

...
...

...

...

(0,0) (0,0) (0,0)

Pixels

...

...Frame: chroma (4:2:0 case)

Frame: chroma (4:2:2 case) Frame: luma

Figure 4.4: Pixel correspondence between color planes with even picture offset
and even picture size



4.4. PIXEL FORMATS 31

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

...
...

...

...

(0,0) (0,0) (0,0)

Pixels

...

...Frame: chroma (4:2:0 case)

Frame: chroma (4:2:2 case) Frame: luma

Figure 4.5: Pixel correspondence with even picture offset and odd picture size
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...
...

...

...

(0,0) (0,0) (0,0)

Pixels

...

...Frame: chroma (4:2:0 case)

Frame: chroma (4:2:2 case) Frame: luma

Figure 4.6: Pixel correspondence with odd picture offset and odd picture size
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...
...

...

...

(0,0) (0,0) (0,0)

Pixels

...

...Frame: chroma (4:2:0 case)

Frame: chroma (4:2:2 case) Frame: luma

Figure 4.7: Pixel correspondence with odd picture offset and even picture size
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Chapter 5

Bitpacking Convention

5.1 Overview

The Theora codec uses relatively unstructured raw packets containing binary
integer fields of arbitrary width. Logically, each packet is a bitstream in which
bits are written one-by-one by the encoder and then read one-by-one in the same
order by the decoder. Most current binary storage arrangements group bits into
a native storage unit of eight bits (octets), sixteen bits, thirty-two bits, or less
commonly other fixed sizes. The Theora bitpacking convention specifies the
correct mapping of the logical packet bitstream into an actual representation in
fixed-width units.

5.1.1 Octets and Bytes

In most contemporary architectures, a ‘byte’ is synonymous with an ‘octect’,
that is, eight bits. For purposes of the bitpacking convention, a byte implies the
smallest native integer storage representation offered by a platform. Modern
file systems invariably offer bytes as the fundamental atom of storage.

The most ubiquitous architectures today consider a ‘byte’ to be an octet.
Note, however, that the Theora bitpacking convention is still well defined for
any native byte size; an implementation can use the native bit-width of a given
storage system. This document assumes that a byte is one octet for purposes
of example only.

5.1.2 Words and Byte Order

A ‘word’ is an integer size that is a grouped multiple of the byte size. Most
architectures consider a word to be a group of two, four, or eight bytes. Each
byte in the word can be ranked by order of ‘significance’, e.g. the significance
of the bits in each byte when storing a binary integer in the word. Several byte
orderings are possible in a word. The common ones are

33
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� Big-endian: in which the most significant byte comes first, e.g. 3-2-1-0,

� Little-endian: in which the least significant byte comes first, e.g. 0-1-2-3,
and

� Mixed-endian: one of the less-common orderings that cannot be put into
the above two categories, e.g. 3-1-2-0 or 0-2-1-3.

The Theora bitpacking convention specifies storage and bitstream manipu-
lation at the byte, not word, level. Thus host word ordering is of a concern only
during optimization, when writing code that operates on a word of storage at
a time rather than a byte. Logically, bytes are always encoded and decoded in
order from byte zero through byte n.

5.1.3 Bit Order

A byte has a well-defined ‘least significant’ bit (LSb), which is the only bit set
when the byte is storing the two’s complement integer value +1. A byte’s ‘most
significant’ bit (MSb) is at the opposite end. Bits in a byte are numbered from
zero at the LSb to n for the MSb, where n = 7 in an octet.

5.2 Coding Bits into Bytes

The Theora codec needs to encode arbitrary bit-width integers from zero to 32
bits wide into packets. These integer fields are not aligned to the boundaries of
the byte representation; the next field is read at the bit position immediately
after the end of the previous field.

The decoder logically unpacks integers by first reading the MSb of a binary
integer from the logical bitstream, followed by the next most significant bit,
etc., until the required number of bits have been read. When unpacking the
bytes into bits, the decoder begins by reading the MSb of the integer to be read
from the most significant unread bit position of the source byte, followed by the
next-most significant bit position of the destination integer, and so on up to the
requested number of bits. Note that this differs from the Vorbis I codec, which
begins decoding with the LSb of the source integer, reading it from the LSb of
the source byte. When all the bits of the current source byte are read, decoding
continues with the MSb of the next byte. Any unfilled bits in the last byte of
the packet MUST be cleared to zero by the encoder.

5.2.1 Signedness

The binary integers decoded by the above process may be either signed or
unsigned. This varies from integer to integer, and this specification indicates
how each value should be interpreted as it is read. That is, depending on
context, the three bit binary pattern b111 can be taken to represent either ‘7’
as an unsigned integer or ‘−1’ as a signed, two’s complement integer.
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5.2.2 Encoding Example

The following example shows the state of an (8-bit) byte stream after several
binary integers are encoded, including the location of the put pointer for the
next bit to write to and the total length of the stream in bytes.

Encode the 4 bit unsigned integer value ‘12’ (b1100) into an empty byte
stream.

↓
7 6 5 4 3 2 1 0

byte 0 1 1 0 0 0 0 0 0 ←
byte 1 0 0 0 0 0 0 0 0
byte 2 0 0 0 0 0 0 0 0
byte 3 0 0 0 0 0 0 0 0

...
...

byte n 0 0 0 0 0 0 0 0 byte stream length: 1 byte

Continue by encoding the 3 bit signed integer value ‘-1’ (b111).

↓
7 6 5 4 3 2 1 0

byte 0 1 1 0 0 1 1 1 0 ←
byte 1 0 0 0 0 0 0 0 0
byte 2 0 0 0 0 0 0 0 0
byte 3 0 0 0 0 0 0 0 0

...
...

byte n 0 0 0 0 0 0 0 0 byte stream length: 1 byte

Continue by encoding the 7 bit integer value ‘17’ (b0010001).

↓
7 6 5 4 3 2 1 0

byte 0 1 1 0 0 1 1 1 0
byte 1 0 1 0 0 0 1 0 0 ←
byte 2 0 0 0 0 0 0 0 0
byte 3 0 0 0 0 0 0 0 0

...
...

byte n 0 0 0 0 0 0 0 0 byte stream length: 2 bytes

Continue by encoding the 13 bit integer value ‘6969’ (b11011 00111001).
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↓
7 6 5 4 3 2 1 0

byte 0 1 1 0 0 1 1 1 0
byte 1 0 1 0 0 0 1 1 1
byte 2 0 1 1 0 0 1 1 1
byte 3 0 0 1 0 0 0 0 0 ←

...
...

byte n 0 0 0 0 0 0 0 0 byte stream length: 4 bytes

5.2.3 Decoding Example

The following example shows the state of the (8-bit) byte stream encoded in
the previous example after several binary integers are decoded, including the
location of the get pointer for the next bit to read.

Read a two bit unsigned integer from the example encoded above.
↓

7 6 5 4 3 2 1 0
byte 0 1 1 0 0 1 1 1 0 ←
byte 1 0 1 0 0 0 1 1 1
byte 2 0 1 1 0 0 1 1 1
byte 3 0 0 1 0 0 0 0 0 byte stream length: 4 bytes

Value read: 3 (b11).
Read another two bit unsigned integer from the example encoded above.

↓
7 6 5 4 3 2 1 0

byte 0 1 1 0 0 1 1 1 0 ←
byte 1 0 1 0 0 0 1 1 1
byte 2 0 1 1 0 0 1 1 1
byte 3 0 0 1 0 0 0 0 0 byte stream length: 4 bytes

Value read: 0 (b00).
Two things are worth noting here.

� Although these four bits were originally written as a single four-bit in-
teger, reading some other combination of bit-widths from the bitstream
is well defined. No artificial alignment boundaries are maintained in the
bitstream.

� The first value is the integer ‘3’ only because the context stated we were
reading an unsigned integer. Had the context stated we were reading a
signed integer, the returned value would have been the integer ‘−1’.
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5.2.4 End-of-Packet Alignment

The typical use of bitpacking is to produce many independent byte-aligned
packets which are embedded into a larger byte-aligned container structure, such
as an Ogg transport bitstream. Externally, each bitstream encoded as a byte
stream MUST begin and end on a byte boundary. Often, the encoded packet
bitstream is not an integer number of bytes, and so there is unused space in the
last byte of a packet.

When a Theora encoder produces packets for embedding in a byte-aligned
container, unused space in the last byte of a packet is always zeroed during the
encoding process. Thus, should this unused space be read, it will return binary
zeroes. There is no marker pattern or stuffing bits that will allow the decoder
to obtain the exact size, in bits, of the original bitstream. This knowledge is
not required for decoding.

Attempting to read past the end of an encoded packet results in an ‘end-of-
packet’ condition. Any further read operations after an ‘end-of-packet’ condition
shall also return ‘end-of-packet’. Unlike Vorbis, Theora does not use truncated
packets as a normal mode of operation. Therefore if a decoder encounters the
‘end-of-packet’ condition during normal decoding, it may attempt to use the
bits that were read to recover as much of encoded data as possible, signal a
warning or error, or both.

5.2.5 Reading Zero Bit Integers

Reading a zero bit integer returns the value ‘0’ and does not increment the
stream pointer. Reading to the end of the packet, but not past the end, so
that an ‘end-of-packet’ condition is not triggered, and then reading a zero bit
integer shall succeed, returning ‘0’, and not trigger an ‘end-of-packet’ condition.
Reading a zero bit integer after a previous read sets the ‘end-of-packet’ condition
shall fail, also returning ‘end-of-packet’.
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Chapter 6

Bitstream Headers

A Theora bitstream begins with three header packets. The header packets
are, in order, the identification header, the comment header, and the setup
header. All are required for decode compliance. An end-of-packet condition
encountered while decoding the identification or setup header packets renders
the stream undecodable. An end-of-packet condition encountered while decode
the comment header is a non-fatal error condition, and MAY be ignored by a
decoder.

VP3 Compatibility VP3 relies on the headers provided by its container,
usually either AVI or Quicktime. As such, several parameters available in these
headers are not available to VP3 streams. These are indicated as they appear
in the sections below.

6.1 Common Header Decode

Input parameters: None.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| header type | ‘t’ | ‘h’ | ‘e’ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ‘o’ | ‘r’ | ‘a’ | data... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... header-specific data ... |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 6.1: Common Header Packet Layout

39
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Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

HEADERTYPE Integer 8 No The type of the header be-
ing decoded.

Variables used: None.

Each header packet begins with the same header fields, which are decoded
as follows:

1. Read an 8-bit unsigned integer as HEADERTYPE. If the most signifi-
cant bit of this integer is not set, then stop. This is not a header packet.

2. Read 6 8-bit unsigned integers. If these do not have the values 0x74, 0x68,
0x65, 0x6F, 0x72, and 0x61, respectively, then stop. This stream is not
decodable by this specification. These values correspond to the ASCII
values of the characters ‘t’, ‘h’, ‘e’, ‘o’, ‘r’, and ‘a’.

Decode continues according to HEADERTYPE. The identification header
is type 0x80, the comment header is type 0x81, and the setup header is type
0x82. These packets must occur in the order: identification, comment, setup.
All header packets have the most significant bit of the type field—which is the
initial bit in the packet—set. This distinguishes them from video data packets
in which the first bit is unset. Packets with other header types (0x83–0xFF) are
reserved and MUST be ignored.

6.2 Identification Header Decode

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

VMAJ Integer 8 No The major version number.
VMIN Integer 8 No The minor version number.
VREV Integer 8 No The version revision number.
FMBW Integer 16 No The width of the frame in macro

blocks.
FMBH Integer 16 No The height of the frame in macro

blocks.
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Name Type Size
(bits)

Signed? Description and restrictions

NSBS Integer 32 No The total number of super blocks
in a frame.

NBS Integer 36 No The total number of blocks in a
frame.

NMBS Integer 32 No The total number of macro
blocks in a frame.

PICW Integer 20 No The width of the picture region
in pixels.

PICH Integer 20 No The height of the picture region
in pixels.

PICX Integer 8 No The X offset of the picture region
in pixels.

PICY Integer 8 No The Y offset of the picture region
in pixels.

FRN Integer 32 No The frame-rate numerator.
FRD Integer 32 No The frame-rate denominator.
PARN Integer 24 No The pixel aspect-ratio numera-

tor.
PARD Integer 24 No The pixel aspect-ratio denomina-

tor.
CS Integer 8 No The color space.
PF Integer 2 No The pixel format.
NOMBR Integer 24 No The nominal bitrate of the

stream, in bits per second.
QUAL Integer 6 No The quality hint.
KFGSHIFT Integer 5 No The amount to shift the key

frame number by in the granule
position.

Variables used: None.

The identification header is a short header with only a few fields used to
declare the stream definitively as Theora and provide detailed information about
the format of the fully decoded video data. The identification header is decoded
as follows:

1. Decode the common header fields according to the procedure described in
Section 6.1. If HEADERTYPE returned by this procedure is not 0x80,
then stop. This packet is not the identification header.

2. Read an 8-bit unsigned integer as VMAJ. If VMAJ is not 3, then stop.
This stream is not decodable according to this specification.

3. Read an 8-bit unsigned integer as VMIN. If VMIN is not 2, then stop.
This stream is not decodable according to this specification.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x80 | ‘t’ | ‘h’ | ‘e’ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ‘o’ | ‘r’ | ‘a’ | VMAJ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VMIN | VREV | FMBW |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FMBH | PICW... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...PICW | PICH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PICX | PICY | FRN... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...FRN | FRD... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...FRD | PARN... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...PARN | PARD |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CS | NOMBR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| QUAL | KFGSHIFT| PF| Res |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 6.2: Identification Header Packet
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4. Read an 8-bit unsigned integer as VREV. If VREV is greater than 1,
then this stream may contain optional features or interpretational changes
documented in a future version of this specification. Regardless of the
value of VREV, the stream is decodable according to this specification.

5. Read a 16-bit unsigned integer as FMBW. This MUST be greater than
zero. This specifies the width of the coded frame in macro blocks. The
actual width of the frame in pixels is FMBW ∗ 16.

6. Read a 16-bit unsigned integer as FMBH. This MUST be greater than
zero. This specifies the height of the coded frame in macro blocks. The
actual height of the frame in pixels is FMBH ∗ 16.

7. Read a 24-bit unsigned integer as PICW. This MUST be no greater
than (FMBW ∗ 16). Note that 24 bits are read, even though only 20 bits
are sufficient to specify any value of the picture width. This is done to
preserve octet alignment in this header, to allow for a simplified parser
implementation.

8. Read a 24-bit unsigned integer as PICH. This MUST be no greater
than (FMBH ∗ 16). Together with PICW, this specifies the size of the
displayable picture region within the coded frame. See Figure 2.1. Again,
24 bits are read instead of 20.

9. Read an 8-bit unsigned integer as PICX. This MUST be no greater than
(FMBW ∗ 16−PICX).

10. Read an 8-bit unsigned integer as PICY. This MUST be no greater than
(FMBH ∗ 16−PICY). Together with PICX, this specifies the location
of the lower-left corner of the displayable picture region. See Figure 2.1.

11. Read a 32-bit unsigned integer as FRN. This MUST be greater than
zero.

12. Read a 32-bit unsigned integer as FRD. This MUST be greater than
zero. Theora is a fixed-frame rate video codec. Frames are sampled at
the constant rate of FRN

FRD frames per second. The presentation time of
the first frame is at zero seconds. No mechanism is provided to specify a
non-zero offset for the initial frame.

13. Read a 24-bit unsigned integer as PARN.

14. Read a 24-bit unsigned integer as PARD. Together with PARN, these
specify the aspect ratio of the pixels within a frame, defined as the ratio
of the physical width of a pixel to its physical height. This is given by
the ratio PARN : PARD. If either of these fields are zero, this indicates
that pixel aspect ratio information was not available to the encoder. In
this case it MAY be specified by the application via an external means,
or a default value of 1 : 1 MAY be used.
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15. Read an 8-bit unsigned integer as CS. This is a value from an enumerated
list of the available color spaces, given in Table 6.3. The ‘Undefined’ value
indicates that color space information was not available to the encoder. It
MAY be specified by the application via an external means. If a reserved
value is given, a decoder MAY refuse to decode the stream.

Value Color Space

0 Undefined.
1 Rec. 470M (see Section 4.3.1).
2 Rec. 470BG (see Section 4.3.2).
3 Reserved.
...

255

Table 6.3: Enumerated List of Color Spaces

16. Read a 24-bit unsigned integer as NOMBR. The NOMBR field is used
only as a hint. For pure VBR streams, this value may be considerably off.
The field MAY be set to zero to indicate that the encoder did not care to
speculate.

17. Read a 6-bit unsigned integer as QUAL. This value is used to provide
a hint as to the relative quality of the stream when compared to others
produced by the same encoder. Larger values indicate higher quality. This
can be used, for example, to select among several streams containing the
same material encoded with different settings.

18. Read a 5-bit unsigned integer as KFGSHIFT. The KFGSHIFT is
used to partition the granule position associated with each packet into two
different parts. The frame number of the last key frame, starting from zero,
is stored in the upper 64−KFGSHIFT bits, while the lower KFGSHIFT
bits contain the number of frames since the last keyframe. Complete
details on the granule position mapping are specified in Section REF.

19. Read a 2-bit unsigned integer as PF. The PF field contains a value from
an enumerated list of the available pixel formats, given in Table 6.4. If the
reserved value 1 is given, stop. This stream is not decodable according to
this specification.

20. Read a 3-bit unsigned integer. These bits are reserved. If this value
is not zero, then stop. This stream is not decodable according to this
specification.

21. Assign NSBS a value according to PF, as given by Table 6.5.

22. Assign NBS a value according to PF, as given by Table 6.6.
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Value Pixel Format

0 4:2:0 (see Section 4.4.3).
1 Reserved.
2 4:2:2 (see Section 4.4.2).
3 4:4:4 (see Section 4.4.1).

Table 6.4: Enumerated List of Pixel Formats

PF NSBS

0
((FMBW + 1)//2) ∗ ((FMBH + 1)//2)
+ 2 ∗ ((FMBW + 3)//4) ∗ ((FMBH + 3)//4)

2
((FMBW + 1)//2) ∗ ((FMBH + 1)//2)
+ 2 ∗ ((FMBW + 3)//4) ∗ ((FMBH + 1)//2)

3 3 ∗ ((FMBW + 1)//2) ∗ ((FMBH + 1)//2)

Table 6.5: Number of Super Blocks for each Pixel Format

23. Assign NMBS the value (FMBW ∗ FMBH).

VP3 Compatibility VP3 does not correctly handle frame sizes that are not
a multiple of 16. Thus, PICW and PICH should be set to the frame width
and height in pixels, respectively, and PICX and PICY should be set to zero.
VP3 headers do not specify a color space. VP3 only supports the 4:2:0 pixel
format.

6.3 Comment Header

The Theora comment header is the second of three header packets that begin
a Theora stream. It is meant for short text comments, not aribtrary metadata;
arbitrary metadata belongs in a separate logical stream that provides greater
structure and machine parseability.

PF NBS

0 6 ∗ FMBW ∗ FMBH

2 8 ∗ FMBW ∗ FMBH

3 12 ∗ FMBW ∗ FMBH

Table 6.6: Number of Blocks for each Pixel Format
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4 byte length UTF-8 encoded string ...

Figure 6.3: Length encoded string layout

The comment field is meant to be used much like someone jotting a quick
note on the label of a video. It should be a little information to remember the
disc or tape by and explain it to others; a short, to-the-point text note that can
be more than a couple words, but isn’t going to be more than a short paragraph.
The essentials, in other words, whatever they turn out to be, e.g.:

The comment header is stored as a logical list of eight-bit clean vectors; the
number of vectors is bounded at 232− 1 and the length of each vector is limited
to 232 − 1 bytes. The vector length is encoded; the vector contents themselves
are not null terminated. In addition to the vector list, there is a single vector
for a vendor name, also eight-bit clean with a length encoded in 32 bits.

6.3.1 Comment Length Decode

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

LEN Integer 32 No A single 32-bit length value.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

LEN0 Integer 8 No The first octet of the string length.
LEN1 Integer 8 No The second octet of the string length.
LEN2 Integer 8 No The third octet of the string length.
LEN3 Integer 8 No The fourth octet of the string length.

A single comment vector is decoded as follows:

1. Read an 8-bit unsigned integer as LEN0.

2. Read an 8-bit unsigned integer as LEN1.

3. Read an 8-bit unsigned integer as LEN2.

4. Read an 8-bit unsigned integer as LEN3.

5. Assign LEN the value (LEN0+(LEN1 << 8)+(LEN2 << 16)+(LEN3 <<
24)). This construction is used so that on platforms with 8-bit bytes, the
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vendor string
number of comments

comment string
comment string

...

Figure 6.4: Comment Header Layout

memory organization of the comment header is identical with that of Vor-
bis I, allowing for common parsing code despite the different bit packing
conventions.

6.3.2 Comment Header Decode

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

VENDOR String The vendor string.
NCOMMENTS Integer 32 No The number of user com-

ments.
COMMENTS String Array A list of NCOMMENTS

user comment values.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

ci Integer 32 No The index of the current user comment.

The complete comment header is decoded as follows:

1. Decode the common header fields according to the procedure described in
Section 6.1. If HEADERTYPE returned by this procedure is not 0x81,
then stop. This packet is not the comment header.

2. Decode the length of the vendor string using the procedure given in Sec-
tion 6.3.1 into LEN.

3. Read LEN 8-bit unsigned integers.

4. Set the string VENDOR to the contents of these octets.

5. Decode the number of user comments using the procedure given in Sec-
tion 6.3.1 into LEN.

6. Assign NCOMMENTS the value stored in LEN.

7. For each consecutive value of ci from 0 to (NCOMMENTS− 1), inclu-
sive:
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(a) Decode the length of the current user comment using the procedure
given in Section 6.3.1 into LEN.

(b) Read LEN 8-bit unsigned integers.
(c) Set the string COMMENTS[ci ] to the contents of these octets.

The comment header comprises the entirety of the second header packet.
Unlike the first header packet, it is not generally the only packet on the second
page and may span multiple pages. The length of the comment header packet is
(practically) unbounded. The comment header packet is not optional; it must
be present in the stream even if it is logically empty.

6.3.3 User Comment Format

The user comment vectors are structured similarly to a UNIX environment
variable. That is, comment fields consist of a field name and a corresponding
value and look like:

COMMENTS[0] = “TITLE=the look of Theora”
COMMENTS[1] = “DIRECTOR=me”

The field name is case-insensitive and MUST consist of ASCII characters
0x20 through 0x7D, 0x3D (‘=’) excluded. ASCII 0x41 through 0x5A inclusive
(characters ‘A’–‘Z’) are to be considered equivalent to ASCII 0x61 through
0x7A inclusive (characters ‘a’–‘z’). An entirely empty field name—one that is
zero characters long—is not disallowed.

The field name is immediately followed by ASCII 0x3D (‘=’); this equals sign
is used to terminate the field name.

The data immediately after 0x3D until the end of the vector is the eight-bit
clean value of the field contents encoded as a UTF-8 string [Yer96].

Field names MUST NOT be ‘internationalized’; this is a concession to sim-
plicity, not an attempt to exclude the majority of the world that doesn’t speak
English. Applications MAY wish to present internationalized versions of the
standard field names listed below to the user, but they are not to be stored in
the bitstream. Field contents, however, use the UTF-8 character encoding to
allow easy representation of any language.

Individual ‘vendors’ MAY use non-standard field names within reason. The
proper use of comment fields as human-readable notes has already been ex-
plained. Abuse will be discouraged.

There is no vendor-specific prefix to ‘non-standard’ field names. Vendors
SHOULD make some effort to avoid arbitrarily polluting the common names-
pace. Xiph.org and other bodies will generally collect and rationalize the more
useful tags to help with standardization.

Field names are not restricted to occur only once within a comment header.

Field Names Below is a proposed, minimal list of standard field names with
a description of their intended use. No field names are mandatory; a comment
header may contain one or more, all, or none of the names in this list.
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TITLE: Video name.

ARTIST: Filmmaker or other creator name.

VERSION: Subtitle, remix info, or other text distinguishing versions of a video.

DATE: Date associated with the video. Implementations SHOULD attempt
to parse this field as an ISO 8601 date for machine interpretation and
conversion.

LOCATION: Location associated with the video. This is usually the filming
location for non-fiction works.

COPYRIGHT: Copyright statement.

LICENSE: Copyright and other licensing information. Implementations wish-
ing to do automatic parsing of e.g of distribution terms SHOULD look
here for a URL uniquely defining the license. If no instance of this field is
present, or if no instance contains a parseable URL, and implementation
MAY look in the COPYRIGHT field for such a URL.

ORGANIZATION: Studio name, Publisher, or other organization involved in
the creation of the video.

DIRECTOR: Director or Filmmaker credit, similar to ARTIST.

PRODUCER: Producer credit for the video.

COMPOSER: Music credit for the video.

ACTOR: Acting credit for the video.

TAG: subject or category tag, keyword, or other content classification labels.
The value of each instance of this field SHOULD be treated as a single
label, with multiple instances of the field for multiple tags. The value of
a single field SHOULD NOT be parsed into multiple tags based on some
internal delimeter.

DESCRIPTION: General description, summary, or blurb.

6.4 Setup Header

The Theora setup header contains the limit values used to drive the loop filter,
the base matrices and scale values used to build the dequantization tables, and
the Huffman tables used to unpack the DCT tokens. Because the contents of
this header are specific to Theora, no concessions have been made to keep the
fields octet-aligned for easy parsing.

6.4.1 Loop Filter Limit Table Decode

Input parameters: None.
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common header block
loop filter table resolution

loop filter table
scale table resolution

AC scale table
DC scale table

number of base matricies
base quatization matricies

...
quant range interpolation table

DCT token Huffman tables

Figure 6.5: Setup Header structure

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

LFLIMS Integer
array

7 No A 64-element array of loop filter
limit values.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

qi Integer 6 No The quantization index.
NBITS Integer 3 No The size of values being read in the cur-

rent table.

