Package 'x3ptools'

January 30, 2024

Type Package

Title Tools for Working with 3D Surface Measurements

Version 0.0.4

Date 2024-01-21

Maintainer Heike Hofmann <hofmann@iastate.edu>

Description The x3p file format is specified in ISO standard 5436:2000 to describe 3d surface measurements. 'x3ptools' allows reading, writing and basic modifications to the 3D surface measurements.

Depends R (>= 4.0)

Imports MASS (>= 7.3), digest (>= 0.6), xml2 (>= 1.3.5), rgl (>= 1.2.0), zoo (>= 1.8), png (>= 0.1-7), readr (>= 2.1.0), dplyr (>= 1.1.0), pracma (>= 2.4.0), assertthat (>= 0.2.1), purrr (>= 1.0.0), yaml (>= 2.3.7), scales (>= 1.2.1), tidyr (>= 1.3.0), imager (>= 0.45.2), magrittr (>= 2.0.3), grDevices

Suggests knitr, rmarkdown, patchwork, testthat (>= 3.0.4), covr, here, magick (>= 2.0)

License MIT + file LICENSE

RoxygenNote 7.2.3

URL https://github.com/heike/x3ptools,

https://heike.github.io/x3ptools/

BugReports https://github.com/heike/x3ptools/issues

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Heike Hofmann [aut, cre, cph] (<https://orcid.org/0000-0001-6216-5183>), Susan Vanderplas [aut] (<https://orcid.org/0000-0002-3803-0972>), Ganesh Krishnan [aut], Eric Hare [aut] (<https://orcid.org/0000-0002-4277-3146>)

Repository CRAN

Date/Publication 2024-01-30 10:30:02 UTC

R topics documented:

$df_to_x 3p$	3
head.x3p	3
image.x3p	4
lea	4
print.x3p	5
stl_to_x3p	5
tmd_to_x3p	6
wire	7
x3p_add_annotation	7
x3p_add_grid	8
x3p_add_hline	9
x3p_add_legend	10
x3p_add_mask	10
x3p_add_mask_layer	11
x3p_add_meta	12
x3p_add_vline	12
x3p_average	13
x3p_bin_stripes	14
x3p_circle_select	15
x3p_crop	16
x3p_darker	16
x3p_delete_mask	17
$x^{3}p_{extract}$	17
$x^{3}p$ _extract_profile	18
x3p_extract_profile_segments	19
$x^{2}p_{flip}x$	20
* *	21
	22
	23
x3p_image	23
	24
x3p_lighter	25
x3p_mask_legend	26
$x_{3p_mask_quantile}$	26
	27
x3p_m_to_mum	28
x3p_read	
x3p_read_dat	29
x3p read plux	30
x_{2p} rotate	30
x3p_sample	31
x3p_scale_unit	32
x3p_select	33
x3p_shade_mask	34
x3p_show xml	35
x3p_snapshot	35
mer_omponee	22

df_to_x3p

x3p_transpose	 	
•		
ло _Р ю	 	 39

Index

df	to	_x3p	
u .	_ LU_	_^_p	

Convert a data frame into an x3p file

Description

Convert a data frame into an x3p file

Usage

df_to_x3p(dframe, var = "value")

Arguments

dframe	data frame. dframe must have the columns x, y, and value.
var	name of the variable containing the surface measurements. Defaults to "value"

Value

x3p object

```
head.x3p
```

Show meta information of an x3p file

Description

head.x3p expands the generic head method for x3p objects. It gives a summary of the most relevant 3p meta information and returns the object invisibly.

Usage

S3 method for class 'x3p'
head(x, n = 6L, ...)

