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yacca-package Yet Another Canonical Correlation Analysis Package

Description

This package provides an alternative canonical correlation/redundancy analysis function, with as-
sociated print, plot, and summary methods. A method for generating helio plots is also included.

Details

For details on using the package, see cca and helio.plot.

Author(s)

Carter T. Butts <buttsc @uci.edu>

Maintainer: Carter T. Butts <buttsc @uci.edu>

References

Mardia, K. V.; Kent, J. T.; and Bibby, J. M. 1979. Multivariate Analysis. London: Academic Press.

cca Canonical Correlation Analysis

Description

Performs a canonical correlation (and canonical redundancy) analysis on two sets of variables.

Usage

cca(x, y, xlab = colnames(x), ylab = colnames(y), xcenter = TRUE,
ycenter = TRUE, xscale = FALSE, yscale = FALSE,
standardize.scores = TRUE, use = "complete.obs”, na.rm = TRUE,
use.eigs = FALSE, max.dim = Inf, reg.param = NULL)

## S3 method for class 'cca'
plot(x, ...)

## S3 method for class 'cca'
print(x, ...)

## S3 method for class 'cca'
summary (object, ...)
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Arguments
X for cca, a single vector or a matrix whose columns contain the x variables.
Otherwise, a cca object.
y a single vector or a matrix whose columns contain the x variables.
xlab an optional vector of x labels.
ylab an optional vector of y labels.
xcenter boolean; demean the x variables?
ycenter boolean; demean the y variables?
xscale boolean; scale the x variables to unit variance?
yscale boolean; scale the y variables to unit variance?

standardize.scores
boolean; rescale scores (and coefficients) to produce scores of unit variance?

use use argument to be passed to var when creating covariance matrices.

na.rm boolean; remove missing values during redundancy analysis?

use.eigs boolean; use eigs instead of eigen for diagonalization?

max.dim maximum number of canonical variates to extract (only relevant if less than the
minimum of the number of columns of x and y)

reg.param an optional L2 regularization parameter (or vector thereof).

object a cca object.

additional arguments.

Details

Canonical correlation analysis (CCA) is a form of linear subspace analysis, and involves the projec-
tion of two sets of vectors (here, the variable sets x and y) onto a joint subspace. The goal of (CCA)
is to find a squence of linear transformations of each variable set, such that the correlations between
the transformed variables are maximized (under the proviso that each transformed variable must
be orthogonal to those preceding it). These transformed variables — known as “canonical variates”
(CVs) — can be thought of as expressing the common variation across the data sets, in a manner
analogous to the role of principal components in within-set analysis (see, e.g., princomp). Since
the rank of the joint subspace is equal to the minimum of the ranks of the two spaces spanned by
the initial data vectors, it follows that the number of CVs will usually be equal to the minimum of
the number of x and y variables (perhaps fewer, if the sets are not of full rank or if max.dim is used
to constrain the number of variables extracted).

Formally, we may describe the CCA solution as follows. Given data matrices X and Y, let X x x,
Y xy, 2y x and Xyy be the respective sample covariance matrices for X versus itself, X versus Y,
Y versus X, and Y versus itself. Now, for some i less than or equal to the minimum rank of X and
Y, let u; be the ith eigenvector of E}lx Yxy E;%/Zy x, with corresponding eigenvalue \;. Then the
vector u; contains the coefficients projecting X onto the ¢th canonical variate; the corresponding
scores are given by Xw;. Similarly, let v; be the ith eigenvector of X33 Sy x X\ Zxy. Then
v; contains the coefficients projecting Y onto the ith canonical variate (with scores Yv;). The
eigenvalue in the second case will be the same as the first, and corresponds to the square of the ith
canonical correlation for the CCA solution — that is, the correlation between the X and Y scores on
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the ith canonical variate. Since the canonical correlation structure is unaffected by rescaling of the
canonical variate scores, it is common to adjust the coefficients u; and v; to ensure that the resulting
scores have unit variance; this option is controlled here via the standardize.scores argument.

CCA output can be fairly complex. Quantities of particular interest include the correlations between
the original variables in each set and their respective canonical variates (structural correlations
or loadings), the coefficients which take the original variables into the CVs, and of course the
correlations between the CV scores in one set and their corresponding scores in the opposite set
(the canonical correlations). The canonical correlations provide a basic measure of concordance
between the transformed variables, but are surprisingly uninformative by themselves; canonical
redundancies (see below) are of more typical interest. Interpretation of CVs is usually performed
by inspection of loadings, which reveal the extent to which each CV is associated with particular
variables in each set. The squared loadings, in particular, convey the fraction of variance in each
original variable which is accounted for by a given CV (though not necessarily by the variables in
the opposite set!).