This procedure decodes the table of loop filter limit values used to drive the
loop filter, which is described in Section 6.4.1. It is decoded as follows:

1. Read a 3-bit unsigned integer as NBITS.

2. For each consecutive value of qi from 0 to 63, inclusive:

(a) Read an NBITS-bit unsigned integer as LFLIMS[qi ].

VP3 Compatibility The loop filter limit values are hardcoded in VP3. The
values used are given in Appendix B.2.

6.4.2 Quantization Parameters Decode

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

ACSCALE Integer
array

16 No A 64-element array of scale
values for AC coefficients for
each qi value.

DCSCALE Integer
array

16 No A 64-element array of scale
values for the DC coefficient
for each qi value.
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Name Type Size
(bits)

Signed? Description and restrictions

NBMS Integer 10 No The number of base matrices.
BMS 2D Integer

array
8 No A NBMS×64 array contain-

ing the base matrices.
NQRS 2D Integer

array
6 No A 2 × 3 array containing the

number of quant ranges for a
given qti and pli , respectively.
This is at most 63.

QRSIZES 3D Integer
array

6 No A 2 × 3 × 63 array of the
sizes of each quant range for a
given qti and pli , respectively.
Only the first NQRS[qti ][pli ]
values are used.

QRBMIS 3D Integer
array

9 No A 2 × 3 × 64 array of the
bmi ’s used for each quant
range for a given qti and pli ,
respectively. Only the first
(NQRS[qti ][pli ] + 1) values
are used.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

qti Integer 1 No A quantization type index. See Ta-
ble 3.1.

qtj Integer 1 No A quantization type index.
pli Integer 2 No A color plane index. See Table 2.1.
plj Integer 2 No A color plane index.
qi Integer 6 No The quantization index.
ci Integer 6 No The DCT coefficient index.
bmi Integer 9 No The base matrix index.
qri Integer 6 No The quant range index.
NBITS Integer 5 No The size of fields to read.
NEWQR Integer 1 No Flag that indicates a new set of quant

ranges will be defined.
RPQR Integer 1 No Flag that indicates the quant ranges

to copy will come from the same color
plane.

The AC scale and DC scale values are defined in two simple tables with 64
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values each, one for each qi value. The same scale values are used for every
quantization type and color plane.

The base matrices for all quantization types and color planes are stored in a
single table. These are then referenced by index in several sets of quant ranges.
The purpose of the quant ranges is to specify which base matrices are used for
which qi values.

A set of quant ranges is defined for each quantization type and color plane.
To save space in the header, bit flags allow a set of quant ranges to be copied from
a previously defined set instead of being specified explicitly. Every set except
the first one can be copied from the immediately preceding set. Similarly, if the
quantization type is not 0, the set can be copied from the set defined for the
same color plane for the preceding quantization type. This formulation allows
compact representation of, for example, the same set of quant ranges in both
chroma channels, as is done in the original VP3, or the same set of quant ranges
in INTRA and INTER modes.

Each quant range is defined by a size and two base matrix indices, one for
each end of the range. The base matrix for the end of one range is used as the
start of the next range, so that for n ranges, n + 1 base matrices are specified.
The base matrices for the qi values between the two endpoints of the range are
generated by linear interpolation.

The location of the endpoints of each range is encoded by their size. The qi
value for the left end-point is the sum of the sizes of all preceding ranges, and
the qi value for the right end-point adds the size of the current range. Thus the
sum of the sizes of all the ranges MUST be 63, so that the last range falls on
the last possible qi value.

The complete set of quantization parameters are decoded as follows:

1. Read a 4-bit unsigned integer. Assign NBITS the value read, plus one.

2. For each consecutive value of qi from 0 to 63, inclusive:

(a) Read an NBITS-bit unsigned integer as ACSCALE[qi ].

3. Read a 4-bit unsigned integer. Assign NBITS the value read, plus one.

4. For each consecutive value of qi from 0 to 63, inclusive:

(a) Read an NBITS-bit unsigned integer as DCSCALE[qi ].

5. Read a 9-bit unsigned integer. Assign NBMS the value decoded, plus
one. NBMS MUST be no greater than 384.

6. For each consecutive value of bmi from 0 to (NBMS− 1), inclusive:

(a) For each consecutive value of ci from 0 to 63, inclusive:

i. Read an 8-bit unsigned integer as BMS[bmi ][ci ].

7. For each consecutive value of qti from 0 to 1, inclusive:
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(a) For each consecutive value of pli from 0 to 2, inclusive:

i. If qti > 0 or pli > 0, read a 1-bit unsigned integer as NEWQR.
ii. Else, assign NEWQR the value one.
iii. If NEWQR is zero, then we are copying a previously defined set

of quant ranges. In that case:
A. If qti > 0, read a 1-bit unsigned integer as RPQR.
B. Else, assign RPQR the value zero.
C. If RPQR is one, assign qtj the value (qti − 1) and assign plj

the value pli . This selects the set of quant ranges defined
for the same color plane as this one, but for the previous
quantization type.

D. Else assign qtj the value (3 ∗ qti + pli − 1)//3 and assign plj
the value (pli + 2)%3. This selects the most recent set of
quant ranges defined.

E. Assign NQRS[qti ][pli ] the value NQRS[qtj ][plj ].
F. Assign QRSIZES[qti ][pli ] the values in QRSIZES[qtj ][plj ].
G. Assign QRBMIS[qti ][pli ] the values in QRBMIS[qtj ][plj ].

iv. Else, NEWQR is one, which indicates that we are defining a new
set of quant ranges. In that case:
A. Assign qri the value zero.
B. Assign qi the value zero.
C. Read an ilog(NBMS− 1)-bit unsigned integer as

QRBMIS[qti ][pli ][qri ]. If this is greater than or equal to
NBMS, stop. The stream is undecodable.

D. Read an ilog(62− qi)-bit unsigned integer. Assign
QRSIZES[qti ][pli ][qri ] the value read, plus one.

E. Assign qi the value qi + QRSIZES[qti ][pli ][qri ].
F. Assign qri the value qri + 1.
G. Read an ilog(NBMS− 1)-bit unsigned integer as

QRBMIS[qti ][pli ][qri ].
H. If qi is less than 63, go back to step 7(a)ivD.
I. If qi is greater than 63, stop. The stream is undecodable.
J. Assign NQRS[qti ][pli ] the value qri .

VP3 Compatibility The quantization parameters are hardcoded in VP3.
The values used are given in Appendix B.3.

6.4.3 Computing a Quantization Matrix

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

ACSCALE Integer
array

16 No A 64-element array of scale
values for AC coefficients for
each qi value.

DCSCALE Integer
array

16 No A 64-element array of scale
values for the DC coefficient
for each qi value.

BMS 2D Integer
array

8 No A NBMS×64 array contain-
ing the base matrices.

NQRS 2D Integer
array

6 No A 2 × 3 array containing the
number of quant ranges for a
given qti and pli , respectively.
This is at most 63.

QRSIZES 3D Integer
array

6 No A 2 × 3 × 63 array of the
sizes of each quant range for a
given qti and pli , respectively.
Only the first NQRS[qti ][pli ]
values are used.

QRBMIS 3D Integer
array

9 No A 2 × 3 × 64 array of the
bmi ’s used for each quant
range for a given qti and pli ,
respectively. Only the first
(NQRS[qti ][pli ] + 1) values
are used.

qti Integer 1 No A quantization type index.
See Table 3.1.

pli Integer 2 No A color plane index. See Ta-
ble 2.1.

qi Integer 6 No The quantization index.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

QMAT Integer
array

16 No A 64-element array of quantization
values for each DCT coefficient in
natural order.

Variables used:
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Name Type Size
(bits)

Signed? Description and restrictions

ci Integer 6 No The DCT coefficient index.
bmi Integer 9 No The base matrix index.
bmj Integer 9 No The base matrix index.
qri Integer 6 No The quant range index.
QISTART Integer 6 No The left end-point of the qi range.
QIEND Integer 6 No The right end-point of the qi

range.
BM Integer

array
8 No A 64-element array containing the

interpolated base matrix.
QMIN Integer 16 No The minimum quantization value

allowed for the current coefficient.
QSCALE Integer 16 No The current scale value.

The following procedure can be used to generate a single quantization matrix
for a given quantization type, color plane, and qi value, given the quantization
parameters decoded in Section 6.4.2.

Note that the product of the scale value and the base matrix value is in units
of 100ths of a pixel value, and thus is divided by 100 to return it to units of a
single pixel value. This value is then scaled by four, to match the scaling of the
DCT output, which is also a factor of four larger than the orthonormal version
of the transform.

1. Assign qri the index of a quant range such that
qri−1∑
qrj=0

qi ≥ QRSIZES[qti ][pli ][qrj ],

and
qri∑

qrj=0

qi ≤ QRSIZES[qti ][pli ][qrj ],

where summation from 0 to −1 is defined to be zero. If there is more than
one such value of qri , i.e., if qi lies on the boundary between two quant
ranges, then the output will be the same regardless of which one is chosen.

2. Assign QISTART the value
qri−1∑
qrj=0

QRSIZES[qti ][pli ][qrj ].

3. Assign QIEND the value
qri∑

qrj=0

QRSIZES[qti ][pli ][qrj ].
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4. Assign bmi the value QRBMIS[qti ][pli ][qri ].

5. Assign bmj the value QRBMIS[qti ][pli ][qri + 1].

6. For each consecutive value of ci from 0 to 63, inclusive:

(a) Assign BM[ci ] the value

(2 ∗ (QIEND− qi) ∗BMS[bmi ][ci ]
+ 2 ∗ (qi −QISTART) ∗BMS[bmj ][ci ]
+ QRSIZES[qti ][pli ][qri ])//(2 ∗QRSIZES[qti ][pli ][qri ])

(b) Assign QMIN the value given by Table 6.18 according to qti and ci .

Coefficient qti QMIN

ci = 0 0 (Intra) 16
ci > 0 0 (Intra) 8
ci = 0 1 (Inter) 32
ci > 0 1 (Inter) 16

Table 6.18: Minimum Quantization Values

(c) If ci equals zero, assign QSCALE the value DCSCALE[qi ].

(d) Else, assign QSCALE the value ACSCALE[qi ].

(e) Assign QMAT[ci ] the value

max(QMIN,min((QSCALE ∗ BM[ci ]//100) ∗ 4, 4096)).

6.4.4 DCT Token Huffman Tables

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

HTS Huffman table array An 80-element array of Huffman tables
with up to 32 entries each.

Variables used:
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Name Type Size
(bits)

Signed? Description and restrictions

HBITS Bit string 32 No A string of up to 32 bits.
TOKEN Integer 5 No A single DCT token value.
ISLEAF Integer 1 No Flag that indicates if the current

node of the tree being decoded is
a leaf node.

The Huffman tables used to decode DCT tokens are stored in the setup
header in the form of a binary tree. This enforces the requirements that the
code be full—so that any sequence of bits will produce a valid sequence of
tokens—and that the code be prefix-free so that there is no ambiguity when
decoding.

One more restriction is placed on the tables that is not explicitly enforced by
the bitstream syntax, but nevertheless must be obeyed by compliant encoders.
There must be no more than 32 entries in a single table. Note that this re-
striction along with the fullness requirement limit the maximum size of a single
Huffman code to 32 bits. It is probably a good idea to enforce this latter con-
sequence explicitly when implementing the decoding procedure as a recursive
algorithm, so as to prevent a possible stack overflow given an invalid bitstream.

Although there are 32 different DCT tokens, and thus a normal table will
have exactly 32 entries, this is not explicitly required. It is allowable to use a
Huffman code that omits some—but not all—of the possible token values. It is
also allowable, if not particularly useful, to specify multiple codes for the same
token value in a single table. Note also that token values may appear in the
tree in any order. In particular, it is not safe to assume that token value zero
(which ends a single block), has a Huffman code of all zeros.

The tree is decoded as follows:

1. For each consecutive value of hti from 0 to 80, inclusive:

(a) Set HBITS to the empty string.

(b) If HBITS is longer than 32 bits in length, stop. The stream is unde-
codable.

(c) Read a 1-bit unsigned integer as ISLEAF.

(d) If ISLEAF is one:

i. If the number of entries in table HTS[hti ] is already 32, stop.
The stream is undecodable.

ii. Read a 5-bit unsigned integer as TOKEN.
iii. Add the pair (HBITS,TOKEN) to Huffman table HTS[hti ].

(e) Otherwise:

i. Add a ‘0’ to the end of HBITS.
ii. Decode the ‘0’ sub-tree using this procedure, starting from step 1b.
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iii. Remove the ‘0’ from the end of HBITS and add a ‘1’ to the end
of HBITS.

iv. Decode the ‘1’ sub-tree using this procedure, starting from step 1b.
v. Remove the ‘1’ from the end of HBITS.

VP3 Compatibility The DCT token Huffman tables are hardcoded in VP3.
The values used are given in Appendix B.4.

6.4.5 Setup Header Decode

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

LFLIMS Integer
array

7 No A 64-element array of loop fil-
ter limit values.

ACSCALE Integer
array

16 No A 64-element array of scale
values for AC coefficients for
each qi value.

DCSCALE Integer
array

16 No A 64-element array of scale
values for the DC coefficient
for each qi value.

NBMS Integer 10 No The number of base matrices.
BMS 2D Integer

array
8 No A NBMS×64 array contain-

ing the base matrices.
NQRS 2D Integer

array
6 No A 2 × 3 array containing the

number of quant ranges for a
given qti and pli , respectively.
This is at most 63.

QRSIZES 3D Integer
array

6 No A 2 × 3 × 63 array of the
sizes of each quant range for a
given qti and pli , respectively.
Only the first NQRS[qti ][pli ]
values will be used.

QRBMIS 3D Integer
array

9 No A 2 × 3 × 64 array of the
bmi ’s used for each quant
range for a given qti and pli ,
respectively. Only the first
(NQRS[qti ][pli ] + 1) values
will be used.

HTS Huffman table array An 80-element array of Huff-
man tables with up to 32 en-
tries each.
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Name Type Size
(bits)

Signed? Description and restrictions

Variables used: None.

The complete setup header is decoded as follows:

1. Decode the common header fields according to the procedure described in
Section 6.1. If HEADERTYPE returned by this procedure is not 0x82,
then stop. This packet is not the setup header.

2. Decode the loop filter limit value table using the procedure given in Sec-
tion 6.4.1 into LFLIMS.

3. Decode the quantization parameters using the procedure given in Sec-
tion 6.4.2. The results are stored in ACSCALE, DCSCALE, NBMS,
BMS, NQRS, QRSIZES, and QRBMIS.

4. Decode the DCT token Huffman tables using the procedure given in Sec-
tion 6.4.4 into HTS.
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Chapter 7

Frame Decode

This section describes the complete procedure necessary to decode a single
frame. This begins with the frame header, followed by coded block flags, macro
block modes, motion vectors, block-level qi values, and finally the DCT residual
tokens, which are used to reconstruct the frame.

7.1 Frame Header Decode

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

FTYPE Integer 1 No The frame type.
NQIS Integer 2 No The number of qi values.
QIS Integer

array
6 No An NQIS-element array of qi val-

ues.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

MOREQIS Integer 1 No A flag indicating there are more qi
values to be decoded.

The frame header selects which type of frame is being decoded, intra or inter,

61
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and contains the list of qi values that will be used in this frame. The first qi
value will be used for all DC coefficients in all blocks. This is done to ensure
that DC prediction, which is done in the quantized domain, works as expected.
The AC coefficients, however, can be dequantized using any qi value on the list,
selected on a block-by-block basis.

1. Read a 1-bit unsigned integer. If the value read is not zero, stop. This is
not a data packet.

2. Read a 1-bit unsigned integer as FTYPE. This is the type of frame being
decoded, as given in Table 7.3. If this is the first frame being decoded,
this MUST be zero.

FTYPE Frame Type

0 Intra frame
1 Inter frame

Table 7.3: Frame Type Values

3. Read in a 6-bit unsigned integer as QIS[0].

4. Read a 1-bit unsigned integer as MOREQIS.

5. If MOREQIS is zero, set NQIS to 1.

6. Otherwise:

(a) Read in a 6-bit unsigned integer as QIS[1].

(b) Read a 1-bit unsigned integer as MOREQIS.

(c) If MOREQIS is zero, set NQIS to 2.

(d) Otherwise:

i. Read in a 6-bit unsigned integer as QIS[2].
ii. Set NQIS to 3.

7. If FTYPE is 0, read a 3-bit unsigned integer. These bits are reserved. If
this value is not zero, stop. This frame is not decodable according to this
specification.

VP3 Compatibility The precise format of the frame header is substantially
different in Theora than in VP3. The original VP3 format includes a larger
number of unused, reserved bits that are required to be zero. The original VP3
frame header also can contain only a single qi value, because VP3 does not
support block-level qi values and uses the same qi value for all the coefficients
in a frame.
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7.2 Run-Length Encoded Bit Strings

Two variations of run-length encoding are used to store sequences of bits for
the block coded flags and the block-level qi values. The procedures to decode
these bit sequences are specified in the following two sections.

7.2.1 Long-Run Bit String Decode

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

NBITS Integer 36 No The number of bits to decode.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

BITS Bit string The decoded bits.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

LEN Integer 36 No The number of bits decoded so far.
BIT Integer 1 No The value associated with the current

run.
RLEN Integer 13 No The length of the current run.
RBITS Integer 4 No The number of extra bits needed to

decode the run length.
RSTART Integer 6 No The start of the possible run-length

values for a given Huffman code.
ROFFS Integer 12 No The offset from RSTART of the run-

length.

There is no practical limit to the number of consecutive 0’s and 1’s that
can be decoded with this procedure. In reality, the run length is limited by
the number of blocks in a single frame, because more will never be requested.
A separate procedure described in Section 7.2.2 is used when there is a known
limit on the maximum size of the runs.
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For the first run, a single bit value is read, and then a Huffman-coded rep-
resentation of a run length is decoded, and that many copies of the bit value
are appended to the bit string. For each consecutive run, the value of the bit is
toggled instead of being read from the bitstream.

The only exception is if the length of the previous run was 4129, the max-
imum possible length encodable by the Huffman-coded representation. In this
case another bit value is read from the stream, to allow for consecutive runs of
0’s or 1’s longer than this maximum.

Note that in both cases—for the first run and after a run of length 4129—if
no more bits are needed, then no bit value is read.

The complete decoding procedure is as follows:

1. Assign LEN the value 0.

2. Assign BITS the empty string.

3. If LEN equals NBITS, return the completely decoded string BITS.

4. Read a 1-bit unsigned integer as BIT.

5. Read a bit at a time until one of the Huffman codes given in Table 7.7 is
recognized.

Huffman Code RSTART RBITS Run Lengths

b0 1 0 1
b10 2 1 2 . . . 3
b110 4 1 4 . . . 5
b1110 6 2 6 . . . 9
b11110 10 3 10 . . . 17
b111110 18 4 18 . . . 33
b111111 34 12 34 . . . 4129

Table 7.7: Huffman Codes for Long Run Lengths

6. Assign RSTART and RBITS the values given in Table 7.7 according to
the Huffman code read.

7. Read an RBITS-bit unsigned integer as ROFFS.

8. Assign RLEN the value (RSTART + ROFFS).

9. Append RLEN copies of BIT to BITS.

10. Add RLEN to the value LEN. LEN MUST be less than or equal to
NBITS.

11. If LEN equals NBITS, return the completely decoded string BITS.
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12. If RLEN equals 4129, read a 1-bit unsigned integer as BIT.

13. Otherwise, assign BIT the value (1− BIT).

14. Continue decoding runs from step 5.

VP3 Compatibility VP3 does not read a new bit value after decoding a run
length of 4129. This limits the maximum number of consecutive 0’s or 1’s to
4129 in VP3-compatible streams. For reasonable video sizes of 1920 × 1080 or
less in 4:2:0 format—the only pixel format VP3 supports—this does not pose
any problems because runs longer than 4129 are not needed.

7.2.2 Short-Run Bit String Decode

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

NBITS Integer 36 No The number of bits to decode.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

BITS Bit string The decoded bits.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

LEN Integer 36 No The number of bits decoded so far.
BIT Integer 1 No The value associated with the current

run.
RLEN Integer 13 No The length of the current run.
RBITS Integer 4 No The number of extra bits needed to

decode the run length.
RSTART Integer 6 No The start of the possible run-length

values for a given Huffman code.
ROFFS Integer 12 No The offset from RSTART of the run-

length.
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This procedure is similar to the procedure outlined in Section 7.2.1, except
that the maximum number of consecutive 0’s or 1’s is limited to 30. This is the
maximum run length needed when encoding a bit for each of the 16 blocks in a
super block when it is known that not all the bits in a super block are the same.

The complete decoding procedure is as follows:

1. Assign LEN the value 0.

2. Assign BITS the empty string.

3. If LEN equals NBITS, return the completely decoded string BITS.

4. Read a 1-bit unsigned integer as BIT.

5. Read a bit at a time until one of the Huffman codes given in Table 7.11
is recognized.

Huffman Code RSTART RBITS Run Lengths

b0 1 1 1 . . . 2
b10 3 1 3 . . . 4
b110 5 1 5 . . . 6
b1110 7 2 7 . . . 10
b11110 11 2 11 . . . 14
b11111 15 4 15 . . . 30

Table 7.11: Huffman Codes for Short Run Lengths

6. Assign RSTART and RBITS the values given in Table 7.11 according to
the Huffman code read.

7. Read an RBITS-bit unsigned integer as ROFFS.

8. Assign RLEN the value (RSTART + ROFFS).

9. Append RLEN copies of BIT to BITS.

10. Add RLEN to the value LEN. LEN MUST be less than or equal to
NBITS.

11. If LEN equals NBITS, return the completely decoded string BITS.

12. Assign BIT the value (1− BIT).

13. Continue decoding runs from step 5.

7.3 Coded Block Flags Decode

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

FTYPE Integer 1 No The frame type.
NSBS Integer 32 No The total number of super blocks in a

frame.
NBS Integer 36 No The total number of blocks in a frame.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

BCODED Integer
Array

1 No An NBS-element array of flags
indicating which blocks are
coded.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

NBITS Integer 36 No The length of a bit string to de-
code.

BITS Bit string A decoded set of flags.
SBPCODED Integer

Array
1 No An NSBS-element array of

flags indicating whether or not
each super block is partially
coded.

SBFCODED Integer
Array

1 No An NSBS-element array of
flags indicating whether or not
each non-partially coded super
block is fully coded.

sbi Integer 32 No The index of the current super
block.

bi Integer 36 No The index of the current block
in coded order.

This procedure determines which blocks are coded in a given frame. In an
intra frame, it marks all blocks coded. In an inter frame, however, any or all of
the blocks may remain uncoded. The output is a list of bit flags, one for each
block, marking it coded or not coded.

It is important to note that flags are still decoded for any blocks which lie
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entirely outside the picture region, even though they are not displayed. Encoders
MAY choose to code such blocks. Decoders MUST faithfully reconstruct such
blocks, because their contents can be used for predictors in future frames. Flags
are not decoded for portions of a super block which lie outside the full frame,
as there are no blocks in those regions.

The complete procedure is as follows:

1. If FTYPE is zero (intra frame):

(a) For each consecutive value of bi from 0 to (NBS−1), assign BCODED[bi ]
the value one.

2. Otherwise (inter frame):

(a) Assign NBITS the value NSBS.
(b) Read an NBITS-bit bit string into BITS, using the procedure de-

scribed in Section 7.2.1. This represents the list of partially coded
super blocks.

(c) For each consecutive value of sbi from 0 to (NSBS − 1), remove the
bit at the head of the string BITS and assign it to SBPCODED[sbi ].

(d) Assign NBITS the total number of super blocks such that
SBPCODED[sbi ] equals zero.

(e) Read an NBITS-bit bit string into BITS, using the procedure de-
scribed in Section 7.2.1. This represents the list of fully coded super
blocks.

(f) For each consecutive value of sbi from 0 to (NSBS − 1) such that
SBPCODED[sbi ] equals zero, remove the bit at the head of the string
BITS and assign it to SBFCODED[sbi ].

(g) Assign NBITS the number of blocks contained in super blocks where
SBPCODED[sbi ] equals one. Note that this might not be equal to 16
times the number of partially coded super blocks, since super blocks
which overlap the edge of the frame will have fewer than 16 blocks
in them.

(h) Read an NBITS-bit bit string into BITS, using the procedure de-
scribed in Section 7.2.2.

(i) For each block in coded order—indexed by bi :
i. Assign sbi the index of the super block containing block bi .
ii. If SBPCODED[sbi ] is zero, assign BCODED[bi ] the value SBFCODED[sbi ].
iii. Otherwise, remove the bit at the head of the string BITS and

assign it to BCODED[bi ].

7.4 Macro Block Coding Modes

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

FTYPE Integer 1 No The frame type.
NMBS Integer 32 No The total number of macro

blocks in a frame.
NBS Integer 36 No The total number of blocks in a

frame.
BCODED Integer

Array
1 No An NBS-element array of flags

indicating which blocks are
coded.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

MBMODES Integer
Array

3 No An NMBS-element array of
coding modes for each macro
block.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

MSCHEME Integer 3 No The mode coding scheme.
MALPHABET Integer

array
3 No The list of modes correspond-

ing to each Huffman code.
mbi Integer 32 No The index of the current

macro block.
bi Integer 36 No The index of the current

block in coded order.
mi Integer 32 No The index of a Huffman

code from Table 7.19, start-
ing from 0.

In an intra frame, every macro block marked as coded in INTRA mode. In
an inter frame, however, a macro block can be coded in one of eight coding
modes, given in Table 7.18. All of the blocks in all color planes contained in a
macro block will be assigned the coding mode of that macro block.

An important thing to note is that a coding mode is only stored in the
bitstream for a macro block if it has at least one luma block coded. A macro
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Index Coding Mode

0 INTER NOMV
1 INTRA
2 INTER MV
3 INTER MV LAST
4 INTER MV LAST2
5 INTER GOLDEN NOMV
6 INTER GOLDEN MV
7 INTER MV FOUR

Table 7.18: Coding Modes

block that contains coded blocks in the chroma planes, but not in the luma
plane, MUST be coded in INTER NOMV mode. Thus, no coding mode needs
to be decoded for such a macro block.

Coding modes are encoded using one of eight different schemes. Schemes 0
through 6 use the same simple Huffman code to represent the mode numbers, as
given in Table 7.19. The difference in the schemes is the mode number assigned
to each code. Scheme 0 uses an assignment specified in the bitstream, while
schemes 1–6 use a fixed assignment, also given in Table 7.19. Scheme 7 simply
codes each mode directly in the bitstream using three bits.

Scheme 1 2 3 4 5 6

Huffman Code Coding Mode

b0 3 3 3 3 0 0
b10 4 4 2 2 3 5
b110 2 0 4 0 4 3
b1110 0 2 0 4 2 4
b11110 1 1 1 1 1 2
b111110 5 5 5 5 5 1
b1111110 6 6 6 6 6 6
b1111111 7 7 7 7 7 7

Table 7.19: Coding Modes

1. If FTYPE is 0 (intra frame):

(a) For each consecutive value of mbi from 0 to (NMBS− 1), inclusive,
assign MBMODES[mbi ] the value 0 (INTRA).

2. Otherwise (inter frame):

(a) Read a 3-bit unsigned integer as MSCHEME.
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(b) If MSCHEME is 0:

i. For each consecutive value of MODE from 0 to 7, inclusive:
A. Read a 3-bit unsigned integer as mi .
B. Assign MALPHABET[mi ] the value MODE.

(c) Otherwise, if MSCHEME is not 7, assign the entries of MALPHABET
the values in the corresponding column of Table 7.19.

(d) For each consecutive macro block in coded order (cf. Section 2.4)—
indexed by mbi :

i. If a block bi in the luma plane of macro block mbi exists such
that BCODED[bi ] is 1:
A. If MSCHEME is not 7, read one bit at a time until one of

the Huffman codes in Table 7.19 is recognized, and assign
MBMODES[mbi ] the value MALPHABET[mi ], where mi
is the index of the Huffman code decoded.

B. Otherwise, if no luma-plane blocks in the macro block are
coded, read a 3-bit unsigned integer as MBMODES[mbi ].

ii. Otherwise, assign MBMODE[mbi ] the value 0 (INTER NOMV).

7.5 Motion Vectors

In an intra frame, no motion vectors are used, and so motion vector decoding is
skipped. In an inter frame, however, many of the inter coding modes require a
motion vector in order to specify an offset into the reference frame from which to
predict a block. These procedures assigns such a motion vector to every block.

7.5.1 Motion Vector Decode

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

MVMODE Integer 1 No The motion vector decoding
method.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

MVX Integer 6 Yes The X component of the motion vector.
MVY Integer 6 Yes The Y component of the motion vector.
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Name Type Size
(bits)

Signed? Description and restrictions

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

MVSIGN Integer 1 No The sign of the motion vector compo-
nent just decoded.

The individual components of a motion vector can be coded using one of two
methods. The first uses a variable length Huffman code, given in Table 7.23.
The second encodes the magnitude of the component directly in 5 bits, and the
sign in one bit. Note that in this case there are two representations for the value
zero. For compatibility with VP3, a sign bit is read even if the magnitude read
is zero. One scheme is chosen and used for the entire frame.

Each component can take on integer values from −31 . . . 31, inclusive, at
half-pixel resolution, i.e. −15.5 . . . 15.5 pixels in the luma plane. For each sub-
sampled axis in the chroma planes, the corresponding motion vector component
is interpreted as being at quarter-pixel resolution, i.e. −7.75 . . . 7.75 pixels. The
precise details of how these vectors are used to compute predictors for each
block are described in Section 7.9.1.

A single motion vector is decoded is follows:

1. If MVMODE is 0:

(a) Read 1 bit at a time until one of the Huffman codes in Table 7.23 is
recognized, and assign the value to MVX.

(b) Read 1 bit at a time until one of the Huffman codes in Table 7.23 is
recognized, and assign the value to MVY.

2. Otherwise:

(a) Read a 5-bit unsigned integer as MVX.

(b) Read a 1-bit unsigned integer as MVSIGN.

(c) If MVSIGN is 1, assign MVX the value −MVX.

(d) Read a 5-bit unsigned integer as MVY.

(e) Read a 1-bit unsigned integer as MVSIGN.

(f) If MVSIGN is 1, assign MVY the value −MVY.
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7.5.2 Macro Block Motion Vector Decode

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

PF Integer 2 No The pixel format.
NMBS Integer 32 No The total number of macro

blocks in a frame.
MBMODES Integer

Array
3 No An NMBS-element array of

coding modes for each macro
block.

NBS Integer 36 No The total number of blocks in
a frame.

BCODED Integer
Array

1 No An NBS-element array of
flags indicating which blocks
are coded.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

MVECTS Array of
2D Integer
Vectors

6 Yes An NBS-element array of mo-
tion vectors for each block.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

LAST1 2D Integer
Vector

6 Yes The last motion vector.

LAST2 2D Integer
Vector

6 Yes The second to last motion vector.

MVX Integer 6 Yes The X component of a motion vec-
tor.

MVY Integer 6 Yes The Y component of a motion vec-
tor.

mbi Integer 32 No The index of the current macro
block.

A Integer 36 No The index of the lower-left luma
block in the macro block.

B Integer 36 No The index of the lower-right luma
block in the macro block.

C Integer 36 No The index of the upper-left luma
block in the macro block.
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Name Type Size
(bits)

Signed? Description and restrictions

D Integer 36 No The index of the upper-right luma
block in the macro block.

E Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

F Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

G Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

H Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

I Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

J Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

K Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

L Integer 36 No The index of a chroma block in
the macro block, depending on the
pixel format.

Motion vectors are stored for each macro block. In every mode except for
INTER MV FOUR, every block in all the color planes are assigned the same
motion vector. In INTER MV FOUR mode, all four blocks in the luma plane
are assigned their own motion vector, and motion vectors for blocks in the
chroma planes are computed from these, using averaging appropriate to the
pixel format.

For INTER MV and INTER GOLDEN MV modes, a single motion vector
is decoded and applied to each block. For INTER MV FOUR macro blocks,
a motion vector is decoded for each coded luma block. Uncoded luma blocks
receive the default (0, 0) vector for the purposes of computing the chroma motion
vectors.

None of the remaining macro block coding modes require decoding motion
vectors from the stream. INTRA mode does not use a motion-compensated pre-
dictor, and so requires no motion vector, and INTER NOMV and INTER GOLDEN NOMV
modes use the default vector (0, 0) for each block. This also includes all macro
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blocks with no coded luma blocks, as they are coded in INTER NOMV mode
by definition.

The modes INTER MV LAST and INTER MV LAST2 use the motion vec-
tor from the last macro block (in coded order) and the second to last macro
block, respectively, that contained a motion vector pointing to the previous
frame. Thus no explicit motion vector needs to be decoded for these modes.
Macro blocks coded in INTRA mode or one of the GOLDEN modes are not
considered in this process. If an insufficient number of macro blocks have been
coded in one of the INTER modes, then the (0, 0) vector is used instead. For
macro blocks coded in INTER MV FOUR mode, the vector from the upper-
right luma block is used, even if the upper-right block is not coded.

The motion vectors are decoded from the stream as follows:

1. Assign LAST1 and LAST2 both the value (0, 0).

2. Read a 1-bit unsigned integer as MVMODE. Note that this value is read
even if no macro blocks require a motion vector to be decoded.

3. For each consecutive value of mbi from 0 to (NMBS− 1):

(a) If MBMODES[mbi ] is 7 (INTER MV FOUR):

i. Let A, B, C, and D be the indices in coded order bi of the luma
blocks in macro block mbi , arranged into raster order. Thus, A
is the index in coded order of the block in the lower left, B the
lower right, C the upper left, and D the upper right.

ii. If BCODED[A] is non-zero, decode a single motion vector into
MVX and MVY using the procedure described in Section 7.5.1.

iii. Otherwise, assign MVX and MVY both the value zero.
iv. Assign MVECTS[A] the value (MVX,MVY).
v. If BCODED[B] is non-zero, decode a single motion vector into

MVX and MVY using the procedure described in Section 7.5.1.
vi. Otherwise, assign MVX and MVY both the value zero.
vii. Assign MVECTS[B] the value (MVX,MVY).
viii. If BCODED[C] is non-zero, decode a single motion vector into

MVX and MVY using the procedure described in Section 7.5.1.
ix. Otherwise, assign MVX and MVY both the value zero.
x. Assign MVECTS[C] the value (MVX,MVY).
xi. If BCODED[D] is non-zero, decode a single motion vector into

MVX and MVY using the procedure described in Section 7.5.1.
xii. Otherwise, assign MVX and MVY both the value zero.
xiii. Assign MVECTS[D] the value (MVX,MVY). Note that MVX

and MVY retain this last value.
xiv. If PF is 0 (4:2:0):

A. Let E and F be the index in coded order of the one block in
the macro block from the Cb and Cr planes, respectively.
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B. Assign MVECTS[E] and MVECTS[F] the value

(round
( MVECTS[A]x + MVECTS[B]x+

MVECTS[C]x + MVECTS[D]x
4

)
,

round
( MVECTS[A]y + MVECTS[B]y+

MVECTS[C]y + MVECTS[D]y
4

)
)

xv. If PF is 2 (4:2:2):
A. Let E and F be the indices in coded order of the top and

bottom blocks in the macro block from the Cb plane, respec-
tively, and G and H be the indices in coded order of the top
and bottom blocks in the Cr plane, respectively.

B. Assign MVECTS[E] and MVECTS[G] the value

(round
(

MVECTS[A]x + MVECTS[B]x
4

)
,

round
(

MVECTS[A]y + MVECTS[B]y
4

)
)

C. Assign MVECTS[F] and MVECTS[H] the value

(round
(

MVECTS[C]x + MVECTS[D]x
4

)
,

round
(

MVECTS[C]y + MVECTS[D]y
4

)
)

xvi. If PF is 3 (4:4:4):
A. Let E, F, G, and H be the indices bi in coded order of the Cb

plane blocks in macro block mbi , arranged into raster order,
and I, J, K, and L be the indices bi in coded order of the Cr

plane blocks in macro block mbi , arranged into raster order.
B. Assign MVECTS[E] and MVECTS[I] the value

MVECTS[A].
C. Assign MVECTS[F] and MVECTS[J] the value

MVECTS[B].
D. Assign MVECTS[G] and MVECTS[K] the value

MVECTS[C].
E. Assign MVECTS[H] and MVECTS[L] the value

MVECTS[D].
xvii. Assign LAST2 the value LAST1.
xviii. Assign LAST1 the value (MVX,MVY).
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(b) Otherwise, if MBMODES[mbi ] is 6 (INTER GOLDEN MV), de-
code a single motion vector into MVX and MVY using the procedure
described in Section 7.5.1.

(c) Otherwise, if MBMODES[mbi ] is 4 (INTER MV LAST2):

i. Assign (MVX,MVY) the value LAST2.
ii. Assign LAST2 the value LAST1.
iii. Assign LAST1 the value (MVX,MVY).

(d) Otherwise, if MBMODES[mbi ] is 3 (INTER MV LAST), assign
(MVX,MVY) the value LAST1.

(e) Otherwise, if MBMODES[mbi ] is 2 (INTER MV):

i. Decode a single motion vector into MVX and MVY using the
procedure described in Section 7.5.1.

ii. Assign LAST2 the value LAST1.
iii. Assign LAST1 the value (MVX,MVY).

(f) Otherwise (MBMODES[mbi ] is 5: INTER GOLDEN NOMV, 1: IN-
TRA, or 0: INTER NOMV), assign MVX and MVY the value zero.

(g) If MBMODES[mbi ] is not 7 (not INTER MV FOUR), then for each
coded block bi in macro block mbi :

i. Assign MVECTS[bi ] the value (MVX,MVY).

VP3 Compatibility Unless all four luma blocks in the macro block are coded,
the VP3 encoder does not select mode INTER MV FOUR. Theora removes
this restriction by treating the motion vector for an uncoded luma block as the
default (0, 0) vector. This is consistent with the premise that the block has not
changed since the previous frame and that chroma information can be largely
ignored when estimating motion.

No modification is required for INTER MV FOUR macro blocks in VP3
streams to be decoded correctly by a Theora decoder. However, regardless of
how many of the luma blocks are actually coded, the VP3 decoder always reads
four motion vectors from the stream for INTER MV FOUR mode. The motion
vectors read are used to calculate the motion vectors for the chroma blocks, but
are otherwise ignored. Thus, care should be taken when creating Theora streams
meant to be backwards compatible with VP3 to only use INTER MV FOUR
mode when all four luma blocks are coded.

7.6 Block-Level qi Decode

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

NBS Integer 36 No The total number of blocks in a
frame.

BCODED Integer
Array

1 No An NBS-element array of flags
indicating which blocks are
coded.

NQIS Integer 2 No The number of qi values.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

QIIS Integer
Array

2 No An NBS-element array of qii values
for each block.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

NBITS Integer 36 No The length of a bit string to decode.
BITS Bit string A decoded set of flags.
bi Integer 36 No The index of the current block in

coded order.
qii Integer 2 No The index of qi value in the list of qi

values defined for this frame.

This procedure selects the qi value to be used for dequantizing the AC
coefficients of each block. DC coefficients all use the same qi value, so as to avoid
interference with the DC prediction mechanism, which occurs in the quantized
domain.

The value is actually represented by an index qii into the list of qi values
defined for the frame. The decoder makes multiple passes through the list of
coded blocks, one for each qi value except the last one. In each pass, an RLE-
coded bitmask is decoded to divide the blocks into two groups: those that use
the current qi value in the list, and those that use a value from later in the list.
Each subsequent pass is restricted to the blocks in the second group.

1. For each value of bi from 0 to (NBS− 1), assign QIIS[bi ] the value zero.

2. For each consecutive value of qii from 0 to (NQIS− 2):
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(a) Assign NBITS be the number of blocks bi such that BCODED[bi ]
is non-zero and QIIS[bi ] equals qii .

(b) Read an NBITS-bit bit string into BITS, using the procedure de-
scribed in Section 7.2.1. This represents the list of blocks that use qi
value qii or higher.

(c) For each consecutive value of bi from 0 to (NBS − 1) such that
BCODED[bi ] is non-zero and QIIS[bi ] equals qii :

i. Remove the bit at the head of the string BITS and add its value
to QIIS[bi ].

VP3 Compatibility For VP3 compatible streams, only one qi value can be
specified in the frame header, so the main loop of the above procedure, which
would iterate from 0 to −1, is never executed. Thus, no bits are read, and each
block uses the one qi value defined for the frame.
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Huffman Code Value Huffman Code Value

b000 0
b001 1 b010 −1
b0110 2 b0111 −2
b1000 3 b1001 −3
b101000 4 b101001 −4
b101010 5 b101011 −5
b101100 6 b101101 −6
b101110 7 b101111 −7
b1100000 8 b1100001 −8
b1100010 9 b1100011 −9
b1100100 10 b1100101 −10
b1100110 11 b1100111 −11
b1101000 12 b1101001 −12
b1101010 13 b1101011 −13
b1101100 14 b1101101 −14
b1101110 15 b1101111 −15
b11100000 16 b11100001 −16
b11100010 17 b11100011 −17
b11100100 18 b11100101 −18
b11100110 19 b11100111 −19
b11101000 20 b11101001 −20
b11101010 21 b11101011 −21
b11101100 22 b11101101 −22
b11101110 23 b11101111 −23
b11110000 24 b11110001 −24
b11110010 25 b11110011 −25
b11110100 26 b11110101 −26
b11110110 27 b11110111 −27
b11111000 28 b11111001 −28
b11111010 29 b11111011 −29
b11111100 30 b11111101 −30
b11111110 31 b11111111 −31

Table 7.23: Huffman Codes for Motion Vector Components
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7.7 DCT Coefficients

The quantized DCT coefficients are decoded by making 64 passes through the
list of coded blocks, one for each token index in zig-zag order. For the DC
tokens, two Huffman tables are chosen from among the first 16, one for the luma
plane and one for the chroma planes. The AC tokens, however, are divided into
four different groups. Again, two 4-bit indices are decoded, one for the luma
plane, and one for the chroma planes, but these select the codebooks for all four
groups. AC coefficients in group one use codebooks 16 . . . 31, while group two
uses 32 . . . 47, etc. Note that this second set of indices is decoded even if there
are no non-zero AC coefficients in the frame.

Tokens are divided into two major types: EOB tokens, which fill the re-
mainder of one or more blocks with zeros, and coefficient tokens, which fill in
one or more coefficients within a single block. A decoding procedure for the
first is given in Section 7.7.1, and for the second in Section 7.7.2. The decoding
procedure for the complete set of quantized coefficients is given in Section 7.7.3.

7.7.1 EOB Token Decode

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

TOKEN Integer 5 No The token being decoded.
This must be in the range
0 . . . 6.

NBS Integer 36 No The total number of blocks in
a frame.

TIS Integer
Array

7 No An NBS-element array of the
current token index for each
block.

NCOEFFS Integer
Array

7 No An NBS-element array of
the coefficient count for each
block.

COEFFS 2D Integer
Array

16 Yes An NBS × 64 array of quan-
tized DCT coefficient values
for each block in zig-zag or-
der.

bi Integer 36 No The index of the current block
in coded order.

ti Integer 6 No The current token index.

Output parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

TIS Integer
Array

7 No An NBS-element array of the
current token index for each
block.

COEFFS 2D Integer
Array

16 Yes An NBS×64 array of quantized
DCT coefficient values for each
block in zig-zag order.

EOBS Integer 36 No The remaining length of the
current EOB run.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

bj Integer 36 No Another index of a block in coded order.
tj Integer 6 No Another token index.

A summary of the EOB tokens is given in Table 7.33. An important thing
to note is that token 6 does not add an offset to the decoded run value, even
though in general it should only be used for runs of size 32 or longer. If a
value of zero is decoded for this run, it is treated as an EOB run the size of the
remaining coded blocks.

Token Value Extra Bits EOB Run Lengths

0 0 1
1 0 2
2 0 3
3 2 4 . . . 7
4 3 8 . . . 15
5 4 16 . . . 31
6 12 1 . . . 4095, or all remaining blocks

Table 7.33: EOB Token Summary

There is no restriction that one EOB token cannot be immediately followed
by another, so no special cases are necessary to extend the range of the maximum
run length as were required in Section 7.2.1. Indeed, depending on the lengths
of the Huffman codes, it may even cheaper to encode, by way of example, an
EOB run of length 31 followed by an EOB run of length 1 than to encode an
EOB run of length 32 directly. There is also no restriction that an EOB run
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stop at the end of a color plane or a token index. The run MUST, however, end
at or before the end of the frame.

1. If TOKEN is 0, assign EOBS the value 1.

2. Otherwise, if TOKEN is 1, assign EOBS the value 2.

3. Otherwise, if TOKEN is 2, assign EOBS the value 3.

4. Otherwise, if TOKEN is 3:

(a) Read a 2-bit unsigned integer as EOBS.

(b) Assign EOBS the value (EOBS + 4).

5. Otherwise, if TOKEN is 4:

(a) Read a 3-bit unsigned integer as EOBS.

(b) Assign EOBS the value (EOBS + 8).

6. Otherwise, if TOKEN is 5:

(a) Read a 4-bit unsigned integer as EOBS.

(b) Assign EOBS the value (EOBS + 16).

7. Otherwise, TOKEN is 6:

(a) Read a 12-bit unsigned integer as EOBS.

(b) If EOBS is zero, assign EOBS to be the number of coded blocks bj
such that TIS[bj ] is less than 64.

8. For each value of tj from ti to 63, assign COEFFS[bi ][tj ] the value zero.

9. Assign NCOEFFS[bi ] the value TIS[bi ].

10. Assign TIS[bi ] the value 64.

11. Assign EOBS the value (EOBS− 1).

VP3 Compatibility The VP3 encoder does not use the special interpreta-
tion of a zero-length EOB run, though its decoder does support it. That may
be due more to a happy accident in the way the decoder was written than inten-
tional design, however, and other VP3 implementations might not reproduce it
faithfully. For backwards compatibility, it may be wise to avoid it, especially as
for most frame sizes there are fewer than 4095 blocks, making it unnecessary.

7.7.2 Coefficient Token Decode

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

TOKEN Integer 5 No The token being decoded. This
must be in the range 7 . . . 31.

NBS Integer 36 No The total number of blocks in a
frame.

TIS Integer
Array

7 No An NBS-element array of the
current token index for each
block.

COEFFS 2D Integer
Array

16 Yes An NBS×64 array of quantized
DCT coefficient values for each
block in zig-zag order.

bi Integer 36 No The index of the current block
in coded order.

ti Integer 6 No The current token index.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

TIS Integer
Array

7 No An NBS-element array of the
current token index for each
block.

NCOEFFS Integer
Array

7 No An NBS-element array of
the coefficient count for each
block.

COEFFS 2D Integer
Array

16 Yes An NBS × 64 array of quan-
tized DCT coefficient values
for each block in zig-zag or-
der.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

SIGN Integer 1 No A flag indicating the sign of the current
coefficient.

MAG Integer 10 No The magnitude of the current coeffi-
cient.

RLEN Integer 6 No The length of the current zero run.
tj Integer 6 No Another token index.
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Each of these tokens decodes one or more coefficients in the current block. A
summary of the meanings of the token values is presented in Table 7.38. There
are often several different ways to tokenize a given coefficient list. Which one is
optimal depends on the exact lengths of the Huffman codes used to represent
each token. Note that we do not update the coefficient count for the block if we
decode a pure zero run.

Token Value Extra Bits Number of
Coefficients

Description

7 3 1 . . . 8 Short zero run.
8 6 1 . . . 64 Zero run.
9 0 1 1.
10 0 1 −1.
11 0 1 2.
12 0 1 −2.
13 1 1 ±3.
14 1 1 ±4.
15 1 1 ±5.
16 1 1 ±6.
17 2 1 ±7 . . . 8.
18 3 1 ±9 . . . 12.
19 4 1 ±13 . . . 20.
20 5 1 ±21 . . . 36.
21 6 1 ±37 . . . 68.
22 10 1 ±69 . . . 580.
23 1 2 One zero followed by ±1.
24 1 3 Two zeros followed by ±1.
25 1 4 Three zeros followed by ±1.
26 1 5 Four zeros followed by ±1.
27 1 6 Five zeros followed by ±1.
28 3 7 . . . 10 6 . . . 9 zeros followed by ±1.
29 4 11 . . . 18 10 . . . 17 zeros followed by ±1.
30 2 2 One zero followed by ±2 . . . 3.
31 3 3 . . . 4 2 . . . 3 zeros followed by ±2 . . . 3.

Table 7.38: Coefficient Token Summary

For tokens which represent more than one coefficient, they MUST NOT bring
the total number of coefficients in the block to more than 64. Care should be
taken in a decoder to check for this, as otherwise it may permit buffer overflows
from invalidly formed packets.

Note: One way to achieve this efficiently is to combine the inverse
zig-zag mapping (described later in Section 7.9.2) with coefficient



88 CHAPTER 7. FRAME DECODE

decode, and use a table look-up to map zig-zag indices greater
than 63 to a safe location.

1. If TOKEN is 7:

(a) Read in a 3-bit unsigned integer as RLEN.

(b) Assign RLEN the value (RLEN + 1).

(c) For each value of tj from ti to (ti+RLEN−1), assign COEFFS[bi ][tj ]
the value zero.

(d) Assign TIS[bi ] the value TIS[bi ] + RLEN.

2. Otherwise, if TOKEN is 8:

(a) Read in a 6-bit unsigned integer as RLEN.

(b) Assign RLEN the value (RLEN + 1).

(c) For each value of tj from ti to (ti+RLEN−1), assign COEFFS[bi ][tj ]
the value zero.

(d) Assign TIS[bi ] the value TIS[bi ] + RLEN.

3. Otherwise, if TOKEN is 9:

(a) Assign COEFFS[bi ][ti ] the value 1.

(b) Assign TIS[bi ] the value TIS[bi ] + 1.

(c) Assign NCOEFFS[bi ] the value TIS[bi ].

4. Otherwise, if TOKEN is 10:

(a) Assign COEFFS[bi ][ti ] the value −1.

(b) Assign TIS[bi ] the value TIS[bi ] + 1.

(c) Assign NCOEFFS[bi ] the value TIS[bi ].

5. Otherwise, if TOKEN is 11:

(a) Assign COEFFS[bi ][ti ] the value 2.

(b) Assign TIS[bi ] the value TIS[bi ] + 1.

(c) Assign NCOEFFS[bi ] the value TIS[bi ].

6. Otherwise, if TOKEN is 12:

(a) Assign COEFFS[bi ][ti ] the value −2.

(b) Assign TIS[bi ] the value TIS[bi ] + 1.

(c) Assign NCOEFFS[bi ] the value TIS[bi ].

7. Otherwise, if TOKEN is 13:

(a) Read a 1-bit unsigned integer as SIGN.
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(b) If SIGN is zero, assign COEFFS[bi ][ti ] the value 3.

(c) Otherwise, assign COEFFS[bi ][ti ] the value −3.

(d) Assign TIS[bi ] the value TIS[bi ] + 1.

(e) Assign NCOEFFS[bi ] the value TIS[bi ].

8. Otherwise, if TOKEN is 14:

(a) Read a 1-bit unsigned integer as SIGN.

(b) If SIGN is zero, assign COEFFS[bi ][ti ] the value 4.

(c) Otherwise, assign COEFFS[bi ][ti ] the value −4.

(d) Assign TIS[bi ] the value TIS[bi ] + 1.