A common interest in the context of CCA is the extent to which the variance of one set of variables
can be accounted for by the other (in the usual least squares sense). While it is tempting to interpret
the squared canonical correlations in this manner, this is incorrect: the squared canonical correla-
tions convey the fraction of variance in the CV scores from one variable set which can be accounted
for by scores from the other, but say nothing about the extent to which the CVs themselves account
for variation in the original variables. The variance in one set explainable by the other is instead
expressed via the so-called redundancy index, which combines the squared canonical correlations
with the canonical adequacy (within-set variance accounted for) for each CV. The use of the re-
dundancy index in this way is sometimes called “(canonical) redundancy analysis”, although it is
simply an alternate means of presenting CCA results.

As the name of the technique implies, CCA is a symmetric procedure: the designation of one vari-
able set as x and another as y is arbitrary, and may be reversed without incident. (Note, however,
that the coefficients and redundancies are set-specific, and will also be reversed in this case.) CCA
with one x or y variable is equivalent to OLS regression (with the squared canonical correlation cor-
responding to the R?), and CCA on one variable pair yields the familiar Pearson product-moment
correlation. Centering and scaling data prior to analysis is equivalent to working with correlation
matrices in the underlying analysis (with interpretation/effects analogous to the principal compo-
nents case).

Finding the CCA solution can pose numerical challenges, ironically more so when the degree of po-
tential dimension reduction is highest. In recalcitrant cases, it can be useful to apply regularization
to the solution for purposes of stabilization. The optional reg.param can be used for this purpose:
if given as a single numeric value, it adds an L2 (aka “ridge”) penalty to each variable set with the
corresponding multiplier value. reg.param can also be given as a vector of length 2, in which case
the first value is applied to the x variables and the second is applied to the y variables. Relatedly,
in high-dimension/low-rank problems it can be useful to extract a much smaller number of canon-
ical variates than the nominal maximum. This can be controlled by max.dim, though the default
diagonalization method computes the entire eigendecomposition prior to canonical variate extrac-
tion. In such cases, it can be helpful to employ the alternative diagonalization method controlled by
the use.eigs argument to compute only those dimensions that are actually required. Experience
suggests that this method (eigs) is less stable than the base eigen, but it can be much faster in
high-dimensional settings.
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Value

An object of class cca, whose elements are as follows:

corr
corrsq
xcoef

ycoef
canvarx
canvary
xstructcorr
ystructcorr

xstructcorrsq

ystructcorrsq

Xcrosscorr

ycrosscorr

XCrosscorrsq

ycrosscorrsq

Xxcancom

ycancom

xcanvad

ycanvad

xvrd

yvrd

xrd

yrd

Canonical correlations.

Squared canonical correlations (shared variance across canonical variates).
Coefficients for the x variables on each canonical variate.

Coefficients for the y variables on each canonical variate.

Canonical variate scores for the x variables.

Canonical variate scores for the y variables.

Structural correlations (loadings) for x variables on each canonical variate.
Structural correlations (loadings) for y variables on each canonical variate.

Squared structural correlations for x variables on each canonical variate (i.e.,
fraction of x variance associated with each variate).

Squared structural correlations for y variables on each canonical variate (i.e.,
fraction of y variance associated with each variate).

Canonical cross-loadings for x variables on the y scores for each canonical vari-
ate.

Canonical cross-loadings for y variables on the y scores for each canonical vari-
ate.

Squared canonical cross-loadings for x variables on the y scores for each canon-
ical variate (i.e., the fraction of variance in each x variable attributable to y
through the respective CVs).

Squared canonical cross-loadings for y variables on the x scores for each canon-
ical variate (i.e., the fraction of variance in each y variable attributable to x
through the respective CVs).

Canonical communalities for x variables (for each x variable, fraction associated
with all canonical variates).

Canonical communalities for y variables (for each y variable, fraction associated
with all canonical variates).

Canonical variate adequacies for x variables (for each canonical variate, fraction
of total x variance for which it is associated).

Canonical variate adequacies for y variables (for each canonical variate, fraction
of total y variance for which it is associated).

Canonical redundancies for x variables (i.e., total fraction of x variance ac-
counted for by y variables, through each canonical variate).

Canonical redundancies for y variables (i.e., total fraction of y variance ac-
counted for by x variables, through each canonical variate).

Total canonical redundancy for x variables (i.e., total fraction of x variance ac-
counted for by y variables, through all canonical variates).