(e) Assign NCOEFFS[bi ] the value TIS[bi ].

9. Otherwise, if TOKEN is 15:

(a) Read a 1-bit unsigned integer as SIGN.

(b) If SIGN is zero, assign COEFFS[bi ][ti ] the value 5.

(c) Otherwise, assign COEFFS[bi ][ti ] the value −5.

(d) Assign TIS[bi ] the value TIS[bi ] + 1.

(e) Assign NCOEFFS[bi ] the value TIS[bi ].

10. Otherwise, if TOKEN is 16:

(a) Read a 1-bit unsigned integer as SIGN.

(b) If SIGN is zero, assign COEFFS[bi ][ti ] the value 6.

(c) Otherwise, assign COEFFS[bi ][ti ] the value −6.

(d) Assign TIS[bi ] the value TIS[bi ] + 1.

(e) Assign NCOEFFS[bi ] the value TIS[bi ].

11. Otherwise, if TOKEN is 17:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 1-bit unsigned integer as MAG.

(c) Assign MAG the value (MAG + 7).

(d) If SIGN is zero, assign COEFFS[bi ][ti ] the value MAG.

(e) Otherwise, assign COEFFS[bi ][ti ] the value −MAG.

(f) Assign TIS[bi ] the value TIS[bi ] + 1.

(g) Assign NCOEFFS[bi ] the value TIS[bi ].

12. Otherwise, if TOKEN is 18:

(a) Read a 1-bit unsigned integer as SIGN.
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(b) Read a 2-bit unsigned integer as MAG.

(c) Assign MAG the value (MAG + 9).

(d) If SIGN is zero, assign COEFFS[bi ][ti ] the value MAG.

(e) Otherwise, assign COEFFS[bi ][ti ] the value −MAG.

(f) Assign TIS[bi ] the value TIS[bi ] + 1.

(g) Assign NCOEFFS[bi ] the value TIS[bi ].

13. Otherwise, if TOKEN is 19:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 3-bit unsigned integer as MAG.

(c) Assign MAG the value (MAG + 13).

(d) If SIGN is zero, assign COEFFS[bi ][ti ] the value MAG.

(e) Otherwise, assign COEFFS[bi ][ti ] the value −MAG.

(f) Assign TIS[bi ] the value TIS[bi ] + 1.

(g) Assign NCOEFFS[bi ] the value TIS[bi ].

14. Otherwise, if TOKEN is 20:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 4-bit unsigned integer as MAG.

(c) Assign MAG the value (MAG + 21).

(d) If SIGN is zero, assign COEFFS[bi ][ti ] the value MAG.

(e) Otherwise, assign COEFFS[bi ][ti ] the value −MAG.

(f) Assign TIS[bi ] the value TIS[bi ] + 1.

(g) Assign NCOEFFS[bi ] the value TIS[bi ].

15. Otherwise, if TOKEN is 21:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 5-bit unsigned integer as MAG.

(c) Assign MAG the value (MAG + 37).

(d) If SIGN is zero, assign COEFFS[bi ][ti ] the value MAG.

(e) Otherwise, assign COEFFS[bi ][ti ] the value −MAG.

(f) Assign TIS[bi ] the value TIS[bi ] + 1.

(g) Assign NCOEFFS[bi ] the value TIS[bi ].

16. Otherwise, if TOKEN is 22:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 9-bit unsigned integer as MAG.
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(c) Assign MAG the value (MAG + 69).

(d) If SIGN is zero, assign COEFFS[bi ][ti ] the value MAG.

(e) Otherwise, assign COEFFS[bi ][ti ] the value −MAG.

(f) Assign TIS[bi ] the value TIS[bi ] + 1.

(g) Assign NCOEFFS[bi ] the value TIS[bi ].

17. Otherwise, if TOKEN is 23:

(a) Assign COEFFS[bi ][ti ] the value zero.

(b) Read a 1-bit unsigned integer as SIGN.

(c) If SIGN is zero, assign COEFFS[bi ][ti + 1] the value 1.

(d) Otherwise, assign COEFFS[bi ][ti + 1] the value −1.

(e) Assign TIS[bi ] the value TIS[bi ] + 2.

(f) Assign NCOEFFS[bi ] the value TIS[bi ].

18. Otherwise, if TOKEN is 24:

(a) For each value of tj from ti to (ti + 1), assign COEFFS[bi ][tj ] the
value zero.

(b) Read a 1-bit unsigned integer as SIGN.

(c) If SIGN is zero, assign COEFFS[bi ][ti + 2] the value 1.

(d) Otherwise, assign COEFFS[bi ][ti + 2] the value −1.

(e) Assign TIS[bi ] the value TIS[bi ] + 3.

(f) Assign NCOEFFS[bi ] the value TIS[bi ].

19. Otherwise, if TOKEN is 25:

(a) For each value of tj from ti to (ti + 2), assign COEFFS[bi ][tj ] the
value zero.

(b) Read a 1-bit unsigned integer as SIGN.

(c) If SIGN is zero, assign COEFFS[bi ][ti + 3] the value 1.

(d) Otherwise, assign COEFFS[bi ][ti + 3] the value −1.

(e) Assign TIS[bi ] the value TIS[bi ] + 4.

(f) Assign NCOEFFS[bi ] the value TIS[bi ].

20. Otherwise, if TOKEN is 26:

(a) For each value of tj from ti to (ti + 3), assign COEFFS[bi ][tj ] the
value zero.

(b) Read a 1-bit unsigned integer as SIGN.

(c) If SIGN is zero, assign COEFFS[bi ][ti + 4] the value 1.

(d) Otherwise, assign COEFFS[bi ][ti + 4] the value −1.
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(e) Assign TIS[bi ] the value TIS[bi ] + 5.

(f) Assign NCOEFFS[bi ] the value TIS[bi ].

21. Otherwise, if TOKEN is 27:

(a) For each value of tj from ti to (ti + 4), assign COEFFS[bi ][tj ] the
value zero.

(b) Read a 1-bit unsigned integer as SIGN.

(c) If SIGN is zero, assign COEFFS[bi ][ti + 5] the value 1.

(d) Otherwise, assign COEFFS[bi ][ti + 5] the value −1.

(e) Assign TIS[bi ] the value TIS[bi ] + 6.

(f) Assign NCOEFFS[bi ] the value TIS[bi ].

22. Otherwise, if TOKEN is 28:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 2-bit unsigned integer as RLEN.

(c) Assign RLEN the value (RLEN + 6).

(d) For each value of tj from ti to (ti+RLEN−1), assign COEFFS[bi ][tj ]
the value zero.

(e) If SIGN is zero, assign COEFFS[bi ][ti + RLEN] the value 1.

(f) Otherwise, assign COEFFS[bi ][ti + RLEN] the value −1.

(g) Assign TIS[bi ] the value TIS[bi ] + RLEN + 1.

(h) Assign NCOEFFS[bi ] the value TIS[bi ].

23. Otherwise, if TOKEN is 29:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 3-bit unsigned integer as RLEN.

(c) Assign RLEN the value (RLEN + 10).

(d) For each value of tj from ti to (ti+RLEN−1), assign COEFFS[bi ][tj ]
the value zero.

(e) If SIGN is zero, assign COEFFS[bi ][ti + RLEN] the value 1.

(f) Otherwise, assign COEFFS[bi ][ti + RLEN] the value −1.

(g) Assign TIS[bi ] the value TIS[bi ]+RLEN+1. Assign NCOEFFS[bi ]
the value TIS[bi ].

24. Otherwise, if TOKEN is 30:

(a) Assign COEFFS[bi ][ti ] the value zero.

(b) Read a 1-bit unsigned integer as SIGN.

(c) Read a 1-bit unsigned integer as MAG.
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(d) Assign MAG the value (MAG + 2).

(e) If SIGN is zero, assign COEFFS[bi ][ti + 1] the value MAG.

(f) Otherwise, assign COEFFS[bi ][ti + 1] the value −MAG.

(g) Assign TIS[bi ] the value TIS[bi ] + 2. Assign NCOEFFS[bi ] the
value TIS[bi ].

25. Otherwise, if TOKEN is 31:

(a) Read a 1-bit unsigned integer as SIGN.

(b) Read a 1-bit unsigned integer as MAG.

(c) Assign MAG the value (MAG + 2).

(d) Read a 1-bit unsigned integer as RLEN.

(e) Assign RLEN the value (RLEN + 2).

(f) For each value of tj from ti to (ti+RLEN−1), assign COEFFS[bi ][tj ]
the value zero.

(g) If SIGN is zero, assign COEFFS[bi ][ti + RLEN] the value MAG.

(h) Otherwise, assign COEFFS[bi ][ti + RLEN] the value −MAG.

(i) Assign TIS[bi ] the value TIS[bi ]+RLEN+1. Assign NCOEFFS[bi ]
the value TIS[bi ].

7.7.3 DCT Coefficient Decode

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

NBS Integer 36 No The total number of blocks in a
frame.

BCODED Integer
Array

1 No An NBS-element array of flags
indicating which blocks are
coded.

NMBS Integer 32 No The total number of macro
blocks in a frame.

HTS Huffman table array An 80-element array of Huffman
tables with up to 32 entries each.

Output parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

COEFFS 2D Integer
Array

16 Yes An NBS × 64 array of quan-
tized DCT coefficient values
for each block in zig-zag or-
der.

NCOEFFS Integer
Array

7 No An NBS-element array of
the coefficient count for each
block.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

NLBS Integer 34 No The number of blocks in the luma
plane.

TIS Integer
Array

7 No An NBS-element array of the cur-
rent token index for each block.

EOBS Integer 36 No The remaining length of the current
EOB run.

TOKEN Integer 5 No The current token being decoded.
HG Integer 3 No The current Huffman table group.
cbi Integer 36 No The index of the current block in the

coded block list.
bi Integer 36 No The index of the current block in

coded order.
bj Integer 36 No Another index of a block in coded

order.
ti Integer 6 No The current token index.
tj Integer 6 No Another token index.
htiL Integer 4 No The index of the current Huffman

table to use for the luma plane
within a group.

htiC Integer 4 No The index of the current Huffman
table to use for the chroma planes
within a group.

hti Integer 7 No The index of the current Huffman
table to use.

This procedure puts the above two procedures to work to decode the entire
set of DCT coefficients for the frame. At the end of this procedure, EOBS
MUST be zero, and TIS[bi ] MUST be 64 for every coded bi .
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Note that we update the coefficient count of every block before continuing
an EOB run or decoding a token, despite the fact that it is already up to date
unless the previous token was a pure zero run. This is done intentionally to
mimic the VP3 accounting rules. Thus the only time the coefficient count does
not include the coefficients in a pure zero run is when when that run reaches all
the way to coefficient 63. Note, however, that regardless of the coefficient count,
any additional coefficients are still set to zero. The only use of the count is in
determining if a special case of the inverse DCT can be used in Section 7.9.3.

1. Assign NLBS the value (NMBS ∗ 4).

2. For each consecutive value of bi from 0 to (NBS− 1), assign TIS[bi ] the
value zero.

3. Assign EOBS the value 0.

4. For each consecutive value of ti from 0 to 63:

(a) If ti is 0 or 1:

i. Read a 4-bit unsigned integer as htiL.
ii. Read a 4-bit unsigned integer as htiC.

(b) For each consecutive value of bi from 0 to (NBS − 1) for which
BCODED[bi ] is non-zero and TIS[bi ] equals ti :

i. Assign NCOEFFS[bi ] the value ti .
ii. If EOBS is greater than zero:

A. For each value of tj from ti to 63, assign COEFFS[bi ][tj ]
the value zero.

B. Assign TIS[bi ] the value 64.
C. Assign EOBS the value (EOBS− 1).

iii. Otherwise:
A. Assign HG a value based on ti from Table 7.42.

ti HG

0 0
1 . . . 5 1
6 . . . 14 2
15 . . . 27 3
28 . . . 63 4

Table 7.42: Huffman Table Groups

B. If bi is less than NLBS, assign hti the value (16∗HG+htiL).
C. Otherwise, assign hti the value (16 ∗HG + htiC).
D. Read one bit at a time until one of the codes in HTS[hti ] is

recognized, and assign the value to TOKEN.
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E. If TOKEN is less than 7, expand an EOB token using the pro-
cedure given in Section 7.7.1 to update TIS[bi ], COEFFS[bi ],
and EOBS.

F. Otherwise, expand a coefficient token using the procedure
given in Section 7.7.2 to update TIS[bi ], COEFFS[bi ], and
NCOEFFS[bi ].

7.8 Undoing DC Prediction

The actual value of a DC coefficient decoded by Section 7.7 is the residual from
a predicted value computed by the encoder. This prediction is only applied to
DC coefficients. Quantized AC coefficients are encoded directly.

This section describes how to undo this prediction to recover the original
DC coefficients. The predicted DC value for a block is computed from the DC
values of its immediate neighbors which precede the block in raster order. Thus,
reversing this prediction must procede in raster order, instead of coded order.

Note that this step comes before dequantizing the coefficients. For this
reason, DC coefficients are all quantized with the same qi value, regardless of
the block-level qi values decoded in Section 7.6. Those qi values are applied
only to the AC coefficients.

7.8.1 Computing the DC Predictor

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

BCODED Integer
Array

1 No An NBS-element array of
flags indicating which blocks
are coded.

MBMODES Integer
Array

3 No An NMBS-element array
of coding modes for each
macro block.

LASTDC Integer
Array

16 Yes A 3-element array contain-
ing the most recently de-
coded DC value, one for in-
ter mode and for each refer-
ence frame.

COEFFS 2D Integer
Array

16 Yes An NBS×64 array of quan-
tized DCT coefficient values
for each block in zig-zag or-
der.

bi Integer 36 No The index of the current
block in coded order.
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Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

DCPRED Integer 16 Yes The predicted DC value for the cur-
rent block.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

P Integer
Array

1 No A 4-element array indicating which
neighbors can be used for DC predic-
tion.

PBI Integer
Array

36 No A 4-element array containing the
coded-order block index of the cur-
rent block’s neighbors.

W Integer
Array

7 Yes A 4-element array of the weights to
apply to each neighboring DC value.

PDIV Integer 8 No The valud to divide the weighted sum
by.

bj Integer 36 No The index of a neighboring block in
coded order.

mbi Integer 32 No The index of the macro block contain-
ing block bi .

mbi Integer 32 No The index of the macro block contain-
ing block bj .

rfi Integer 2 No The index of the reference frame indi-
cated by the coding mode for macro
block mbi .

This procedure outlines how a predictor is formed for a single block.
The predictor is computed as a weighted sum of the neighboring DC values

from coded blocks which use the same reference frame. This latter condition is
determined only by checking the coding mode for the block. Even if the golden
frame and the previous frame are in fact the same, e.g. for the first inter frame
after an intra frame, they are still treated as being different for the purposes of
DC prediction. The weighted sum is divided by a power of two, with truncation
towards zero, and the result is checked for outranging if necessary.

If there are no neighboring coded blocks which use the same reference frame
as the current block, then the most recent DC value of any block that used that
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reference frame is used instead. If no such block exists, then the predictor is set
to zero.

1. Assign mbi the index of the macro block containing block bi .

2. Assign rfi the value of the Reference Frame Index column of Table 7.46
corresponding to MBMODES[mbi ].

Coding Mode Reference Frame Index

0 (INTER NOMV) 1 (Previous)
1 (INTRA) 0 (None)
2 (INTER MV) 1 (Previous)
3 (INTER MV LAST) 1 (Previous)
4 (INTER MV LAST2) 1 (Previous)
5 (INTER GOLDEN NOMV) 2 (Golden)
6 (INTER GOLDEN MV) 2 (Golden)
7 (INTER MV FOUR) 1 (Previous)

Table 7.46: Reference Frames for Each Coding Mode

3. If block bi is not along the left edge of the coded frame:

(a) Assign bj the coded-order index of block bi ’s left neighbor, i.e., in
the same row but one column to the left.

(b) If BCODED[bj ] is not zero:

i. Assign mbj the index of the macro block containing block bj .
ii. If the value of the Reference Frame Index column of Table 7.46

corresonding to MBMODES[mbj ] equals rfi :
A. Assign P[0] the value 1.
B. Assign PBI[0] the value bj .

iii. Otherwise, assign P[0] the value zero.

(c) Otherwise, assign P[0] the value zero.

4. Otherwise, assign P[0] the value zero.

5. If block bi is not along the left edge nor the bottom edge of the coded
frame:

(a) Assign bj the coded-order index of block bi ’s lower-left neighbor, i.e.,
one row down and one column to the left.

(b) If BCODED[bj ] is not zero:

i. Assign mbj the index of the macro block containing block bj .
ii. If the value of the Reference Frame Index column of Table 7.46

corresonding to MBMODES[mbj ] equals rfi :
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A. Assign P[1] the value 1.
B. Assign PBI[1] the value bj .

iii. Otherwise, assign P[1] the value zero.

(c) Otherwise, assign P[1] the value zero.

6. Otherwise, assign P[1] the value zero.

7. If block bi is not along the the bottom edge of the coded frame:

(a) Assign bj the coded-order index of block bi ’s lower neighbor, i.e., in
the same column but one row down.

(b) If BCODED[bj ] is not zero:

i. Assign mbj the index of the macro block containing block bj .
ii. If the value of the Reference Frame Index column of Table 7.46

corresonding to MBMODES[mbj ] equals rfi :
A. Assign P[2] the value 1.
B. Assign PBI[2] the value bj .

iii. Otherwise, assign P[2] the value zero.

(c) Otherwise, assign P[2] the value zero.

8. Otherwise, assign P[2] the value zero.

9. If block bi is not along the right edge nor the bottom edge of the coded
frame:

(a) Assign bj the coded-order index of block bi ’s lower-right neighbor,
i.e., one row down and one column to the right.

(b) If BCODED[bj ] is not zero:

i. Assign mbj the index of the macro block containing block bj .
ii. If the value of the Reference Frame Index column of Table 7.46

corresonding to MBMODES[mbj ] equals rfi :
A. Assign P[3] the value 1.
B. Assign PBI[3] the value bj .

iii. Otherwise, assign P[3] the value zero.

(c) Otherwise, assign P[3] the value zero.

10. Otherwise, assign P[3] the value zero.

11. If none of the values P[0], P[1], P[2], nor P[3] are non-zero, then assign
DCPRED the value LASTDC[rfi ].

12. Otherwise:

(a) Assign the array W and the variable PDIV the values from the row
of Table 7.47 corresonding to the values of each P[i ].
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P[0]
(L)

P[1]
(DL)

P[2]
(D)

P[3]
(DR)

W[3]
(L)

W[1]
(DL)

W[2]
(D)

W[3]
(DR)

PDIV

1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 1
1 1 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1
1 0 1 0 1 0 1 0 2
0 1 1 0 0 0 1 0 1
1 1 1 0 29 −26 29 0 32
0 0 0 1 0 0 0 1 1
1 0 0 1 75 0 0 53 128
0 1 0 1 0 1 0 1 2
1 1 0 1 75 0 0 53 128
0 0 1 1 0 0 1 0 1
1 0 1 1 75 0 0 53 128
0 1 1 1 0 3 10 3 16
1 1 1 1 29 −26 29 0 32

Table 7.47: Weights and Divisors for Each Set of Available DC Predictors

(b) Assign DCPRED the value zero.
(c) If P[0] is non-zero, assign DCPRED the value (DCPRED+W[0]∗

COEFFS[PBI[0]][0]).
(d) If P[1] is non-zero, assign DCPRED the value (DCPRED+W[1]∗

COEFFS[PBI[1]][0]).
(e) If P[2] is non-zero, assign DCPRED the value (DCPRED+W[2]∗

COEFFS[PBI[2]][0]).
(f) If P[3] is non-zero, assign DCPRED the value (DCPRED+W[3]∗

COEFFS[PBI[3]][0]).
(g) Assign DCPRED the value (DCPRED//PDIV).
(h) If P[0], P[1], and P[2] are all non-zero:

i. If |DCPRED−COEFFS[PBI[2]][0]| is greater than 128, assign
DCPRED the value COEFFS[PBI[2]][0].

ii. Otherwise, if |DCPRED−COEFFS[PBI[0]][0]| is greater than
128, assign DCPRED the value COEFFS[PBI[0]][0].

iii. Otherwise, if |DCPRED−COEFFS[PBI[1]][0]| is greater than
128, assign DCPRED the value COEFFS[PBI[1]][0].

7.8.2 Inverting the DC Prediction Process

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

BCODED Integer
Array

1 No An NBS-element array of
flags indicating which blocks
are coded.

MBMODES Integer
Array

3 No An NMBS-element array
of coding modes for each
macro block.

COEFFS 2D Integer
Array

16 Yes An NBS×64 array of quan-
tized DCT coefficient values
for each block in zig-zag or-
der.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

COEFFS 2D Integer
Array

16 Yes An NBS×64 array of quantized
DCT coefficient values for each
block in zig-zag order. The DC
value of each block will be up-
dated.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

LASTDC Integer
Array

16 Yes A 3-element array containing the
most recently decoded DC value,
one for inter mode and for each ref-
erence frame.

DCPRED Integer 11 Yes The predicted DC value for the
current block.

DC Integer 17 Yes The actual DC value for the cur-
rent block.

bi Integer 36 No The index of the current block in
coded order.

mbi Integer 32 No The index of the macro block con-
taining block bi .

rfi Integer 2 No The index of the reference frame
indicated by the coding mode for
macro block mbi .
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Name Type Size
(bits)

Signed? Description and restrictions

pli Integer 2 No A color plane index.

This procedure describes the complete process of undoing the DC prediction
to recover the original DC values. Because it is possible to add a value as large
as 580 to the predicted DC coefficient value at every block, which will then be
used to increase the predictor for the next block, the reconstructed DC value
could overflow a 16-bit integer. This is handled by truncating the result to a
16-bit signed representation, simply throwing away any higher bits in the two’s
complement representation of the number.

1. For each consecutive value of pli from 0 to 2:

(a) Assign LASTDC[0] the value zero.

(b) Assign LASTDC[1] the value zero.

(c) Assign LASTDC[2] the value zero.

(d) For each block of color plane pli in raster order, with coded-order
index bi :

i. If BCODED[bi ] is non-zero:
A. Compute the value DCPRED using the procedure outlined

in Section 7.8.1.
B. Assign DC the value (COEFFS[bi ][0] + DCPRED).
C. Truncate DC to a 16-bit representation by dropping any

higher-order bits.
D. Assign COEFFS[bi ][0] the value DC.
E. Assign mbi the index of the macro block containing block bi .
F. Assign rfi the value of the Reference Frame Index column of

Table 7.46 corresponding to MBMODES[mbi ].
G. Assign LASTDC[rfi ] the value DC.

7.9 Reconstruction

At this stage, the complete contents of the data packet have been decoded. All
that remains is to reconstruct the contents of the new frame. This is applied
on a block by block basis, and as each block is independent, the order they are
processed in does not matter.

7.9.1 Predictors

For each block, a predictor is formed based on its coding mode and motion
vector. There are three basic types of predictors: the intra predictor, the whole-
pixel predictor, and the half-pixel predictor. The former is used for all blocks
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coded in INTRA mode, while all other blocks use one of the latter two. The
whole-pixel predictor is used if the fractional part of both motion vector com-
ponents is zero, otherwise the half-pixel predictor is used.

The Intra Predictor

Input parameters: None.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

PRED 2D Integer
Array

8 No An 8 × 8 array of predictor values
to use for INTRA coded blocks.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

bx Integer 3 No The horizontal pixel index in the block.
by Integer 3 No The vertical pixel index in the block.

The intra predictor is nothing more than the constant value 128. This is
applied for the sole purpose of centering the range of possible DC values for
INTRA blocks around zero.

1. For each value of by from 0 to 7, inclusive:

(a) For each value of bx from 0 to 7, inclusive:

i. Assign PRED[by ][bx ] the value 128.

The Whole-Pixel Predictor

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RPW Integer 20 No The width of the current plane of
the reference frame in pixels.

RPH Integer 20 No The height of the current plane of
the reference frame in pixels.
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Name Type Size
(bits)

Signed? Description and restrictions

REFP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of the current plane of
the reference frame.

BX Integer 20 No The horizontal pixel index of the
lower-left corner of the current
block.

BY Integer 20 No The vertical pixel index of the
lower-left corner of the current
block.

MVX Integer 5 No The horizontal component of the
block motion vector. This is always
a whole-pixel value.

MVY Integer 5 No The vertical component of the
block motion vector. This is always
a whole-pixel value.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

PRED 2D Integer
Array

8 No An 8 × 8 array of predictor values
to use for INTER coded blocks.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

bx Integer 3 Yes The horizontal pixel index in the block.
by Integer 3 Yes The vertical pixel index in the block.
rx Integer 20 No The horizontal pixel index in the refer-

ence frame.
ry Integer 20 No The vertical pixel index in the reference

frame.

The whole pixel predictor simply copies verbatim the contents of the refer-
ence frame pointed to by the block’s motion vector. If the vector points outside
the reference frame, then the closest value on the edge of the reference frame
is used instead. In practice, this is usually implemented by expanding the size



7.9. RECONSTRUCTION 105

of the reference frame by 8 or 16 pixels on each side—depending on whether or
not the corresponding axis is subsampled in the current plane—and copying the
border pixels into this region.

1. For each value of by from 0 to 7, inclusive:

(a) Assign ry the value (BY + MVY + by).

(b) If ry is greater than (RPH− 1), assign ry the value (RPH− 1).

(c) If ry is less than zero, assign ry the value zero.

(d) For each value of bx from 0 to 7, inclusive:

i. Assign rx the value (BX + MVX + bx ).
ii. If rx is greater than (RPW−1), assign rx the value (RPW−1).
iii. If rx is less than zero, assign rx the value zero.
iv. Assign PRED[by ][bx ] the value REFP[ry ][rx ].

The Half-Pixel Predictor

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RPW Integer 20 No The width of the current plane of
the reference frame in pixels.

RPH Integer 20 No The height of the current plane of
the reference frame in pixels.

REFP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of the current plane
of the reference frame.

BX Integer 20 No The horizontal pixel index of the
lower-left corner of the current
block.

BY Integer 20 No The vertical pixel index of the
lower-left corner of the current
block.

MVX Integer 5 No The horizontal component of the
first whole-pixel motion vector.

MVY Integer 5 No The vertical component of the first
whole-pixel motion vector.

MVX2 Integer 5 No The horizontal component of the
second whole-pixel motion vector.

MVY2 Integer 5 No The vertical component of the sec-
ond whole-pixel motion vector.
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Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

PRED 2D Integer
Array

8 No An 8 × 8 array of predictor values
to use for INTER coded blocks.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

bx Integer 3 Yes The horizontal pixel index in the block.
by Integer 3 Yes The vertical pixel index in the block.
rx1 Integer 20 No The first horizontal pixel index in the

reference frame.
ry1 Integer 20 No The first vertical pixel index in the ref-

erence frame.
rx2 Integer 20 No The second horizontal pixel index in the

reference frame.
ry2 Integer 20 No The second vertical pixel index in the

reference frame.

If one or both of the components of the block motion vector is not a whole-
pixel value, then the half-pixel predictor is used. The half-pixel predictor con-
verts the fractional motion vector into two whole-pixel motion vectors. The
first is formed by truncating the values of each component towards zero, and
the second is formed by truncating them away from zero. The contributions
from the reference frame at the locations pointed to by each vector are aver-
aged, truncating towards negative infinity.

Only two samples from the reference frame contribute to each predictor
value, even if both components of the motion vector have non-zero fractional
components. Motion vector components with quarter-pixel accuracy in the
chroma planes are treated exactly the same as those with half-pixel accuracy.
Any non-zero fractional part gets rounded one way in the first vector, and the
other way in the second.

1. For each value of by from 0 to 7, inclusive:

(a) Assign ry1 the value (BY + MVY1 + by).

(b) If ry1 is greater than (RPH− 1), assign ry1 the value (RPH− 1).

(c) If ry1 is less than zero, assign ry1 the value zero.
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(d) Assign ry2 the value (BY + MVY2 + by).

(e) If ry2 is greater than (RPH− 1), assign ry2 the value (RPH− 1).

(f) If ry2 is less than zero, assign ry2 the value zero.

(g) For each value of bx from 0 to 7, inclusive:

i. Assign rx1 the value (BX + MVX1 + bx ).
ii. If rx1 is greater than (RPW−1), assign rx1 the value (RPW−

1).
iii. If rx1 is less than zero, assign rx1 the value zero.
iv. Assign rx2 the value (BX + MVX2 + bx ).
v. If rx2 is greater than (RPW−1), assign rx2 the value (RPW−

1).
vi. If rx2 is less than zero, assign rx2 the value zero.
vii. Assign PRED[by ][bx ] the value

(REFP[ry1 ][rx1 ] + REFP[ry2 ][rx2 ]) >> 1.

7.9.2 Dequantization

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

COEFFS 2D Integer
Array

16 Yes An NBS× 64 array of quan-
tized DCT coefficient values
for each block in zig-zag or-
der.

ACSCALE Integer
array

16 No A 64-element array of scale
values for AC coefficients for
each qi value.

DCSCALE Integer
array

16 No A 64-element array of scale
values for the DC coefficient
for each qi value.

BMS 2D Integer
array

8 No A NBMS×64 array contain-
ing the base matrices.

NQRS 2D Integer
array

6 No A 2 × 3 array containing the
number of quant ranges for a
given qti and pli , respectively.
This is at most 63.

QRSIZES 3D Integer
array

6 No A 2 × 3 × 63 array of the
sizes of each quant range for a
given qti and pli , respectively.
Only the first NQRS[qti ][pli ]
values are used.
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Name Type Size
(bits)

Signed? Description and restrictions

QRBMIS 3D Integer
array

9 No A 2 × 3 × 64 array of the
bmi ’s used for each quant
range for a given qti and pli ,
respectively. Only the first
(NQRS[qti ][pli ] + 1) values
are used.

qti Integer 1 No A quantization type index.
See Table 3.1.

pli Integer 2 No A color plane index. See Ta-
ble 2.1.

qi0 Integer 6 No The quantization index of the
DC coefficient.

qi Integer 6 No The quantization index of the
AC coefficients.

bi Integer 36 No The index of the current block
in coded order.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

DQC Integer
Array

14 Yes A 64-element array of dequantized
DCT coefficients in natural order (cf.
Section 2.6).

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

QMAT Integer
array

16 No A 64-element array of quantization
values for each DCT coefficient in
natural order.

ci Integer 6 No The DCT coefficient index in natural
order.

zzi Integer 6 No The DCT coefficient index in zig-zag
order.

C Integer 29 Yes A single dequantized coefficient.
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This procedure takes the quantized DCT coefficient values in zig-zag order
for a single block—after DC prediction has been undone—and returns the de-
quantized values in natural order. If large coefficient values are decoded for
coarsely quantized coefficients, the resulting dequantized value can be signifi-
cantly larger than 16 bits. Such a coefficient is truncated to a signed 16-bit
representation by discarding the higher-order bits of its twos-complement rep-
resentation.

Although this procedure recomputes the quantization matrices from the pa-
rameters in the setup header for each block, there are at most six different ones
used for each color plane. An efficient implementation could compute them once
in advance.

1. Using ACSCALE, DCSCALE, BMS, NQRS, QRSIZES, QRBMIS,
qti , pli , and qi0 , use the procedure given in Section 6.4.3 to compute the
DC quantization matrix QMAT.

2. Assign C the value COEFFS[bi ][0] ∗QMAT[0].

3. Truncate C to a 16-bit representation by dropping any higher-order bits.

4. Assign DQC[0] the value C.

5. Using ACSCALE, DCSCALE, BMS, NQRS, QRSIZES, QRBMIS,
qti , pli , and qi , use the procedure given in Section 6.4.3 to compute the
AC quantization matrix QMAT.

6. For each value of ci from 1 to 63, inclusive:

(a) Assign zzi the index in zig-zag order corresponding to ci . E.g., the
value at row (ci//8) and column (ci%8) in Figure 2.8

(b) Assign C the value COEFFS[bi ][zzi ] ∗QMAT[ci ].

(c) Truncate C to a 16-bit representation by dropping any higher-order
bits.

(d) Assign DQC[ci ] the value C.

7.9.3 The Inverse DCT

The 2D inverse DCT is separated into two applications of the 1D inverse DCT.
The transform is first applied to each row, and then applied to each column of
the result.

Each application of the 1D inverse DCT scales the values by a factor of two
relative to the orthonormal version of the transform, for a total scale factor of
four for the 2D transform. It is assumed that a similar scale factor is applied
during the forward DCT used in the encoder, so that a division by 16 is required
after the transform has been applied in both directions. The inclusion of this
scale factor allows the integerized transform to operate with increased precision.
All divisions throughout the transform are implemented with right shifts. Only
the final division by 16 is rounded, with ties rounded towards positive infinity.
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All intermediate values are truncated to a 32-bit signed representation by
discarding any higher-order bits in their two’s complement representation. The
final output of each 1D transform is truncated to 16-bits in the same manner. In
practice, if the high word of a 16×16 bit multiplication can be obtained directly,
16 bits is sufficient for every calculation except scaling by C4. Here we specify
truncating to 16 bits before the multiplication to simplify implementations using
hardware or common SIMD instruction sets.

Note that if 16-bit register are used, overflow in the additions and subtrac-
tions should be handled using unsaturated arithmetic. That is, the high-order
bits should be discarded and the low-order bits retained, instead of clamping the
result to the maximum or minimum value. This allows the maximum flexibility
in re-ordering these instructions without deviating from this specification.

The 1D transform can only overflow if input coefficients larger than ±6201
are present. However, the result of applying the 2D forward transform on pixel
values in the range −255 . . . 255 can be as large as ±8157 due to the scale factor
of four that is applied, and quantization errors could make this even larger.
Therefore, the coefficients cannot simply be clamped into a valid range before
the transform.

The 1D Inverse DCT

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

Y Integer
Array

16 Yes An 8-element array of DCT coeffi-
cients.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

X Integer
Array

16 Yes An 8-element array of output values.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

T Integer
Array

32 Yes An 8-element array containing the
current value of each signal line.
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Name Type Size
(bits)

Signed? Description and restrictions

R Integer 32 Yes A temporary value.

A compliant decoder MUST use the exact implementation of the inverse
DCT defined in this specification. Some operations may be re-ordered, but the
result must be precisely equivalent. This is a design decision that limits some
avenues of decoder optimization, but prevents any drift in the prediction loop.
Theora uses a 16-bit integerized approximation of of the 8-point 1D inverse DCT
based on the Chen factorization [CSF77]. It requires 16 multiplications and 26
additions and subtractions.
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Figure 7.1: Signal Flow Graph for the 1D Inverse DCT

A signal flow graph of the transformation is presented in Figure 7.1. This
graph provides a good visualization of which parts of the transform are paral-
lelizable. Time increases from left to right.

Each signal line is involved in an operation where the line is marked with a
dot · or a circled plus sign ⊕. The constants Ci and Sj are the 16-bit integer
approximations of cos( iπ

16 ) and sin( jπ
16 ) listed in Table 7.65. When they appear

next to a signal line, the value on that line is scaled by the given constant. A
circled minus sign 	 next to a signal line indicates that the value on that line
is negated.

Operations on a single signal path through the graph cannot be reordered,
but operations on different paths may be, or may be executed in parallel. Dif-
ferent graphs may be obtainable using the associative, commutative, and dis-
tributive properties of unsaturated arithmetic. The column of numbers on the
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left represents an initial permutation of the input DCT coefficients. The col-
umn on the right represents the unpermuted output. One can be obtained by
bit-reversing the 3-bit binary representation of the other.

Ci Sj Value

C1 S7 64277
C2 S6 60547
C3 S5 54491
C4 S4 46341
C5 S3 36410
C6 S2 25080
C7 S1 12785

Table 7.65: 16-bit Approximations of Sines and Cosines

1. Assign T[0] the value Y[0] + Y[4].

2. Truncate T[0] to a 16-bit representation by dropping any higher-order bits.

3. Assign T[0] the value C4 ∗ T[0] >> 16.

4. Assign T[1] the value Y[0]−Y[4].

5. Truncate T[1] to a 16-bit representation by dropping any higher-order bits.

6. Assign T[1] the value C4 ∗ T[1] >> 16.

7. Assign T[2] the value (C6 ∗Y[2] >> 16)− (S6 ∗Y[6] >> 16).

8. Assign T[3] the value (S6 ∗Y[2] >> 16) + (C6 ∗Y[6] >> 16).

9. Assign T[4] the value (C7 ∗Y[1] >> 16)− (S7 ∗Y[7] >> 16).

10. Assign T[5] the value (C3 ∗Y[5] >> 16)− (S3 ∗Y[3] >> 16).

11. Assign T[6] the value (S3 ∗Y[5] >> 16) + (C3 ∗Y[3] >> 16).

12. Assign T[7] the value (S7 ∗Y[1] >> 16) + (C7 ∗Y[7] >> 16).

13. Assign R the value T[4] + T[5].

14. Assign T[5] the value T[4]− T[5].

15. Truncate T[5] to a 16-bit representation by dropping any higher-order bits.

16. Assign T[5] the value C4 ∗ (−T[5]) >> 16.

17. Assign T[4] the value R.

18. Assign R the value T[7] + T[6].
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19. Assign T[6] the value T[7]− T[6].

20. Truncate T[6] to a 16-bit representation by dropping any higher-order bits.

21. Assign T[6] the value C4 ∗ T[6] >> 16.

22. Assign T[7] the value R.

23. Assign R the value T[0] + T[3].

24. Assign T[3] the value T[0]− T[3].

25. Assign T[0] the value R.

26. Assign R the value T[1] + T[2]

27. Assign T[2] the value T[1]− T[2]

28. Assign T[1] the value R.

29. Assign R the value T[6] + T[5].

30. Assign T[5] the value T[6]− T[5].

31. Assign T[6] the value R.

32. Assign R the value T[0] + T[7].

33. Truncate R to a 16-bit representation by dropping any higher-order bits.

34. Assign X[0] the value R.

35. Assign R the value T[1] + T[6].

36. Truncate R to a 16-bit representation by dropping any higher-order bits.

37. Assign X[1] the value R.

38. Assign R the value T[2] + T[5].

39. Truncate R to a 16-bit representation by dropping any higher-order bits.

40. Assign X[2] the value R.

41. Assign R the value T[3] + T[4].

42. Truncate R to a 16-bit representation by dropping any higher-order bits.

43. Assign X[3] the value R.

44. Assign R the value T[3]− T[4].

45. Truncate R to a 16-bit representation by dropping any higher-order bits.

46. Assign X[4] the value R.
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47. Assign R the value T[2]− T[5].

48. Truncate R to a 16-bit representation by dropping any higher-order bits.

49. Assign X[5] the value R.

50. Assign X the value T[1]− T[6].

51. Truncate R to a 16-bit representation by dropping any higher-order bits.

52. Assign X[6] the value R.

53. Assign R the value T[0]− T[7].

54. Truncate R to a 16-bit representation by dropping any higher-order bits.

55. Assign X[7] the value R.

The 2D Inverse DCT

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

DQC Integer
Array

14 Yes A 64-element array of dequantized
DCT coefficients in natural order (cf.
Section 2.6).

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RES 2D Integer
Array

16 Yes An 8 × 8 array containing the
decoded residual for the current
block.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

ci Integer 3 No The column index.
ri Integer 3 No The row index.
Y Integer

Array
16 Yes An 8-element array of 1D iDCT input

values.
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Name Type Size
(bits)

Signed? Description and restrictions

X Integer
Array

16 Yes An 8-element array of 1D iDCT out-
put values.

This procedure applies the 1D inverse DCT transform 16 times to a block
of dequantized coefficients: once for each of the 8 rows, and once for each of the
8 columns of the result. Note that the coordinate system used for the columns
is the same right-handed coordinate system used by the rest of Theora. Thus,
the column is indexed from bottom to top, not top to bottom. The final values
are divided by sixteen, rounding with ties rounded towards postive infinity.

1. For each value of ri from 0 to 7:

(a) For each value of ci from 0 to 7:

i. Assign Y[ci ] the value DQC[ri ∗ 8 + ci ].

(b) Compute X, the 1D inverse DCT of Y using the procedure described
in Section 7.9.3.

(c) For each value of ci from 0 to 7:

i. Assign RES[ri ][ci ] the value X[ci ].

2. For each value of ci from 0 to 7:

(a) For each value of ri from 0 to 7:

i. Assign Y[ri ] the value RES[ri ][ci ].

(b) Compute X, the 1D inverse DCT of Y using the procedure described
in Section 7.9.3.

(c) For each value of ri from 0 to 7:

i. Assign RES[ri ][ci ] the value (X[ri ] + 8) >> 4.

The 1D Forward DCT (Non-Normative)

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

X Integer
Array

14 Yes An 8-element array of input values.

Output parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

Y Integer
Array

16 Yes An 8-element array of DCT coeffi-
cients.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

T Integer
Array

16 Yes An 8-element array containing the
current value of each signal line.

R Integer 16 Yes A temporary value.

The forward transform used in the encoder is not mandated by this standard
as the inverse one is. Precise equivalence in the inverse transform alone is
all that is required to guarantee that there is no mismatch in the prediction
loop between encoder and any compliant decoder implementation. However,
a forward transform is provided here as a convenience for implementing an
encoder. This is the version of the transform used by Xiph.org’s Theora encoder,
which is the same as that used by VP3. Like the inverse DCT, it is first applied
to each row, and then applied to each column of the result.
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Figure 7.2: Signal Flow Graph for the 1D Forward DCT

The signal flow graph for the forward transform is given in Figure 7.2. It is
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largely the reverse of the flow graph given for the inverse DCT. It is important
to note that the signs on the constants in the rotations have changed, and the
C4 scale factors on one of the lower butterflies now appear on the opposite side.
The column of numbers on the left represents the unpermuted input, and the
column on the right the permuted output DCT coefficients.

A proper division by 216 is done after the multiplications instead of a shift
in the forward transform. This can be implemented quickly by adding an offset
of 0xFFFF if the number is negative, and then shifting as before. This slightly
increases the computational complexity of the transform. Unlike the inverse
DCT, 16-bit registers and a 16 × 16 → 32 bit multiply are sufficient to avoid
any overflow, so long as the input is in the range −6270 . . . 6270, which is larger
than required.

1. Assign T[0] the value X[0] + X[7].

2. Assign T[1] the value X[1] + X[6].

3. Assign T[2] the value X[2] + X[5].

4. Assign T[3] the value X[3] + X[4].

5. Assign T[4] the value X[3]−X[4].

6. Assign T[5] the value X[2]−X[5].

7. Assign T[6] the value X[1]−X[6].

8. Assign T[7] the value X[0]−X[7].

9. Assign R the value T[0] + T[3].

10. Assign T[3] the value T[0]− T[3].

11. Assign T[0] the value R.

12. Assign R the value T[1] + T[2].

13. Assign T[2] the value T[1]− T[2].

14. Assign T[1] the value R.

15. Assign R the value T[6]− T[5].

16. Assign T[6] the value (C4 ∗ (T[6] + T[5]))//16.

17. Assign T[5] the value (C4 ∗ R)//16.

18. Assign R the value T[4] + T[5].

19. Assign T[5] the value T[4]− T[5].

20. Assign T[4] the value R.
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21. Assign R the value T[7] + T[6].

22. Assign T[6] the value T[7]− T[6].

23. Assign T[7] the value R.

24. Assign Y[0] the value (C4 ∗ (T[0] + T[1]))//16.

25. Assign Y[4] the value (C4 ∗ (T[0]− T[1]))//16.

26. Assign Y[2] the value ((S6 ∗ T[3])//16) + ((C6 ∗ T[2])//16).

27. Assign Y[6] the value ((C6 ∗ T[3])//16)− ((S6 ∗ T[2])//16).

28. Assign Y[1] the value ((S7 ∗ T[7])//16) + ((C7 ∗ T[4])//16).

29. Assign Y[5] the value ((S3 ∗ T[6])//16) + ((C3 ∗ T[5])//16).

30. Assign Y[3] the value ((C3 ∗ T[6])//16)− ((S3 ∗ T[5])//16).

31. Assign Y[7] the value ((C7 ∗ T[7])//16)− ((S7 ∗ T[4])//16).

7.9.4 The Complete Reconstruction Algorithm

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

ACSCALE Integer
array

16 No A 64-element array of
scale values for AC coef-
ficients for each qi value.

DCSCALE Integer
array

16 No A 64-element array of
scale values for the DC
coefficient for each qi
value.

BMS 2D Integer
array

8 No A NBMS×64 array con-
taining the base matrices.

NQRS 2D Integer
array

6 No A 2 × 3 array contain-
ing the number of quant
ranges for a given qti and
pli , respectively. This is
at most 63.

QRSIZES 3D Integer
array

6 No A 2× 3× 63 array of the
sizes of each quant range
for a given qti and pli ,
respectively. Only the
first NQRS[qti ][pli ] val-
ues are used.
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Name Type Size
(bits)

Signed? Description and restrictions

QRBMIS 3D Integer
array

9 No A 2 × 3 × 64 array
of the bmi ’s used for
each quant range for a
given qti and pli , respec-
tively. Only the first
(NQRS[qti ][pli ]+1) val-
ues are used.

RPYW Integer 20 No The width of the Y ′ plane
of the reference frames in
pixels.

RPYH Integer 20 No The height of the Y ′

plane of the reference
frames in pixels.

RPCW Integer 20 No The width of the Cb and
Cr planes of the reference
frames in pixels.

RPCH Integer 20 No The height of the Cb and
Cr planes of the reference
frames in pixels.

GOLDREFY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane
of the golden reference
frame.

GOLDREFCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane
of the golden reference
frame.

GOLDREFCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane
of the golden reference
frame.

PREVREFY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane
of the previous reference
frame.
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Name Type Size
(bits)

Signed? Description and restrictions

PREVREFCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane
of the previous reference
frame.

PREVREFCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane
of the previous reference
frame.

NBS Integer 36 No The total number of
blocks in a frame.

BCODED Integer
Array

1 No An NBS-element array
of flags indicating which
blocks are coded.

MBMODES Integer
Array

3 No An NMBS-element ar-
ray of coding modes for
each macro block.

MVECTS Array of
2D Integer
Vectors

6 Yes An NBS-element array
of motion vectors for each
block.

COEFFS 2D Integer
Array

16 Yes An NBS × 64 array
of quantized DCT co-
efficient values for each
block in zig-zag order.

NCOEFFS Integer
Array

7 No An NBS-element array
of the coefficient count
for each block.

QIS Integer
array

6 No An NQIS-element array
of qi values.

QIIS Integer
Array

2 No An NBS-element array
of qii values for each
block.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RECY 2D Integer
Array

8 No A RPYH×RPYW array con-
taining the contents of the Y ′

plane of the reconstructed frame.
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Name Type Size
(bits)

Signed? Description and restrictions

RECCB 2D Integer
Array

8 No A RPCH×RPCW array con-
taining the contents of the Cb

plane of the reconstructed frame.
RECCR 2D Integer

Array
8 No A RPCH×RPCW array con-

taining the contents of the Cr

plane of the reconstructed frame.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

RPW Integer 20 No The width of the current plane of
the current reference frame in pix-
els.

RPH Integer 20 No The height of the current plane of
the current reference frame in pix-
els.

REFP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of the current plane of
the current reference frame.

BX Integer 20 No The horizontal pixel index of the
lower-left corner of the current
block.

BY Integer 20 No The vertical pixel index of the
lower-left corner of the current
block.

MVX Integer 5 No The horizontal component of the
first whole-pixel motion vector.

MVY Integer 5 No The vertical component of the first
whole-pixel motion vector.

MVX2 Integer 5 No The horizontal component of the
second whole-pixel motion vector.

MVY2 Integer 5 No The vertical component of the sec-
ond whole-pixel motion vector.

PRED 2D Integer
Array

8 No An 8 × 8 array of predictor values
to use for the current block.

RES 2D Integer
Array

16 Yes An 8 × 8 array containing the
decoded residual for the current
block.

QMAT Integer
array

16 No A 64-element array of quantization
values for each DCT coefficient in
natural order.
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Name Type Size
(bits)

Signed? Description and restrictions

DC Integer 29 Yes The dequantized DC coefficient of
a block.

P Integer 17 Yes A reconstructed pixel value.
bi Integer 36 No The index of the current block in

coded order.
mbi Integer 32 No The index of the macro block con-

taining block bi .
pli Integer 2 No The color plane index of the current

block.
rfi Integer 2 No The index of the reference frame

indicated by the coding mode for
macro block mbi .

bx Integer 3 No The horizontal pixel index in the
block.

by Integer 3 No The vertical pixel index in the
block.

qti Integer 1 No A quantization type index. See Ta-
ble 3.1.

qi0 Integer 6 No The quantization index of the DC
coefficient.

qi Integer 6 No The quantization index of the AC
coefficients.

This section takes the decoded packet data and uses the previously defined
procedures to reconstruct each block of the current frame. For coded blocks,
a predictor is formed using the coding mode and, if applicable, the motion
vector, and then the residual is computed from the quantized DCT coefficients.
For uncoded blocks, the contents of the co-located block are copied from the
previous frame and the residual is cleared to zero. Then the predictor and
residual are added, and the result clamped to the range 0 . . . 255 and stored in
the current frame.

In the special case that a block contains only a DC coefficient, the dequanti-
zation and inverse DCT transform is skipped. Instead the constant pixel value
for the entire block is computed in one step. Note that the truncation of in-
termediate operations is omitted and the final rounding is slightly different in
this case. The check for whether or not the block contains only a DC coefficient
is based on the coefficient count returned from the token decode procedure of
Section 7.7, and not by checking to see if the remaining coefficient values are
zero. Also note that even when the coefficient count indicates the block contains
zero coefficients, the DC coefficient is still processed, as undoing DC prediction
might have made it non-zero.

After this procedure, the frame is completely reconstructed, but before it
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can be used as a reference frame, a loop filter must be run over it to help reduce
blocking artifacts. This is detailed in Section 7.10.

1. Assign qi0 the value QIS[0].

2. For each value of bi from 0 to (NBS− 1):

(a) Assign pli the index of the color plane block bi belongs to.

(b) Assign BX the horizontal pixel index of the lower-left corner of block
bi .

(c) Assign BY the vertical pixel index of the lower-left corner of block
bi .

(d) If BCODED[bi ] is non-zero:

i. Assign mbi the index of the macro block containing block bi .
ii. If MBMODES[mbi ] is 1 (INTRA), assign qti the value 0.
iii. Otherwise, assign qti the value 1.
iv. Assign rfi the value of the Reference Frame Index column of

Table 7.46 corresponding to MBMODES[mbi ].
v. If rfi is zero, compute PRED using the procedure given in Sec-

tion 7.9.1.
vi. Otherwise:

A. Assign REFP, RPW, and RPH the values given in Table 7.75
corresponding to current value of rfi and pli .

rfi pli REFP RPW RPH

1 0 PREVREFY RPYW RPYH
1 1 PREVREFCB RPCW RPCH
1 2 PREVREFCR RPCW RPCH
2 0 GOLDREFY RPYW RPYH
2 1 GOLDREFCB RPCW RPCH
2 2 GOLDREFCR RPCW RPCH

Table 7.75: Reference Planes and Sizes for Each rfi and pli

B. Assign MVX the value

b|MVECTS[bi ]x|c ∗ sign(MVECTS[bi ]x).

C. Assign MVY the value

b|MVECTS[bi ]y|c ∗ sign(MVECTS[bi ]y).

D. Assign MVX2 the value

d|MVECTS[bi ]x|e ∗ sign(MVECTS[bi ]x).
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E. Assign MVY2 the value

d|MVECTS[bi ]y|e ∗ sign(MVECTS[bi ]y).