Total canonical redundancy for y variables (i.e., total fraction of y variance ac-
counted for by x variables, through all canonical variates).
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chisq Sequential x? values for tests of each respective canonical variate using Bartlett’s
omnibus statistic.
df Degrees of freedom for Bartlett’s test.
x1lab Variable names for x.
ylab Variable names for y.
reg.param Regularization parameter (if any).
Author(s)

Carter T. Butts <buttsc @uci.edu>

References

Mardia, K. V.; Kent, J. T.; and Bibby, J. M. 1979. Multivariate Analysis. London: Academic Press.

See Also

F.test.cca, cancor, princomp

Examples

#Example parallels the R builtin cancor example

data(LifeCycleSavings)

pop <- LifeCycleSavings[, 2:3]

oec <- LifeCycleSavings[, -(2:3)]

cca.fit <- cca(pop, oec)

cca.regfit <- cca(pop, oec, reg.param=1) # Some minimal regularization

#View the results
cca.fit
summary(cca.fit)
plot(cca.fit)

cca.regfit #Not a vast difference, usually....
F.test.cca F Test for Canonical Correlations Using Rao’s Approximation
Description

Tests a series of canonical correlations (sequentially) against the null hypothesis that the tested
coefficient and all succeeding coefficients are zero.

Usage
F.test.cca(x, ...)

## S3 method for class 'F.test.cca'
print(x, ...)
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Arguments
X a cca object.
additional arguments.
Details

Several related tests have been proposed for the evaluation of canonical correlations (including
Bartlett’s Chi-squared test, which is computed by default within cca). This function employs Rao’s
statistic (related to Wilks’ Lambda) as the basis for an F test of each coefficient (and all others in
ascending sequence) against the hypothesis that the associated population correlations are zero.

Value

An object of class F. test.cca, whose elements are as follows:

corr Canonical correlations.
statistic Squared canonical correlations (shared variance across canonical variates).
parameter Coefficients for the x variables on each canonical variate.
p.value Coefficients for the y variables on each canonical variate.
method Canonical variate scores for the x variables.
data.name Canonical variate scores for the y variables.
Author(s)

Nicholas L. Crookston <ncrookston @fs.fed.us>

Carter T. Butts <buttsc @uci.edu>

References

Mardia, K. V.; Kent, J. T.; and Bibby, J. M. 1979. Multivariate Analysis. London: Academic Press.

See Also

CCa

Examples

#Example: perceived personal attributes versus professional performance
#for US Judges

data(USJudgeRatings)

personal <- USJudgeRatings[,c("INTG","DMNR","DILG","FAMI",6 "PHYS")]
performance <- USJudgeRatings[,c("CFMG","DECI","PREP","ORAL","WRIT")]
cca.fit <- cca(personal, performance)

#Test the canonical correlations (see also summary(cca.fit))
F.test.cca(cca.fit)
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helio.plot Helio Plots

Description

Displays data using a circular layout; function is designed to be used with cca objects, but could
perhaps be rigged for use in other circumstances.

Usage
helio.plot(c, cv = 1, xvlab = c$xlab, yvlab = c$ylab,
x.name = "X Variables”, y.name = "Y Variables”, lab.cex =1,
wid.fact = 0.75, main = "Helio Plot”,
sub = paste(”Canonical Variate”, cv, sep = ""), zero.rad = 30,

range.rad = 20, name.padding = 5, name.cex = 1.5,
axis.circ = c(-1, 1), x.group = rep(@, dim(c$xstructcorr)[1]),
y.group = rep(@, dim(c$ystructcorr)[1]), type = "correlation")

name.padding
name. cex
axis.circ
X.group
y.group

type

Details

Arguments
c object to be plotted (generally output from cca.
cv the canonical variate to display.
xvlab X variable labels.
yvlab Y variable labels.
X.name name for the X variable set.
y.name name for the Y variable set.
lab.cex character expansion for plot labels.
wid. fact width multiplier for data bars.
main plot main title.
sub plot subtitle.
zero.rad radius for the zero-value reference circle.
range.rad difference between inner and outer plotting radius.

offset for variable names.

character expansion for variable names.
location to draw axis circles.

optional grouping vector for X variables.
optional grouping vector for Y variables.

one of “correlation” or “variance”, depending on the type of data to be displayed.

Helio plots display data in radial bars, with larger values pointing outward from a base reference
circle and smaller (more negative) values pointing inward). Such plots are well-suited to the display
of multivariate information with several groups of variables, as with canonical correlation analysis.
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Value

None.

Author(s)

Carter T. Butts <buttsc @uci.edu>

See Also

CCa

Examples

data(LifeCycleSavings)

pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
cca.fit <- cca(pop, oec)

#Show loadings on first canonical variate
helio.plot(cca.fit, x.name="Population Variables"”,
y.name="Economic Variables")

#Show variances on second canonical variate
helio.plot(cca.fit, cv=2, x.name="Population Variables”,
y.name="Economic Variables"”, type="variance")
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