F. If MVX equals MVX2 and MVY equals MVY2, use the val-
ues REFP, RPW, RPH, BX, BY, MVX, and MVY, compute
PRED using the procedure given in Section 7.9.1.

G. Otherwise, use the values REFP, RPW, RPH, BX, BY,
MVX, MVY, MVX2, and MVY2 to compute PRED using
the procedure given in Section 7.9.1.

vii. If NCOEFFS[bi ] is less than 2:
A. Using ACSCALE, DCSCALE, BMS, NQRS,

QRSIZES, QRBMIS, qti , pli , and qi0 , use the procedure
given in Section 6.4.3 to compute the DC quantization matrix
QMAT.

B. Assign DC the value

(COEFFS[bi ][0] ∗QMAT[0] + 15) >> 5.

C. Truncate DC to a 16-bit representation by dropping any
higher-order bits.

D. For each value of by from 0 to 7, and each value of bx from
0 to 7, assign RES[by ][bx ] the value DC.

viii. Otherwise:
A. Assign qi the value QIS[QIIS[bi ]].
B. Using ACSCALE, DCSCALE, BMS, NQRS,

QRSIZES, QRBMIS, qti , pli , qi0 , and qi , compute DQC
using the procedure given in Section 7.9.2.

C. Using DQC, compute RES using the procedure given in Sec-
tion 7.9.3.

(e) Otherwise:

i. Assign rfi the value 1.
ii. Assign REFP, RPW, and RPH the values given in Table 7.75

corresponding to current value of rfi and pli .
iii. Assign MVX the value 0.
iv. Assign MVY the value 0.
v. Using the values REFP, RPW, RPH, BX, BY, MVX, and MVY,

compute PRED using the procedure given in Section 7.9.1. This
is simply a copy of the co-located block in the previous reference
frame.

vi. For each value of by from 0 to 7, and each value of bx from 0 to
7, assign RES[by ][bx ] the value 0.

(f) For each value of by from 0 to 7, and each value of bx from 0 to 7:
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i. Assign P the value (PRED[by ][bx ] + RES[by ][bx ]).
ii. If P is greater than 255, assign P the value 255.
iii. If P is less than 0, assign P the value 0.
iv. If pli equals 0, assign RECY[BY + by ][BX + bx ] the value P.
v. Otherwise, if pli equals 1, assign RECB[BY + by ][BX + bx ] the

value P.
vi. Otherwise, pli equals 2, so assign RECR[BY + by ][BX+ bx ] the

value P.

7.10 Loop Filtering

The loop filter is a simple deblocking filter that is based on running a small edge
detecting filter over the coded block edges and adjusting the pixel values by a
tapered response. The filter response is modulated by the following non-linear
function:

lflim(R,L) =


0, R ≤ −2 ∗ L
−R− 2 ∗ L, −2 ∗ L < R ≤ −L
R, −L < R < L
−R + 2 ∗ L, L ≤ R < 2 ∗ L
0, 2 ∗ L ≤ R

Here L is a limiting value equal to LFLIMS[qi0 ]. It defines the peaks of the
function. LFLIMS is an array of values specified in the setup header and is
indexed by qi0 , the first quantization index for the frame, the one used for all
the DC coefficients. Larger values of L indicate a stronger filter.

7.10.1 Horizontal Filter

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RECP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of a plane of the re-
constructed frame.

FX Integer 20 No The horizontal pixel index of the
lower-left corner of the area to be
filtered.

FY Integer 20 No The vertical pixel index of the
lower-left corner of the area to be
filtered.

L Integer 7 No The loop filter limit value.
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Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RECP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of a plane of the re-
constructed frame.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

R Integer 9 Yes The edge detector response.
P Integer 9 Yes A filtered pixel value.
by Integer 20 No The vertical pixel index in the block.

This procedure applies a 4-tap horizontal filter to each row of a vertical block
edge.

1. For each value of by from 0 to 7:

(a) Assign R the value

(RECP[FY + by ][FX]− 3 ∗RECP[FY + by ][FX + 1]+
3∗RECP[FY+by ][FX+2]−RECP[FY+by ][FX+3]+4) >> 3

(b) Assign P the value (RECP[FY + by ][FX + 1] + lflim(R,L)).
(c) If P is less than zero, assign RECP[FY+by ][FX+1] the value zero.
(d) Otherwise, if P is greater than 255, assign RECP[FY + by ][FX+1]

the value 255.
(e) Otherwise, assign RECP[FY + by ][FX + 1] the value P.
(f) Assign P the value (RECP[FY + by ][FX + 2]− lflim(R,L)).
(g) If P is less than zero, assign RECP[FY+by ][FX+2] the value zero.
(h) Otherwise, if P is greater than 255, assign RECP[FY + by ][FX+2]

the value 255.
(i) Otherwise, assign RECP[FY + by ][FX + 2] the value P.

7.10.2 Vertical Filter

Input parameters:
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Name Type Size
(bits)

Signed? Description and restrictions

RECP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of a plane of the re-
constructed frame.

FX Integer 20 No The horizontal pixel index of the
lower-left corner of the area to be
filtered.

FY Integer 20 No The vertical pixel index of the
lower-left corner of the area to be
filtered.

L Integer 7 No The loop filter limit value.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RECP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of a plane of the re-
constructed frame.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

R Integer 9 Yes The edge detector response.
P Integer 9 Yes A filtered pixel value.
bx Integer 20 No The horizontal pixel index in the block.

This procedure applies a 4-tap vertical filter to each column of a horizontal
block edge.

1. For each value of bx from 0 to 7:

(a) Assign R the value

(RECP[FY][FX + bx ]− 3 ∗RECP[FY + 1][FX + bx ]+
3∗RECP[FY+2][FX+bx ]−RECP[FY+3][FX+bx ]+4) >> 3

(b) Assign P the value (RECP[FY + 1][FX + bx ] + lflim(R,L)).

(c) If P is less than zero, assign RECP[FY+1][FX+bx ] the value zero.
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(d) Otherwise, if P is greater than 255, assign RECP[FY +1][FX+ bx ]
the value 255.

(e) Otherwise, assign RECP[FY + 1][FX + bx ] the value P.

(f) Assign P the value (RECP[FY + 2][FX + bx ]− lflim(R,L)).

(g) If P is less than zero, assign RECP[FY+2][FX+bx ] the value zero.

(h) Otherwise, if P is greater than 255, assign RECP[FY +2][FX+ bx ]
the value 255.

(i) Otherwise, assign RECP[FY + 2][FX + bx ] the value P.

7.10.3 Complete Loop Filter

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

LFLIMS Integer
array

7 No A 64-element array of loop fil-
ter limit values.

RPYW Integer 20 No The width of the Y ′ plane of
the reconstruced frame in pix-
els.

RPYH Integer 20 No The height of the Y ′ plane of
the reconstruced frame in pix-
els.

RPCW Integer 20 No The width of the Cb and
Cr planes of the reconstruced
frame in pixels.

RPCH Integer 20 No The height of the Cb and
Cr planes of the reconstruced
frame in pixels.

NBS Integer 36 No The total number of blocks in
a frame.

BCODED Integer
Array

1 No An NBS-element array of flags
indicating which blocks are
coded.

QIS Integer
array

6 No An NQIS-element array of qi
values.

RECY 2D Integer
Array

8 No A RPYH × RPYW array
containing the contents of the
Y ′ plane of the reconstructed
frame.

RECCB 2D Integer
Array

8 No A RPCH × RPCW array
containing the contents of the
Cb plane of the reconstructed
frame.
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Name Type Size
(bits)

Signed? Description and restrictions

RECCR 2D Integer
Array

8 No A RPCH × RPCW array
containing the contents of the
Cr plane of the reconstructed
frame.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RECY 2D Integer
Array

8 No A RPYH×RPYW array con-
taining the contents of the Y ′

plane of the reconstructed frame.
RECCB 2D Integer

Array
8 No A RPCH×RPCW array con-

taining the contents of the Cb

plane of the reconstructed frame.
RECCR 2D Integer

Array
8 No A RPCH×RPCW array con-

taining the contents of the Cr

plane of the reconstructed frame.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

RPW Integer 20 No The width of the current plane of
the reconstructed frame in pixels.

RPH Integer 20 No The height of the current plane of
the reconstructed frame in pixels.

RECP 2D Integer
Array

8 No A RPH×RPW array containing
the contents of the current plane of
the reconstruced frame.

BX Integer 20 No The horizontal pixel index of the
lower-left corner of the current
block.

BY Integer 20 No The vertical pixel index of the
lower-left corner of the current
block.

FX Integer 20 No The horizontal pixel index of the
lower-left corner of the area to be
filtered.



130 CHAPTER 7. FRAME DECODE

Name Type Size
(bits)

Signed? Description and restrictions

FY Integer 20 No The vertical pixel index of the
lower-left corner of the area to be
filtered.

L Integer 7 No The loop filter limit value.
bi Integer 36 No The index of the current block in

coded order.
bj Integer 36 No The index of a neighboring block in

coded order.
pli Integer 2 No The color plane index of the current

block.

This procedure defines the order that the various block edges are filtered.
Because each application of one of the two filters above destructively modifies
the contents of the reconstructed image, the precise output obtained differs
depending on the order that horizontal and vertical filters are applied to the
edges of a single block. The order defined here conforms to that used by VP3.

1. Assign L the value LFLIMS[QIS[0]].

2. For each block in raster order, with coded-order index bi :

(a) If BCODED[bi ] is non-zero:

i. Assign pli the index of the color plane block bi belongs to.
ii. Assign RECP, RPW, and RPH the values given in Table 7.85

corresponding to the value of pli .

pli RECP RPW RPH

0 RECY RPYW RPYH
1 RECCB RPCW RPCH
2 RECCR RPCW RPCH

Table 7.85: Reconstructed Planes and Sizes for Each pli

iii. Assign BX the horizontal pixel index of the lower-left corner of
the block bi .

iv. Assign BY the vertical pixel index of the lower-left corner of the
block bi .

v. If BX is greater than zero:
A. Assign FX the value (BX− 2).
B. Assign FY the value BY.
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C. Using RECP, FX, FY, and L, apply the horizontal block
filter to the left edge of block bi with the procedure described
in Section 7.10.1.

vi. If BY is greater than zero:
A. Assign FX the value BX.
B. Assign FY the value (BY − 2)
C. Using RECP, FX, FY, and L, apply the vertical block filter

to the bottom edge of block bi with the procedure described
in Section 7.10.2.

vii. If (BX + 8) is less than RPW and BCODED[bj ] is zero, where
bj is the coded-order index of the block adjacent to bi on the
right:
A. Assign FX the value (BX + 6).
B. Assign FY the value BY.
C. Using RECP, FX, FY, and L, apply the horizontal block fil-

ter to the right edge of block bi with the procedure described
in Section 7.10.1.

viii. If (BY + 8) is less than RPH and BCODED[bj ] is zero, where
bj is the coded-order index of the block adjacent to bi above:
A. Assign FX the value BX.
B. Assign FY the value (BY + 6)
C. Using RECP, FX, FY, and L, apply the vertical block filter

to the top edge of block bi with the procedure described in
Section 7.10.2.

VP3 Compatibility The original VP3 decoder implemented unrestricted
motion vectors by enlarging the reconstructed frame buffers and repeating the
pixels on its edges into the padding region. However, for the previous reference
frame this padding ocurred before the loop filter was applied, but for the golden
reference frame it occurred afterwards.

This means that for the previous reference frame, the padding values were
required to be stored separately from the main image values. Furthermore, even
if the previous and golden reference frames were in fact the same frame, they
could have different padding values. Finally, the encoder did not apply the loop
filter at all, which resulted in artifacts, particularly in near-static scenes, due to
prediction-loop mismatch. This last can only be considered a bug in the VP3
encoder.

Given all these things, Theora now uniformly applies the loop filter before
the reference frames are padded. This means it is possible to use the same buffer
for the previous and golden reference frames when they do indeed refer to the
same frame. It also means that on architectures where memory bandwidth is
limited, it is possible to avoid storing padding values, and simply clamp the
motion vectors applied to each pixel as described in Sections 7.9.1 and 7.9.1.
This means that the predicted pixel values along the edges of the frame might
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differ slightly between VP3 and Theora, but since the VP3 encoder did not
apply the loop filter in the first place, this is not likely to impose any serious
compatibility issues.

7.11 Complete Frame Decode

Input parameters:

Name Type Size
(bits)

Signed? Description and restrictions

FMBW Integer 16 No The width of the frame in
macro blocks.

FMBH Integer 16 No The height of the frame
in macro blocks.

NSBS Integer 32 No The total number of su-
per blocks in a frame.

NBS Integer 36 No The total number of
blocks in a frame.

NMBS Integer 32 No The total number of
macro blocks in a frame.

FRN Integer 32 No The frame-rate numera-
tor.

FRD Integer 32 No The frame-rate denomi-
nator.

PARN Integer 24 No The pixel aspect-ratio
numerator.

PARD Integer 24 No The pixel aspect-ratio de-
nominator.

CS Integer 8 No The color space.
PF Integer 2 No The pixel format.
NOMBR Integer 24 No The nominal bitrate of

the stream, in bits per
second.

QUAL Integer 6 No The quality hint.
KFGSHIFT Integer 5 No The amount to shift the

key frame number by in
the granule position.

LFLIMS Integer
array

7 No A 64-element array of
loop filter limit values.

ACSCALE Integer
array

16 No A 64-element array of
scale values for AC coef-
ficients for each qi value.
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Name Type Size
(bits)

Signed? Description and restrictions

DCSCALE Integer
array

16 No A 64-element array of
scale values for the DC
coefficient for each qi
value.

NBMS Integer 10 No The number of base ma-
trices.

BMS 2D Integer
array

8 No A NBMS×64 array con-
taining the base matrices.

NQRS 2D Integer
array

6 No A 2 × 3 array contain-
ing the number of quant
ranges for a given qti and
pli , respectively. This is
at most 63.

QRSIZES 3D Integer
array

6 No A 2× 3× 63 array of the
sizes of each quant range
for a given qti and pli ,
respectively. Only the
first NQRS[qti ][pli ] val-
ues will be used.

QRBMIS 3D Integer
array

9 No A 2 × 3 × 64 array
of the bmi ’s used for
each quant range for a
given qti and pli , respec-
tively. Only the first
(NQRS[qti ][pli ]+1) val-
ues will be used.

HTS Huffman table array An 80-element array of
Huffman tables with up
to 32 entries each.

GOLDREFY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane
of the golden reference
frame.

GOLDREFCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane
of the golden reference
frame.
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Name Type Size
(bits)

Signed? Description and restrictions

GOLDREFCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane
of the golden reference
frame.

PREVREFY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane
of the previous reference
frame.

PREVREFCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane
of the previous reference
frame.

PREVREFCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane
of the previous reference
frame.

Output parameters:

Name Type Size
(bits)

Signed? Description and restrictions

RECY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane of
the reconstructed frame.

RECCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane of
the reconstructed frame.

RECCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane of
the reconstructed frame.

GOLDREFY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane
of the golden reference
frame.
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Name Type Size
(bits)

Signed? Description and restrictions

GOLDREFCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane
of the golden reference
frame.

GOLDREFCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane
of the golden reference
frame.

PREVREFY 2D Integer
Array

8 No A RPYH×RPYW ar-
ray containing the con-
tents of the Y ′ plane
of the previous reference
frame.

PREVREFCB 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cb plane
of the previous reference
frame.

PREVREFCR 2D Integer
Array

8 No A RPCH ×RPCW ar-
ray containing the con-
tents of the Cr plane
of the previous reference
frame.

Variables used:

Name Type Size
(bits)

Signed? Description and restrictions

FTYPE Integer 1 No The frame type.
NQIS Integer 2 No The number of qi values.
QIS Integer

array
6 No An NQIS-element array of qi

values.
BCODED Integer

Array
1 No An NBS-element array of

flags indicating which blocks
are coded.

MBMODES Integer
Array

3 No An NMBS-element array of
coding modes for each macro
block.
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Name Type Size
(bits)

Signed? Description and restrictions

MVECTS Array of
2D Integer
Vectors

6 Yes An NBS-element array of mo-
tion vectors for each block.

QIIS Integer
Array

2 No An NBS-element array of qii
values for each block.

COEFFS 2D Integer
Array

16 Yes An NBS × 64 array of quan-
tized DCT coefficient values
for each block in zig-zag order.

NCOEFFS Integer
Array

7 No An NBS-element array of
the coefficient count for each
block.

RPYW Integer 20 No The width of the Y ′ plane of
the reference frames in pixels.

RPYH Integer 20 No The height of the Y ′ plane of
the reference frames in pixels.

RPCW Integer 20 No The width of the Cb and Cr

planes of the reference frames
in pixels.

RPCH Integer 20 No The height of the Cb and Cr

planes of the reference frames
in pixels.

bi Integer 36 No The index of the current block
in coded order.

This procedure uses all the procedures defined in the previous section of this
chapter to decode and reconstruct a complete frame. It takes as input values
decoded from the headers, as well as the current reference frames. As output,
it gives the uncropped, reconstructed frame. This should be cropped to picture
region before display. As a special case, a 0-byte packet is treated exactly like
an inter frame with no coded blocks.

1. If the size of the data packet is non-zero:

(a) Decode the frame header values FTYPE, NQIS, and QIS using the
procedure given in Section 7.1.

(b) Using FTYPE, NSBS, and NBS, decode the list of coded block
flags into BCODED using the procedure given in Section 7.3.

(c) Using FTYPE, NMBS, NBS, and BCODED, decode the macro
block coding modes into MBMODES using the procedure given in
Section 7.4.

(d) If FTYPE is non-zero (inter frame), using PF, NMBS, MBMODES,
NBS, and BCODED, decode the motion vectors into MVECTS using
the procedure given in Section 7.5.1.
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PF RPCW RPCH

0 8 ∗ FMBW 8 ∗ FMBH
2 8 ∗ FMBW 16 ∗ FMBH
3 16 ∗ FMBW 16 ∗ FMBH

Table 7.89: Width and Height of Chroma Planes for each Pixel Format

(e) Using NBS, BCODED, and NQIS, decode the block-level qi values
into QIIS using the procedure given in Section 7.6.

(f) Using NBS, NMBS, BCODED, and HTS, decode the DCT coeffi-
cients into NCOEFFS and NCOEFFS using the procedure given in
Section 7.7.3.

(g) Using BCODED and MBMODES, undo the DC prediction on the
DC coefficients stored in COEFFS using the procedure given in Sec-
tion 7.8.2.

2. Otherwise:

(a) Assign FTYPE the value 1 (inter frame).

(b) Assign NQIS the value 1.

(c) Assign QIS[0] the value 63.

(d) For each value of bi from 0 to (NBS − 1), assign BCODED[bi ] the
value zero.

3. Assign RPYW and RPYH the values (16 ∗ FMBW) and (16 ∗ FMBH),
respectively.

4. Assign RPCW and RPCH the values from the row of Table 7.89 corre-
sponding to PF.

5. Using ACSCALE, DCSCALE, BMS, NQRS, QRSIZES, QRBMIS,
NBS, BCODED, MBMODES, MVECTS, COEFFS, NCOEFFS, QIS,
QIIS, RPYW, RPYH, RPCW, RPCH, GOLDREFY, GOLDREFCB,
GOLDREFCR, PREVREFY, PREVREFCB, and PREVREFCR,
reconstruct the complete frame into RECY, RECCB, and RECCR us-
ing the procedure given in Section 7.9.4.

6. Using LFLIMS, RPYW, RPYH, RPCW, RPCH, NBS, BCODED, and
QIS, apply the loop filter to the reconstructed frame in RECY, RECCB,
and RECCR using the procedure given in Section 7.10.3.

7. If FTYPE is zero (intra frame), assign GOLDREFY, GOLDREFCB,
and GOLDREFCR the values RECY, RECCB, and RECCR, re-
spectively.
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8. Assign PREVREFY, PREVREFCB, and PREVREFCR the values
RECY, RECCB, and RECCR, respectively.



Appendix A

Ogg Bitstream
Encapsulation

A.1 Overview

This document specifies the embedding or encapsulation of Theora packets in
an Ogg transport stream.

Ogg is a stream oriented wrapper for coded, linear time-based data. It pro-
vides syncronization, multiplexing, framing, error detection and seeking land-
marks for the decoder and complements the raw packet format used by the
Theora codec.

This document assumes familiarity with the details of the Ogg standard.
The Xiph.org documentation provides an overview of the Ogg transport stream
format at http://www.xiph.org/ogg/doc/oggstream.html and a detailed de-
scription at http://www.xiph.org/ogg/doc/framing.html. The format is also
defined in RFC 3533 [Pfe03]. While Theora packets can be embedded in a wide
variety of media containers and streaming mechanisms, the Xiph.org Foundation
recommends Ogg as the native format for Theora video in file-oriented storage
and transmission contexts.

A.1.1 MIME type

The generic MIME type of any Ogg file is application/ogg. The specific
MIME type for the Ogg Theora profile documented here is video/ogg. This
is the MIME type recommended for files conforming to this appendix. The
recommended filename extension is .ogv.

Outside of an encapsulation, the mime type video/theora may be used to
refer specifically to the Theora compressed video stream.
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A.2 Embedding in a logical bitstream

Ogg separates the concept of a logical bitstream consisting of the framing of
a particular sequence of packets and complete within itself from the physical
bitstream which may consist either of a single logical bitstream or a number of
logical bitstreams multiplexed together. This section specifies the embedding
of Theora packets in a logical Ogg bitstream. The mapping of Ogg Theora
logical bitstreams into a multiplexed physical Ogg stream is described in the
next section.

A.2.1 Headers

The initial identification header packet appears by itself in a single Ogg page.
This page defines the start of the logical stream and MUST have the ‘beginning
of stream’ flag set.

The second and third header packets (comment metadata and decoder setup
data) can together span one or more Ogg pages. If there are additional non-
normative header packets, they MUST be included in this sequence of pages
as well. The comment header packet MUST begin the second Ogg page in the
logical bitstream, and there MUST be a page break between the last header
packet and the first frame data packet.

These two page break requirements facilitate stream identification and sim-
plify header acquisition for seeking and live streaming applications.

All header pages MUST have their granule position field set to zero.

A.2.2 Frame data

The first frame data packet in a logical bitstream MUST begin a new Ogg page.
All other data packets are placed one at a time into Ogg pages until the end of
the stream. Packets can span pages and multiple packets can be placed within
any one page. The last page in the logical bitstream SHOULD have its ’end of
stream’ flag set to indicate complete transmission of the available video.

Frame data pages MUST be marked with a granule position corresponding
to the end of the display interval of the last frame/packet that finishes in that
page. See the next section for details.

A.2.3 Granule position

Data packets are marked by a granulepos derived from the count of decodable
frames after that packet is processed. The field itself is divided into two sections,
the width of the less significant section being given by the KFGSHIFT param-
eter decoded from the identification header (Section 6.2). The more significant
portion of the field gives the count of coded frames after the coding of the last
keyframe in stream, and the less significant portion gives the count of frames
since the last keyframe. Thus a stream would begin with a split granulepos of
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1|0 (a keyframe), followed by 1|1, 1|2, 1|3, etc. Around a keyframe in the mid-
dle of the stream the granulepos sequence might be 1234|35, 1234|36, 1234|37,
1271|0 (for the keyframe), 1271|1, and so on. In this way the granulepos field in-
creased monotonically as required by the Ogg format, but contains information
necessary to efficiently find the previous keyframe to continue decoding after a
seek.

Prior to bitstream version 3.2.1, data packets were marked by a granulepos
derived from the index of the frame being decoded, rather than the count. That
is they marked the beginning of the display interval of a frame rather than the
end. Such streams have the VREV field of the identification header set to ‘0’
instead of ‘1’. They can be interpreted according to the description above by
adding 1 to the more signification field of the split granulepos when VREV is
less than 1.

A.3 Multiplexed stream mapping

Applications supporting Ogg Theora must support Theora bitstreams multi-
plexed with compressed audio data in the Vorbis I and Speex formats, and
should support Ogg-encapsulated MNG graphics for overlays.

Multiple audio and video bitstreams may be multiplexed together. How
playback of multiple/alternate streams is handled is up to the application. Some
conventions based on included metadata aide interoperability in this respect.

A.3.1 Chained streams

Ogg Theora decoders and playback applications MUST support both grouped
streams (multiplexed concurrent logical streams) and chained streams (sequen-
tial concatenation of independent physical bitstreams).

The number and codec data types of multiplexed streams and the decoder
parameters for those stream types that re-occur can all change at a chaining
boundary. A playback application MUST be prepared to handle such changes
and SHOULD do so smoothly with the minimum possible visible disruption.
The specification of grouped streams below applies independently to each seg-
ment of a chained bitstream.

A.3.2 Grouped streams

At the beginning of a multiplexed stream, the ‘beginning of stream’ pages for
each logical bitstream will be grouped together. Within these, the first page
to occur MUST be the Theora page. This facilitates identification of Ogg The-
ora files among other Ogg-encapsulated content. A playback application must
nevertheless handle streams where this arrangement is not correct.

If there is more than one Theora logical stream, the first page should be from
the primary stream. That is, the best choice for the stream a generic player
should begin displaying without special user direction. If there is more than
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one audio stream, or of any other stream type, the identification page of the
primary stream of that type should be placed before the others.

After the ‘beginning of stream’ pages, the header pages of each of the logical
streams MUST be grouped together before any data pages occur.

After all the header pages have been placed, the data pages are multiplexed
together. They should be placed in the stream in increasing order by the time
equivalents of their granule position fields. This facilitates seeking while limiting
the buffering requirements of the playback demultiplexer.



Appendix B

VP3

B.1 VP3 Compatibility

This section lists all of the encoder and decoder issues that may affect VP3
compatibly. Each is described in more detail in the text itself. This list is
provided merely for reference.

� Bitstream headers (Section 6).

– Identification header (Section 6.2).

* Non-multiple of 16 picture sizes.
* Standardized color spaces.
* Support for 4 : 4 : 4 and 4 : 2 : 2 pixel formats.

– Setup header

* Loop filter limit values (Section 6.4.1).
* Quantization parameters (Section 6.4.2).
* Huffman tables (Section 6.4.4).

� Frame header format (Section 7.1).

� Extended long-run bit strings (Section 7.2.1).

� INTER MV FOUR handling of uncoded blocks (Section 7.5.2).

� Block-level qi values (Section 7.6).

� Zero-length EOB runs (Section 7.7.1).

� Unrestricted motion vector padding and the loop filter (Section 7.10.3).
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B.2 Loop Filter Limit Values

The hard-coded loop filter limit values used in VP3 are defined as follows:

LFLIMS = {30, 25, 20, 20, 15, 15, 14, 14,
13, 13, 12, 12, 11, 11, 10, 10,
9, 9, 8, 8, 7, 7, 7, 7,
6, 6, 6, 6, 5, 5, 5, 5,
4, 4, 4, 4, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0}

B.3 Quantization Parameters

The hard-coded quantization parameters used by VP3 are defined as follows:

ACSCALE = {500, 450, 400, 370, 340, 310, 285, 265,
245, 225, 210, 195, 185, 180, 170, 160,
150, 145, 135, 130, 125, 115, 110, 107,
100, 96, 93, 89, 85, 82, 75, 74,
70, 68, 64, 60, 57, 56, 52, 50,
49, 45, 44, 43, 40, 38, 37, 35,
33, 32, 30, 29, 28, 25, 24, 22,
21, 19, 18, 17, 15, 13, 12, 10}

DCSCALE = {220, 200, 190, 180, 170, 170, 160, 160,
150, 150, 140, 140, 130, 130, 120, 120,
110, 110, 100, 100, 90, 90, 90, 80,
80, 80, 70, 70, 70, 60, 60, 60,
60, 50, 50, 50, 50, 40, 40, 40,
40, 40, 30, 30, 30, 30, 30, 30,
30, 20, 20, 20, 20, 20, 20, 20,
20, 10, 10, 10, 10, 10, 10, 10}

VP3 defines only a single quantization range for each quantization type and
color plane, and the base matrix used is constant throughout the range. There
are three base matrices defined. The first is used for the Y ′ channel of INTRA
mode blocks, and the second for both the Cb and Cr channels of INTRA mode
blocks. The last is used for INTER mode blocks of all channels.
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BMS = { {16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 58, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99},
{17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99},
{16, 16, 16, 20, 24, 28, 32, 40,
16, 16, 20, 24, 28, 32, 40, 48,
16, 20, 24, 28, 32, 40, 48, 64,
20, 24, 28, 32, 40, 48, 64, 64,
24, 28, 32, 40, 48, 64, 64, 64,
28, 32, 40, 48, 64, 64, 64, 96,
32, 40, 48, 64, 64, 64, 96, 128,
40, 48, 64, 64, 64, 96, 128, 128} }

The remaining parameters simply assign these matrices to the proper quant
ranges.

NQRS ={{1, 1, 1}, {1, 1, 1}}
QRSIZES ={{{1}, {1}, {1}}, {{1}, {1}, {1}}}
QRBMIS ={{{0, 0}, {1, 1}, {1, 1}}, {{2, 2}, {2, 2}, {2, 2}}}

B.4 Huffman Tables

The following tables contain the hard-coded Huffman codes used by VP3. There
are 80 tables in all, each with a Huffman code for all 32 token values. The tokens
are sorted by the most significant bits of their Huffman code. This is the same
order in which they will be decoded from the setup header.
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Huffman Code Token Value

b000 20
b001 19
b01000 7
b010010 30
b0100110 1
b01001110 3
b010011110 28
b010011111000 26
b010011111001 8
b01001111101 6
b0100111111 29
b0101 14
b0110 12
b0111 17
b1000 13
b1001 21
b101000 24
b101001 23
b10101 16
b1011000 31
b10110010 25
b101100110 2
b1011001110 4
b10110011110 5
b10110011111 27
b101101 0
b10111 22
b1100 18
b11010 15
b11011 11
b1110 10
b1111 9

VP3.1 Huffman Table Number 0

Huffman Code Token Value

b000 20
b001 19
b0100 11
b0101 12
b0110 14
b0111 17
b10000 0
b100010 7
b10001100 3
b1000110100000 29
b1000110100001 8
b100011010001 26
b10001101001 6
b10001101010 5
b10001101011 28
b100011011 25
b1000111 1
b1001 13
b1010 21
b10110 16
b10111 22
b1100 18
b1101 10
b1110 9
b11110 15
b1111100 30
b1111101 23
b1111110 24
b11111110 31
b1111111100 4
b1111111101 27
b111111111 2

VP3.1 Huffman Table Number 1
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Huffman Code Token Value

b000 20
b001 19
b0100 11
b0101 12
b0110 14
b0111 17
b100000 1
b1000010 30
b10000110 2
b10000111 3
b10001 16
b1001 21
b1010 13
b10110 0
b10111 22
b1100 18
b11010 15
b11011000 31
b1101100100 25
b11011001010 27
b11011001011 6
b11011001100 5
b110110011010 26
b11011001101100 29
b11011001101101 8
b1101100110111 28
b1101100111 4
b1101101 24
b1101110 7
b1101111 23
b1110 10
b1111 9

VP3.1 Huffman Table Number 2

Huffman Code Token Value

b0000 0
b0001 17
b0010 14
b00110 21
b001110 7
b001111 23
b010 10
b011 9
b1000 11
b1001 12
b1010 20
b1011000 3
b101100100 25
b1011001010 6
b1011001011 5
b1011001100000 29
b1011001100001 8
b101100110001 28
b10110011001 26
b1011001101 27
b101100111 4
b101101 1
b10111 16
b1100 18
b1101 13
b1110 19
b1111000 22
b1111001 30
b1111010 24
b11110110 31
b11110111 2
b11111 15

VP3.1 Huffman Table Number 3



148 APPENDIX B. VP3

Huffman Code Token Value

b0000 15
b000100000 5
b000100001 25
b00010001 22
b0001001 31
b000101 24
b000110 7
b000111000 27
b0001110010 6
b0001110011000 29
b0001110011001 8
b000111001101 28
b00011100111 26
b00011101 4
b0001111 2
b0010 17
b0011 0
b0100 14
b0101 11
b0110 12
b0111 19
b100 9
b101 10
b110000 21
b110001 23
b11001 16
b1101 18
b1110 13
b111100 1
b1111010 3
b1111011 30
b11111 20

VP3.1 Huffman Table Number 4

Huffman Code Token Value

b0000 15
b00010 1
b000110 7
b000111 3
b0010 17
b0011 19
b0100 14
b0101 18
b01100 20
b011010000 27
b011010001 5
b0110100100000 29
b0110100100001 8
b011010010001 28
b01101001001 26
b0110100101 25
b0110100110 6
b0110100111 22
b0110101 21
b011011 23
b0111 12
b1000 11
b1001 0
b101 9
b110 10
b11100 16
b1110100 2
b1110101 30
b11101100 4
b11101101 31
b1110111 24
b1111 13

VP3.1 Huffman Table Number 5
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Huffman Code Token Value

b000 13
b0010 17
b0011 18
b010000 30
b010001 24
b010010 2
b010011000 27
b010011001 6
b01001101 21
b0100111 31
b0101 14
b01100 1
b011010 20
b011011 3
b01110 16
b01111 19
b1000 12
b1001 11
b1010 0
b101100 23
b1011010 7
b101101100 5
b1011011010 25
b1011011011000 8
b10110110110010 29
b10110110110011 22
b101101101101 28
b10110110111 26
b10110111 4
b10111 15
b110 10
b111 9

VP3.1 Huffman Table Number 6

Huffman Code Token Value

b00 10
b01000 3
b01001 19
b010100 24
b0101010 7
b01010110 5
b010101110 21
b010101111 6
b01011 16
b0110 14
b011100 23
b011101 2
b01111 1
b1000 11
b1001 12
b1010000 20
b1010001 4
b1010010000 25
b101001000100 28
b1010010001010 8
b10100100010110 29
b10100100010111 22
b10100100011 26
b101001001 27
b10100101 31
b1010011 30
b10101 18
b10110 17
b10111 15
b1100 13
b1101 0
b111 9

VP3.1 Huffman Table Number 7
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Huffman Code Token Value

b00000 29
b00001 7
b0001 0
b0010 13
b001100 26
b001101 19
b00111 14
b0100 24
b0101 12
b0110 11
b011100 17
b011101 1
b01111 28
b100000 18
b100001 8
b10001 25
b1001000 20
b10010010 21
b10010011000 6
b10010011001 5
b1001001101 4
b100100111 22
b100101 15
b10011 31
b101 10
b110 9
b1110 23
b111100 27
b11110100 3
b11110101 2
b1111011 16
b11111 30

VP3.1 Huffman Table Number 8

Huffman Code Token Value

b0000 30
b00010 7
b0001100000 6
b0001100001 5
b000110001 4
b00011001 22
b0001101 3
b000111 16
b0010 13
b0011 24
b010000 19
b010001 26
b01001 14
b0101 0
b0110 12
b0111 11
b1000000 2
b1000001 20
b100001 17
b10001 25
b100100 18
b100101 15
b10011 31
b101 10
b110 9
b1110 23
b111100 1
b11110100 21
b11110101 8
b1111011 29
b111110 28
b111111 27

VP3.1 Huffman Table Number 9
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Huffman Code Token Value

b0000000 22
b0000001 8
b000001 2
b00001 31
b0001 24
b001000 29
b001001 3
b00101 25
b00110 30
b00111 1
b0100 23
b010100 16
b010101 7
b010110 19
b010111 26
b0110 13
b0111 12
b1000 11
b10010 14
b1001100000 6
b1001100001 5
b100110001 4
b10011001 21
b1001101 20
b100111 17
b1010 0
b101100 28
b101101 18
b101110 27
b101111 15
b110 10
b111 9

VP3.1 Huffman Table Number 10

Huffman Code Token Value

b000 0
b0010000 4
b0010001 21
b001001 30
b00101 15
b00110 25
b001110 29
b0011110 7
b0011111000 6
b0011111001 5
b001111101 22
b00111111 8
b0100 23
b010100 26
b010101 19
b010110 16
b010111 2
b0110 13
b01110 1
b01111 14
b1000 12
b1001 11
b1010000 20
b1010001 31
b101001 17
b101010 3
b101011 18
b101100 27
b101101 28
b10111 24
b110 10
b111 9

VP3.1 Huffman Table Number 11
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Huffman Code Token Value

b00 9
b010 0
b01100 14
b01101 3
b011100 26
b011101 18
b011110 17
b01111100 8
b01111101 21
b0111111 30
b1000 12
b1001 11
b101000 15
b10100100 7
b1010010100 6
b1010010101 5
b101001011 22
b1010011 4
b101010 28
b101011 27
b10110 24
b101110 25
b101111 2
b11000 1
b11001 23
b1101000 29
b1101001 19
b1101010 16
b11010110 31
b11010111 20
b11011 13
b111 10

VP3.1 Huffman Table Number 12

Huffman Code Token Value

b00 9
b010 0
b01100 2
b01101 14
b01110 24
b011110 17
b0111110 29
b01111110 21
b01111111 5
b1000 12
b1001 11
b101000 28
b101001 4
b101010 15
b101011 27
b10110 23
b101110 25
b1011110000 6
b1011110001 22
b101111001 8
b10111101 30
b1011111 19
b11000 3
b1100100 16
b1100101 26
b110011000 7
b110011001 31
b11001101 20
b1100111 18
b11010 13
b11011 1
b111 10

VP3.1 Huffman Table Number 13
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Huffman Code Token Value

b00 9
b010 0
b0110 3
b0111 1
b1000 12
b1001 11
b10100 23
b101010 15
b10101100 30
b10101101 21
b101011100 7
b101011101 6
b101011110 31
b1010111110 22
b1010111111 8
b10110 2
b1011100 5
b1011101 19
b1011110 16
b1011111 26
b11000 13
b1100100 18
b11001010 29
b11001011 20
b110011 24
b110100 14
b1101010 17
b1101011 28
b110110 4
b1101110 25
b1101111 27
b111 10

VP3.1 Huffman Table Number 14

Huffman Code Token Value

b00 10
b01 9
b1000 12
b1001 11
b101000 15
b101001 5
b101010000 30
b101010001 29
b10101001 28
b101010100000 22
b101010100001 8
b10101010001 7
b1010101001 31
b101010101 21
b10101011 26
b1010110 19
b1010111 16
b1011 3
b11000 2
b11001 4
b1101000 18
b1101001 24
b1101010 17
b11010110 6
b11010111 25
b11011 13
b111000 14
b11100100 27
b11100101 20
b1110011 23
b11101 1
b1111 0

VP3.1 Huffman Table Number 15
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Huffman Code Token Value

b0000 15
b0001 11
b0010 12
b0011 21
b01000 0
b0100100 26
b0100101 1
b010011 24
b01010 22
b01011 30
b0110 14
b0111 10
b1000 9
b1001 17
b1010 13
b10110 23
b1011100 28
b1011101 25
b10111100 27
b101111010 2
b10111101100 29
b1011110110100 5
b10111101101010 8
b10111101101011 6
b101111011011 4
b1011110111 3
b1011111 31
b1100 20
b1101 18
b11100 16
b11101 7
b1111 19

VP3.1 Huffman Table Number 16

Huffman Code Token Value

b0000 15
b0001 7
b0010 11
b0011 12
b010000 1
b010001 31
b0100100 26
b01001010 27
b01001011 2
b010011 22
b0101 17
b0110 14
b01110 30
b01111 0
b1000 9
b1001 10
b1010 20
b1011 13
b110000 24
b1100010 25
b11000110 3
b110001110000 6
b110001110001 5
b110001110010 29
b110001110011 8
b1100011101 4
b110001111 28
b11001 21
b1101 18
b11100 16
b11101 23
b1111 19

VP3.1 Huffman Table Number 17
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Huffman Code Token Value

b00000 21
b000010 25
b000011 1
b0001 15
b0010 20
b0011 7
b0100 11
b0101 12
b0110 17
b0111 14
b1000000 3
b1000001 22
b100001 31
b100010 24
b10001100 27
b10001101 2
b100011100000 6
b1000111000010 29
b1000111000011 8
b10001110001 5
b1000111001 4
b100011101 28
b10001111 26
b1001 10
b1010 9
b1011 19
b1100 18
b11010 30
b11011 0
b1110 13
b11110 16
b11111 23

VP3.1 Huffman Table Number 18

Huffman Code Token Value

b0000000 28
b0000001 27
b00000100 22
b000001010000 8
b000001010001 6
b00000101001 29
b0000010101 5
b000001011 4
b0000011 2
b000010 21
b000011 1
b0001 15
b0010 23
b0011 7
b0100 11
b0101 17
b0110 12
b0111 19
b100000 25
b1000010 26
b1000011 3
b10001 20
b1001 18
b1010 14
b101100 31
b101101 24
b10111 30
b1100 10
b1101 9
b1110 13
b11110 16
b11111 0

VP3.1 Huffman Table Number 19



156 APPENDIX B. VP3

Huffman Code Token Value

b0000 30
b0001 15
b0010 17
b0011 0
b0100 7
b0101 18
b0110 23
b0111000 21
b0111001 27
b0111010 2
b0111011 26
b011110 25
b011111 1
b1000 12
b1001 11
b1010 14
b10110 16
b10111000 28
b1011100100 5
b10111001010 22
b1011100101100 8
b1011100101101 6
b101110010111 29
b101110011 4
b1011101 3
b101111 20
b1100 13
b11010 19
b110110 31
b110111 24
b1110 10
b1111 9

VP3.1 Huffman Table Number 20

Huffman Code Token Value

b000 9
b0010 30
b001100 3
b0011010 28
b0011011 27
b00111 31
b0100 7
b01010 24
b01011 19
b0110 0
b0111 12
b1000 11
b1001 14
b1010 23
b10110 16
b101110000 21
b10111000100 6
b1011100010100 22
b1011100010101 8
b101110001011 29
b1011100011 5
b10111001 4
b1011101 2
b1011110 20
b1011111 26
b1100 13
b11010 18
b110110 25
b110111 1
b11100 17
b11101 15
b1111 10

VP3.1 Huffman Table Number 21
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Huffman Code Token Value

b000 10
b001 9
b01000 18
b01001 25
b010100 26
b010101 19
b01011 1
b01100 31
b01101 17
b0111 14
b10000 24
b100010 3
b1000110000 6
b100011000100 8
b1000110001010 22
b1000110001011 21
b10001100011 29
b100011001 5
b10001101 20
b1000111 27
b1001 12
b1010 11
b1011 13
b1100 0
b1101 23
b11100 15
b11101 7
b11110000 4
b11110001 28
b1111001 2
b111101 16
b11111 30

VP3.1 Huffman Table Number 22

Huffman Code Token Value

b000 0
b001 10
b010 9
b01100 3
b011010 27
b011011 16
b0111 13
b10000 31
b100010 17
b1000110 4
b1000111 28
b1001 11
b1010 12
b10110 24
b10111 7
b11000 25
b110010 26
b110011 2
b11010 1
b11011 14
b1110 23
b11110000 19
b1111000100000 20
b1111000100001 8
b1111000100010 22
b1111000100011 21
b11110001001 29
b1111000101 6
b111100011 5
b1111001 18
b111101 15
b11111 30

VP3.1 Huffman Table Number 23



158 APPENDIX B. VP3

Huffman Code Token Value

b000 9
b0010 24
b0011 7
b01000 17
b010010 19
b0100110 20
b01001110 2
b010011110 3
b01001111100 4
b0100111110100 6
b0100111110101 5
b010011111011 22
b0100111111 21
b0101 14
b01100 25
b01101 15
b011100 27
b011101 29
b01111 28
b1000 30
b1001 13
b1010 12
b1011 11
b1100000 8
b1100001 1
b110001 16
b11001 31
b1101 23
b111000 18
b111001 26
b11101 0
b1111 10

VP3.1 Huffman Table Number 24

Huffman Code Token Value

b000 10
b001 9
b010000 27
b0100010 20
b010001100000 6
b010001100001 5
b01000110001 22
b0100011001 4
b010001101 21
b01000111 8
b01001 25
b0101 14
b011000 19
b011001 1
b01101 15
b0111 0
b1000 30
b1001 13
b10100 31
b1010100 29
b10101010 3
b10101011 2
b101011 26
b1011 12
b1100 11
b110100 28
b110101 16
b11011 7
b1110 23
b111100 18
b111101 17
b11111 24

VP3.1 Huffman Table Number 25
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Huffman Code Token Value

b000 9
b001000 2
b0010010 8
b001001100000 22
b001001100001 6
b00100110001 5
b0010011001 21
b001001101 4
b00100111 20
b00101 1
b00110 15
b00111 26
b0100 24
b010100 29
b010101 18
b01011 28
b0110 13
b011100 16
b011101 27
b01111 25
b1000 30
b1001 12
b1010 11
b101100 17
b1011010 19
b1011011 3
b10111 31
b1100 0
b11010 7
b11011 14
b1110 23
b1111 10

VP3.1 Huffman Table Number 26

Huffman Code Token Value

b0000 12
b0001 11
b001 10
b010 9
b011 23
b10000 7
b10001 14
b100100 3
b10010100000 6
b100101000010 22
b100101000011 21
b1001010001 5
b100101001 20
b10010101 4
b1001011 18
b10011 1
b1010 24
b101100 15
b101101 29
b10111 28
b11000 26
b11001000 8
b11001001 19
b1100101 16
b110011 27
b11010 13
b11011 30
b11100 25
b1110100 17
b1110101 2
b111011 31
b1111 0

VP3.1 Huffman Table Number 27
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Huffman Code Token Value

b000 10
b001 9
b0100 25
b0101000 4
b0101001 18
b0101010 16
b0101011 17
b01011 28
b011 0
b100 23
b1010 24
b101100 29
b101101 2
b10111 13
b11000 26
b11001 30
b11010 1
b110110 27
b110111 7
b111000 3
b11100100 8
b1110010100000 22
b1110010100001 21
b111001010001 6
b11100101001 20
b1110010101 5
b111001011 19
b1110011 15
b111010 14
b111011 31
b11110 12
b11111 11

VP3.1 Huffman Table Number 28

Huffman Code Token Value

b000 10
b001 9
b0100 1
b01010 13
b010110 29
b010111 7
b011 23
b100 0
b1010 24
b10110 30
b10111 3
b11000 28
b110010 14
b110011 31
b11010 12
b11011 11
b11100 26
b1110100 15
b1110101 4
b111011 27
b11110 25
b11111000 16
b11111001 17
b111110100000 20
b1111101000010 22
b1111101000011 21
b11111010001 6
b1111101001 19
b111110101 5
b111110110 8
b111110111 18
b111111 2

VP3.1 Huffman Table Number 29
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Huffman Code Token Value

b000 10
b001 9
b010 23
b0110000000 19
b01100000010 20
b011000000110 22
b011000000111 21
b011000001 18
b01100001 17
b0110001 5
b011001 14
b01101 30
b0111 1
b100 0
b1010 24
b10110 28
b1011100 15
b10111010 16
b101110110 8
b101110111 6
b101111 31
b11000 2
b11001 12
b11010 11
b110110 4
b110111 27
b11100 26
b111010 13
b1110110 29
b1110111 7
b11110 3
b11111 25

VP3.1 Huffman Table Number 30

Huffman Code Token Value

b000 0
b001 10
b010 9
b0110 24
b0111000 29
b0111001000 17
b0111001001000 22
b0111001001001 21
b0111001001010 18
b01110010010110 20
b01110010010111 19
b01110010011 8
b011100101 16
b01110011 15
b011101 27
b01111 12
b100 23
b1010 1
b10110 11
b101110 13
b1011110 7
b1011111 14
b1100 3
b11010 2
b11011 26
b111000 28
b111001 5
b11101 4
b1111000 6
b1111001 31
b111101 30
b11111 25

VP3.1 Huffman Table Number 31
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Huffman Code Token Value

b00000 24
b000010 28
b000011 21
b0001 23
b0010 7
b0011 15
b0100 17
b010100 25
b01010100 2
b010101010 22
b010101011 8
b0101011 1
b01011 0
b0110 19
b0111 11
b1000 12
b1001 9
b1010 10
b1011 18
b1100 14
b11010 20
b1101100 26
b11011010 27
b110110110000 6
b110110110001 5
b11011011001 4
b1101101101 29
b110110111 3
b110111 31
b11100 30
b11101 16
b1111 13

VP3.1 Huffman Table Number 32

Huffman Code Token Value

b0000 30
b000100 1
b000101 28
b00011 24
b0010 17
b0011 15
b0100 18
b0101 23
b01100 31
b0110100 27
b01101010 3
b01101011 21
b011011 25
b0111 7
b1000 12
b1001 11
b1010 14
b101100 20
b1011010 26
b10110110 2
b1011011100000 6
b1011011100001 5
b101101110001 22
b10110111001 4
b1011011101 29
b101101111 8
b10111 16
b1100 9
b1101 10
b11100 19
b11101 0
b1111 13

VP3.1 Huffman Table Number 33
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Huffman Code Token Value

b000 13
b0010 15
b0011 0
b0100 30
b01010 24
b01011 31
b0110 23
b0111 7
b1000000 20
b10000010 8
b1000001100 4
b100000110100 5
b1000001101010 22
b1000001101011 6
b10000011011 21
b100000111 29
b100001 28
b10001 16
b1001 14
b10100000 3
b10100001 2
b1010001 27
b101001 25
b10101 18
b1011 11
b1100 12
b1101 10
b1110 9
b11110 17
b111110 19
b1111110 26
b1111111 1

VP3.1 Huffman Table Number 34

Huffman Code Token Value

b0000 30
b00010 18
b00011 16
b001 9
b010 10
b01100 31
b011010 26
b011011 1
b0111 0
b1000 14
b10010 17
b10011 24
b1010 23
b1011 11
b1100 12
b1101 13
b11100 15
b11101000000 5
b111010000010 6
b1110100000110 22
b1110100000111 21
b1110100001 4
b111010001 20
b11101001 3
b1110101 19
b111011 25
b111100 28
b1111010 27
b11110110 2
b111101110 29
b111101111 8
b11111 7

VP3.1 Huffman Table Number 35
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Huffman Code Token Value

b0000 30
b0001 14
b001 9
b010 10
b01100 25
b011010 18
b0110110000 20
b01101100010 5
b011011000110 6
b0110110001110 22
b0110110001111 21
b011011001 4
b01101101 29
b0110111 3
b01110 31
b01111 15
b100000 27
b1000010 2
b10000110 8
b10000111 19
b10001 28
b100100 26
b100101 16
b10011 24
b1010 13
b1011 12
b1100 11
b1101 0
b1110 23
b111100 17
b111101 1
b11111 7

VP3.1 Huffman Table Number 36

Huffman Code Token Value

b000 0
b0010 30
b00110 31
b00111 25
b010 9
b011 10
b1000 13
b10010 1
b10011 7
b101000 27
b10100100 29
b10100101 8
b1010011000 19
b1010011001000 20
b1010011001001 6
b1010011001010 22
b1010011001011 21
b10100110011 5
b101001101 4
b10100111 18
b101010 26
b101011 15
b1011 11
b1100 12
b11010 14
b11011 28
b11100 24
b1110100 17
b1110101 16
b1110110 2
b1110111 3
b1111 23

VP3.1 Huffman Table Number 37
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Huffman Code Token Value

b000 23
b00100 7
b00101 31
b00110 14
b00111 25
b010 0
b011 10
b100 9
b101000000 18
b101000001000 22
b101000001001 21
b101000001010 6
b1010000010110 20
b1010000010111 19
b1010000011 5
b10100001 8
b10100010 17
b10100011 16
b101001 27
b101010 26
b101011 2
b1011 11
b1100 12
b11010 1
b11011 30
b11100 28
b111010 3
b11101100 29
b11101101 4
b1110111 15
b11110 24
b11111 13

VP3.1 Huffman Table Number 38

Huffman Code Token Value

b000 23
b0010 1
b00110 13
b00111000 15
b001110010 8
b001110011000 18
b0011100110010 20
b0011100110011 19
b0011100110100 22
b0011100110101 21
b001110011011 17
b00111001110 16
b00111001111 6
b0011101 7
b001111 27
b010 0
b0110 11
b0111 12
b100 9
b101 10
b11000 2
b11001 30
b110100 26
b110101 4
b11011 25
b111000 31
b11100100 5
b11100101 29
b1110011 14
b11101 3
b11110 28
b11111 24

VP3.1 Huffman Table Number 39
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Huffman Code Token Value

b000 10
b001 9
b01000 26
b01001 15
b0101 24
b0110 7
b011100 16
b011101 17
b01111 25
b1000 30
b1001 13
b1010000 1
b1010001 8
b101001 27
b10101 31
b10110 0
b10111000 19
b101110010 2
b1011100110000 22
b1011100110001 21
b1011100110010 4
b10111001100110 6
b10111001100111 5
b10111001101 20
b1011100111 3
b1011101 18
b101111 29
b1100 12
b1101 11
b11100 14
b11101 28
b1111 23

VP3.1 Huffman Table Number 40

Huffman Code Token Value

b000 9
b001 23
b0100 28
b0101 24
b0110 13
b0111 30
b1000000 2
b1000001 18
b100001 1
b10001 14
b1001 0
b10100 25
b101010 15
b1010110000 4
b1010110001000 6
b1010110001001 5
b1010110001010 22
b1010110001011 21
b10101100011 20
b101011001 19
b10101101 3
b1010111 16
b10110 31
b101110 27
b1011110 17
b1011111 8
b1100 12
b1101 11
b11100 7
b111010 29
b111011 26
b1111 10

VP3.1 Huffman Table Number 41
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Huffman Code Token Value

b000 9
b0010 30
b0011000 17
b001100100 4
b001100101000 22
b001100101001 21
b001100101010 5
b0011001010110 20
b0011001010111 6
b0011001011 19
b00110011 18
b001101 8
b00111 1
b010 23
b0110 24
b01110 26
b01111 29
b10000 31
b1000100 16
b1000101 3
b1000110 2
b1000111 15
b1001 28
b1010 11
b1011 12
b11000 7
b11001 25
b11010 13
b110110 14
b110111 27
b1110 0
b1111 10

VP3.1 Huffman Table Number 42

Huffman Code Token Value

b000 23
b001 10
b010 9
b011 0
b10000 27
b100010 14
b100011 2
b1001 24
b10100 13
b10101 26
b10110 30
b10111 29
b11000 1
b1100100 15
b110010100 4
b11001010100 19
b1100101010100 22
b1100101010101 21
b1100101010110 5
b11001010101110 20
b11001010101111 6
b1100101011 18
b110010110 17
b110010111 16
b110011 31
b1101 28
b11100 25
b111010 7
b1110110 8
b1110111 3
b11110 12
b11111 11

VP3.1 Huffman Table Number 43
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Huffman Code Token Value

b000 23
b001 10
b010 9
b0110 1
b0111 24
b10000 3
b10001 26
b1001000 4
b10010010 15
b100100110 16
b1001001110 17
b10010011110 18
b10010011111000 22
b10010011111001 21
b10010011111010 6
b100100111110110 20
b100100111110111 19
b100100111111 5
b100101 31
b10011 29
b101 0
b11000 25
b110010 7
b1100110 14
b1100111 8
b110100 13
b110101 30
b11011 11
b1110 28
b11110 12
b111110 2
b111111 27

VP3.1 Huffman Table Number 44

Huffman Code Token Value

b000 28
b001 9
b010 10
b0110 24
b011100 4
b01110100 15
b011101010 5
b0111010110 16
b0111010111000 22
b0111010111001 21
b01110101110100 18
b01110101110101 6
b01110101110110 20
b01110101110111 19
b01110101111 17
b0111011 14
b011110 7
b011111 13
b1000 1
b10010 2
b10011 25
b101 0
b11000 29
b110010 30
b1100110 8
b1100111 31
b11010 12
b11011 11
b11100 3
b111010 27
b111011 26
b1111 23

VP3.1 Huffman Table Number 45
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Huffman Code Token Value

b000 28
b001 10
b010 9
b011000 13
b011001 30
b01101 4
b01110 25
b01111 29
b100 0
b1010 1
b10110 12
b10111 11
b1100 3
b110100000 15
b11010000100 6
b110100001010 18
b1101000010110 20
b1101000010111 19
b11010000110 16
b1101000011100 22
b1101000011101 21
b110100001111 17
b11010001 14
b1101001 31
b110101 26
b11011 2
b111000 27
b1110010 7
b11100110 5
b11100111 8
b11101 24
b1111 23

VP3.1 Huffman Table Number 46

Huffman Code Token Value

b000 3
b00100 25
b001010000 14
b001010001 6
b0010100100 15
b001010010100 16
b0010100101010 18
b0010100101011 17
b0010100101100 20
b0010100101101 19
b0010100101110 22
b0010100101111 21
b001010011 8
b0010101 13
b001011 29
b0011 4
b010 10
b011 0
b100 9
b101000 26
b101001 27
b10101 12
b10110 11
b101110 5
b10111100 7
b10111101 31
b1011111 30
b1100 1
b11010 24
b11011 2
b1110 23
b1111 28

VP3.1 Huffman Table Number 47
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Huffman Code Token Value

b000 9
b001000 29
b001001 1
b0010100 20
b0010101 8
b001011 26
b0011 0
b0100 7
b01010 16
b01011 24
b01100 31
b01101 18
b0111 30
b1000 23
b1001 14
b10100 17
b101010 19
b101011 25
b1011 11
b1100 12
b11010000 2
b1101000100 4
b110100010100 5
b1101000101010 22
b1101000101011 6
b11010001011 21
b110100011 3
b1101001 27
b110101 28
b11011 15
b1110 13
b1111 10

VP3.1 Huffman Table Number 48

Huffman Code Token Value

b000 10
b001 9
b0100 14
b010100 18
b010101 27
b01011 28
b0110000 3
b011000100000 6
b011000100001 5
b011000100010 22
b011000100011 21
b0110001001 20
b011000101 4
b01100011 19
b0110010 2
b0110011 8
b01101 15
b0111 30
b10000 31
b100010 26
b100011 29
b10010 24
b100110 16
b100111 17
b1010 0
b1011 23
b1100 13
b1101 12
b1110 11
b111100 1
b111101 25
b11111 7

VP3.1 Huffman Table Number 49
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Huffman Code Token Value

b000 10
b001 9
b010000 3
b01000100 4
b0100010100 5
b010001010100 20
b010001010101 6
b010001010110 22
b010001010111 21
b010001011 19
b0100011 8
b01001 15
b01010 25
b010110 17
b010111 16
b01100 1
b01101 28
b0111 30
b100000 27
b1000010 18
b1000011 2
b10001 31
b1001 13
b101000 29
b101001 26
b10101 24
b1011 23
b11000 7
b11001 14
b1101 12
b1110 11
b1111 0

VP3.1 Huffman Table Number 50

Huffman Code Token Value

b0000000 8
b0000001 17
b000001 15
b00001 31
b00010 7
b00011 25
b001 0
b010 9
b011 10
b1000 13
b10010 14
b10011 28
b10100000 4
b10100001000 19
b1010000100100 20
b1010000100101 6
b1010000100110 22
b1010000100111 21
b1010000101 5
b101000011 18
b1010001 16
b101001 2
b101010 3
b101011 27
b1011 12
b1100 11
b11010 1
b110110 29
b110111 26
b11100 24
b11101 30
b1111 23

VP3.1 Huffman Table Number 51
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Huffman Code Token Value

b000 23
b00100 26
b00101000 17
b0010100100 18
b00101001010 6
b0010100101100 20
b0010100101101 19
b0010100101110 22
b0010100101111 21
b001010011 5
b00101010 8
b00101011 16
b0010110 4
b0010111 15
b00110 3
b00111 25
b010 9
b011 10
b100 0
b10100 28
b10101 30
b1011 11
b1100 12
b110100 7
b110101 27
b110110 29
b110111 14
b11100 13
b11101 24
b111100 31
b111101 2
b11111 1

VP3.1 Huffman Table Number 52

Huffman Code Token Value

b000 23
b001000 7
b001001 4
b00101 30
b00110 25
b00111 2
b010 10
b011 9
b100 0
b1010 1
b101100 29
b101101 31
b10111 13
b1100 12
b1101 11
b111000 27
b111001 26
b11101 3
b11110 24
b111110000 8
b1111100010000 22
b1111100010001 21
b1111100010010 18
b11111000100110 20
b11111000100111 19
b11111000101 17
b11111000110 16
b11111000111 6
b111110010 15
b111110011 5
b1111101 14
b111111 28

VP3.1 Huffman Table Number 53
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Huffman Code Token Value

b000 23
b001000 31
b0010010 7
b00100110 14
b0010011100000 20
b0010011100001 19
b0010011100010 22
b0010011100011 21
b0010011100100 16
b0010011100101 8
b0010011100110 18
b0010011100111 17
b0010011101 15
b001001111 6
b00101 4
b0011 3
b010 0
b01100 25
b0110100 29
b0110101 5
b011011 30
b0111 1
b100 10
b101 9
b11000 2
b110010 28
b110011 13
b1101 11
b1110 12
b111100 27
b111101 26
b11111 24

VP3.1 Huffman Table Number 54

Huffman Code Token Value

b000 0
b0010 4
b00110 24
b00111 5
b0100 1
b01010 25
b0101100 26
b0101101 31
b010111 27
b011 23
b100 10
b101 9
b1100 12
b1101 11
b11100 2
b11101000 7
b1110100100 30
b1110100101000 22
b1110100101001 21
b1110100101010 8
b11101001010110 16
b11101001010111 15
b111010010110 14
b11101001011100 18
b11101001011101 17
b11101001011110 20
b11101001011111 19
b111010011 29
b1110101 6
b1110110 28
b1110111 13
b1111 3

VP3.1 Huffman Table Number 55
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Huffman Code Token Value

b00000 26
b00001 29
b0001 24
b001 9
b010 10
b0110 30
b0111 13
b100000 8
b100001000000 22
b100001000001 21
b100001000010 5
b1000010000110 20
b1000010000111 6
b1000010001 4
b100001001 19
b10000101 3
b1000011 17
b10001 25
b100100 1
b100101 15
b10011 14
b1010 0
b10110 31
b101110 27
b1011110 16
b10111110 18
b10111111 2
b11000 7
b11001 28
b1101 12
b1110 11
b1111 23

VP3.1 Huffman Table Number 56

Huffman Code Token Value

b000 9
b001 10
b010 0
b0110 24
b01110 26
b01111 1
b1000 28
b10010 7
b10011 25
b1010 11
b1011 12
b1100000 15
b1100001 3
b110001 14
b11001 30
b11010 13
b110110 8
b11011100 16
b1101110100 4
b1101110101000 5
b11011101010010 20
b11011101010011 6
b11011101010100 22
b11011101010101 21
b1101110101011 19
b11011101011 18
b110111011 17
b1101111 2
b1110 23
b11110 29
b111110 27
b111111 31

VP3.1 Huffman Table Number 57
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Huffman Code Token Value

b000 9
b001 10
b01000 27
b01001 30
b01010 26
b01011 13
b011 0
b1000 29
b100100 3
b100101 2
b10011 25
b1010 12
b1011 11
b1100 28
b1101 23
b11100 1
b111010 31
b11101100 15
b111011010 4
b1110110110 16
b11101101110 17
b11101101111000 22
b11101101111001 21
b1110110111101 5
b11101101111100 6
b111011011111010 20
b111011011111011 19
b1110110111111 18
b1110111 14
b111100 7
b111101 8
b11111 24

VP3.1 Huffman Table Number 58

Huffman Code Token Value

b0000 12
b0001 11
b00100 2
b00101 26
b0011 1
b010 9
b011 10
b10000 3
b100010 30
b1000110 14
b100011100 15
b1000111010000 18
b1000111010001 6
b1000111010010 20
b1000111010011 19
b10001110101 5
b1000111011000 22
b1000111011001 21
b100011101101 17
b10001110111 16
b10001111 4
b10010 25
b100110 13
b100111 8
b101 0
b1100 28
b1101 23
b1110 29
b1111000 31
b1111001 7
b111101 27
b11111 24

VP3.1 Huffman Table Number 59
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Huffman Code Token Value

b0000 3
b00010 25
b000110 4
b0001110 30
b0001111 7
b001 29
b010 10
b011 9
b1000 23
b1001 28
b101 0
b1100 1
b110100 8
b110101 27
b11011 2
b11100 24
b11101 12
b11110 11
b111110000 14
b1111100010 5
b11111000110 15
b11111000111000 20
b11111000111001 19
b11111000111010 22
b11111000111011 21
b11111000111100 16
b11111000111101 6
b11111000111110 18
b11111000111111 17
b11111001 31
b1111101 13
b111111 26

VP3.1 Huffman Table Number 60

Huffman Code Token Value

b0000 23
b0001 2
b001 29
b0100000 13
b01000010 31
b01000011 30
b010001 27
b01001 24
b0101 28
b01100 12
b01101 11
b011100000 5
b0111000010 14
b0111000011000 18
b0111000011001 17
b0111000011010 20
b0111000011011 19
b0111000011100 22
b0111000011101 21
b0111000011110 6
b01110000111110 16
b01110000111111 15
b01110001 7
b0111001 8
b011101 25
b011110 4
b011111 26
b100 0
b1010 3
b1011 1
b110 10
b111 9

VP3.1 Huffman Table Number 61
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Huffman Code Token Value

b00 9
b010 3
b01100 23
b011010 27
b011011 26
b0111 2
b100 0
b10100 4
b101010 24
b101011 12
b101100 11
b1011010 25
b101101100 5
b1011011010000 14
b1011011010001 6
b1011011010010 16
b1011011010011 15
b10110110101 31
b1011011011000 22
b1011011011001 21
b10110110110100 18
b10110110110101 17
b10110110110110 20
b10110110110111 19
b10110110111 30
b101101110 8
b1011011110 13
b1011011111 7
b10111 28
b1100 29
b1101 1
b111 10

VP3.1 Huffman Table Number 62

Huffman Code Token Value

b00 10
b01 9
b10 0
b1100 3
b1101000 12
b1101001 11
b110101000 24
b110101001 23
b11010101 27
b110101100 5
b1101011010 25
b1101011011000 6
b11010110110010 8
b11010110110011 7
b11010110110100 22
b11010110110101 21
b11010110110110 31
b11010110110111 30
b11010110111000 18
b11010110111001 17
b11010110111010 20
b11010110111011 19
b11010110111100 14
b11010110111101 13
b11010110111110 16
b11010110111111 15
b11010111 26
b11011 29
b11100 2
b111010 28
b111011 4
b1111 1

VP3.1 Huffman Table Number 63
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Huffman Code Token Value

b000 0
b0010 28
b0011 13
b010 9
b011 10
b10000 1
b10001 14
b10010 25
b10011 31
b10100 7
b1010100 16
b101010100 4
b101010101000 6
b1010101010010 20
b1010101010011 19
b1010101010100 22
b1010101010101 21
b101010101011 5
b1010101011 18
b10101011 17
b101011 27
b1011 12
b1100 11
b1101 23
b1110000 8
b1110001 3
b1110010 2
b1110011 15
b11101 30
b11110 24
b111110 26
b111111 29

VP3.1 Huffman Table Number 64

Huffman Code Token Value

b00000 26
b00001 31
b00010 7
b0001100 4
b000110100000 22
b000110100001 21
b0001101000100 18
b0001101000101 6
b0001101000110 20
b0001101000111 19
b0001101001 5
b0001101010 17
b0001101011 16
b00011011 15
b000111 14
b001 10
b010 9
b011 0
b1000 28
b10010 25
b10011 30
b101000 8
b101001 2
b10101 13
b1011 23
b1100 12
b11010 24
b11011 29
b1110 11
b111100 27
b111101 3
b11111 1

VP3.1 Huffman Table Number 65
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Huffman Code Token Value

b000 9
b001 10
b0100 1
b0101 29
b01100 13
b01101 25
b0111 28
b100 0
b10100 3
b101010 8
b1010110 4
b101011100 5
b1010111010000 20
b1010111010001 19
b1010111010010 22
b1010111010011 21
b1010111010100 16
b1010111010101 6
b1010111010110 18
b1010111010111 17
b1010111011 15
b10101111 14
b1011 23
b110000 31
b110001 27
b11001 24
b1101 12
b1110 11
b111100 7
b111101 30
b111110 26
b111111 2

VP3.1 Huffman Table Number 66

Huffman Code Token Value

b0000 3
b000100000000 18
b000100000001 17
b000100000010 20
b000100000011 19
b000100000100 22
b000100000101 21
b000100000110 6
b0001000001110 16
b0001000001111 15
b000100001 14
b00010001 5
b0001001 31
b0001010 7
b0001011 30
b00011 25
b0010 12
b0011 11
b010 9
b011 10
b1000 1
b1001 28
b101 0
b1100 23
b11010 2
b110110 4
b1101110 8
b1101111 13
b1110 29
b11110 24
b111110 26
b111111 27

VP3.1 Huffman Table Number 67
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Huffman Code Token Value

b000 29
b00100 25
b0010100 8
b00101010 13
b0010101100 31
b0010101101 6
b0010101110000 18
b0010101110001 17
b0010101110010 20
b0010101110011 19
b0010101110100 22
b0010101110101 21
b0010101110110 14
b00101011101110 16
b00101011101111 15
b0010101111 7
b001011 27
b0011 23
b010 0
b011 10
b100 9
b1010 28
b10110 24
b10111 12
b1100 3
b11010 11
b110110 26
b1101110 5
b1101111 30
b1110 1
b11110 2
b11111 4

VP3.1 Huffman Table Number 68

Huffman Code Token Value

b000 23
b001 3
b0100 4
b0101 1
b011 2
b100 0
b101000 24
b101001000 26
b1010010010000 17
b1010010010001 16
b1010010010010 19
b1010010010011 18
b1010010010100 13
b1010010010101 7
b1010010010110 15
b1010010010111 14
b10100100110 6
b101001001110 30
b10100100111100 21
b10100100111101 20
b10100100111110 31
b10100100111111 22
b10100101 25
b10100110 8
b10100111 27
b10101 29
b101100 12
b101101 11
b101110 28
b101111 5
b110 10
b111 9

VP3.1 Huffman Table Number 69
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Huffman Code Token Value

b000 23
b001 3
b0100 4
b0101 1
b011 2
b100 0
b101000 24
b101001000 26
b1010010010000 17
b1010010010001 16
b1010010010010 19
b1010010010011 18
b1010010010100 13
b1010010010101 7
b1010010010110 15
b1010010010111 14
b10100100110 6
b101001001110 30
b10100100111100 21
b10100100111101 20
b10100100111110 31
b10100100111111 22
b10100101 25
b10100110 8
b10100111 27
b10101 29
b101100 12
b101101 11
b101110 28
b101111 5
b110 10
b111 9

VP3.1 Huffman Table Number 70

Huffman Code Token Value

b000 23
b001 3
b0100 4
b0101 1
b011 2
b100 0
b101000 24
b101001000 26
b1010010010000 17
b1010010010001 16
b1010010010010 19
b1010010010011 18
b1010010010100 13
b1010010010101 7
b1010010010110 15
b1010010010111 14
b10100100110 6
b101001001110 30
b10100100111100 21
b10100100111101 20
b10100100111110 31
b10100100111111 22
b10100101 25
b10100110 8
b10100111 27
b10101 29
b101100 12
b101101 11
b101110 28
b101111 5
b110 10
b111 9

VP3.1 Huffman Table Number 71
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Huffman Code Token Value

b000 10
b001 9
b0100 24
b01010 7
b01011 26
b011 0
b100000 2
b1000010 15
b100001100000 6
b1000011000010 20
b1000011000011 19
b1000011000100 22
b1000011000101 21
b100001100011 5
b1000011001 18
b100001101 4
b100001110 17
b100001111 16
b10001 1
b1001 28
b1010 12
b1011 11
b11000 13
b11001 25
b11010 30
b11011 29
b111000 14
b111001 27
b1110100 3
b1110101 8
b111011 31
b1111 23

VP3.1 Huffman Table Number 72

Huffman Code Token Value

b00000 13
b00001 3
b0001 1
b001 10
b010 9
b0110 29
b01110 25
b011110 31
b011111 8
b1000 12
b1001 11
b101 0
b1100 28
b1101 23
b1110000 14
b11100010 4
b1110001100 16
b11100011010 17
b11100011011000 18
b11100011011001 6
b11100011011010 20
b11100011011011 19
b11100011011100 22
b11100011011101 21
b1110001101111 5
b111000111 15
b111001 7
b11101 24
b111100 27
b111101 30
b111110 2
b111111 26

VP3.1 Huffman Table Number 73
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Huffman Code Token Value

b000000 31
b000001 7
b00001 25
b0001 28
b001 9
b010 10
b0110 12
b0111 11
b100000 30
b100001 8
b10001 2
b1001 29
b1010 23
b1011 1
b110 0
b11100 24
b1110100 4
b111010100 15
b1110101010 5
b1110101011000 20
b1110101011001 19
b1110101011010 22
b1110101011011 21
b1110101011100 6
b11101010111010 18
b11101010111011 17
b111010101111 16
b11101011 14
b111011 27
b11110 3
b111110 13
b111111 26

VP3.1 Huffman Table Number 74

Huffman Code Token Value

b0000 12
b0001 11
b00100 25
b001010 13
b0010110 30
b0010111 7
b0011 28
b0100 3
b01010 24
b010110 4
b010111 27
b0110 23
b0111 29
b100 0
b1010 1
b101100 26
b10110100 31
b101101010 5
b1011010110000 16
b1011010110001 6
b1011010110010 18
b1011010110011 17
b101101011010 15
b10110101101100 20
b10110101101101 19
b10110101101110 22
b10110101101111 21
b1011010111 14
b1011011 8
b10111 2
b110 9
b111 10

VP3.1 Huffman Table Number 75
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Huffman Code Token Value

b00 9
b0100 28
b0101 2
b01100000 30
b01100001 7
b0110001 8
b011001 27
b011010 24
b011011 25
b0111 29
b10000 11
b10001 12
b1001 3
b101 0
b11000 23
b11001000 13
b1100100100 31
b1100100101000 18
b1100100101001 17
b1100100101010 20
b1100100101011 19
b1100100101100 6
b11001001011010 16
b11001001011011 15
b11001001011100 22
b11001001011101 21
b1100100101111 14
b110010011 5
b1100101 26
b110011 4
b1101 1
b111 10

VP3.1 Huffman Table Number 76

Huffman Code Token Value

b000 1
b0010 2
b00110 29
b001110 12
b001111 11
b01 9
b10 10
b110 0
b111000 23
b111001 4
b111010 28
b111011000000 30
b1110110000010 6
b11101100000110 15
b11101100000111 14
b11101100001 7
b11101100010 13
b11101100011000 21
b11101100011001 20
b11101100011010 31
b11101100011011 22
b11101100011100 17
b11101100011101 16
b11101100011110 19
b11101100011111 18
b111011001 5
b11101101 25
b11101110 27
b111011110 24
b1110111110 8
b1110111111 26
b1111 3

VP3.1 Huffman Table Number 77
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Huffman Code Token Value

b00 0
b010 1
b0110 3
b011100 4
b0111010000 5
b0111010001000 14
b0111010001001 13
b0111010001010 16
b0111010001011 15
b0111010001100 6
b01110100011010 8
b01110100011011 7
b01110100011100 27
b01110100011101 26
b01110100011110 31
b01110100011111 30
b011101001 12
b011101010 11
b01110101100000 22
b01110101100001 21
b01110101100010 25
b01110101100011 24
b01110101100100 18
b01110101100101 17
b01110101100110 20
b01110101100111 19
b01110101101 23
b0111010111 29
b0111011 28
b01111 2
b10 10
b11 9

VP3.1 Huffman Table Number 78

Huffman Code Token Value

b00 10
b01 9
b10 0
b1100 3
b1101000 12
b1101001 11
b110101000 24
b110101001 23
b11010101 27
b110101100 5
b1101011010 25
b1101011011000 6
b11010110110010 8
b11010110110011 7
b11010110110100 22
b11010110110101 21
b11010110110110 31
b11010110110111 30
b11010110111000 18
b11010110111001 17
b11010110111010 20
b11010110111011 19
b11010110111100 14
b11010110111101 13
b11010110111110 16
b11010110111111 15
b11010111 26
b11011 29
b11100 2
b111010 28
b111011 4
b1111 1

VP3.1 Huffman Table Number 79
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Appendix C

Colophon

Ogg is a Xiph.org Foundation effort to protect essential tenets of Internet mul-
timedia from corporate hostage-taking; Open Source is the net’s greatest tool
to keep everyone honest. See About the Xiph.org Foundation for details.

Ogg Theora is the first Ogg video codec. Anyone may freely use and dis-
tribute the Ogg and Theora specifications, whether in private, public, or corpo-
rate capacity. However, the Xiph.org Foundation and the Ogg project reserve
the right to set the Ogg Theora specification and certify specification compli-
ance.

Xiph.org’s Theora software codec implementation is distributed under a
BSD-like license. This does not restrict third parties from distributing inde-
pendent implementations of Theora software under other licenses.

These pages are Copyright © 2004-2007 Xiph.org Foun-
dation. All rights reserved. Ogg, Theora, Vorbis, Xiph.org
Foundation and their logos are trademarks (�) of the
Xiph.org Foundation.

This document is set in LATEX.
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