Arguments

х	x3p object
n	number of rows/columns of the matrix
	extra parameters passed to head.matrix()

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
head(logo)</pre>
```

image.x3p

Raster image of an x3p surface

Description

image . x3p expands the generic image method for x3p objects. This image function creates a raster image to show the surface of an x3p file. Due to some inconsistency in the mapping of the origin (0,0), (choice between top left or bottom left) image functions from different packages will result in different images.

Usage

S3 method for class 'x3p'
image(x, ...)

Arguments

x	an x3p object
	parameters passed into image

Examples

logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
image(logo)</pre>

lea

Subsampled scan of a land-engraved area

Description

LEAs (land-engraved areas) are created on the outside of a bullet during the firing process. Depending on the rifling inside the barrel, multiple lands exist for each barrel. Striation marks in these land engraved areas are used in forensic labs to determine whether two bullets were fired from the same firearm.

Usage

lea

Format

x3p object

print.x3p

Examples

```
data(lea)
image(lea)
if (interactive()) x3p_image(lea)
```

print.x3p

Show meta information of an x3p file

Description

print.x3p expands the generic print method for x3p objects. It gives a summary of the most relevant x3p meta information and returns the object invisibly.

Usage

S3 method for class 'x3p'
print(x, ...)

Arguments

x x3p object ... ignored

Examples

logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
print(logo)</pre>

stl_to_x3p

Convert an STL file to an x3p file

Description

STL (STereo Lithographic) files describe 3d objects as mesh objects. Here, we assume that the 3d object consists of a 3d surface on the top of a rectangular, equi-spaced 2d grid. We further assume, that each node of the STL file describes the x-y location of an actual measurement. These measurements are then converted into the surface matrix of an x3p object. The resolution is derived from the distance between consecutive x and y nodes.

Usage

stl_to_x3p(stl)

Arguments

st1 STL file object or path to the file

Value

x3p object

Examples

```
## Not run:
# the website https://touchterrain.geol.iastate.edu/ allows a download
# of a 3d printable terrain model. For an example we suggest to download a file from there.
gc <- rgl::readSTL("<PATH TO STL FILE>", plot=FALSE)
x3p <- stl_to_x3p(gc)</pre>
```

End(Not run)

tmd_to_x3p

Read (or convert) from TMD file to x3p

Description

TMD files are used in telemetry, specifically, they are a native format used by GelSight to store 3d topographic surface scans.

Usage

```
tmd_to_x3p(tmd_path, yaml_path = NA, verbose = TRUE)
```

Arguments

tmd_path	path to TMD file
yaml_path	path to corresponding yaml file with meta information. If set to NA (default), path of the the tmd file will be tried. If set to NULL, meta file will be ignored.
verbose	boolean

Details

The algorithm is based on GelSight's MatLab routine readtmd.m published as part of the Github repository gelsightinc/gsmatlab

Value

x3p file of the scan. Some rudimentary information will be filled in, information of scanning process, and parameter settings need to be added manually.

Examples

```
#x3p <- tmd_to_x3p("~/Downloads/Sc04.Pl044.Ma4.SB.An80.Pb.DirFo.SizL.tmd") #
#x3p <- tmd_to_x3p("~/Downloads/Sc04.Pl044.Ma4.SB.An80.Pb.DirFo.SizL.tmd",
# yaml_path="~/Downloads/scan.yaml") #</pre>
```

wire

Description

An example part of a wire cut in x3p format. The wire cut is part of a CSAFE study involving 1.5 mm Aluminium wires cut by Kaiweet wire-cutters.

Usage

wire

Format

x3p object

x3p_add_annotation Add annotations to an x3p object

Description

Annotations in an x3p object are legend entries for each color of a mask.

Usage

```
x3p_add_annotation(x3p, color, annotation)
```

Arguments

хЗр	x3p object
color	name or hex value of color
annotation	character value describing the region

Value

x3p object with the added annotations

Examples

```
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
color_logo <- png::readPNG(system.file("csafe-color.png", package="x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
x3p_image(logoplus, multiply=50, size = c(741, 419),zoom = 0.5)
logoplus <- x3p_add_annotation(logoplus, "#FFFFFFFF", "background")
logoplus <- x3p_add_annotation(logoplus, "#818285FF", "text")
logoplus <- x3p_add_annotation(logoplus, "#F6BD47FF", "fingerprint")
logoplus <- x3p_add_annotation(logoplus, "#D2202FFF", "fingerprint")
logoplus <- x3p_add_annotation(logoplus, "#92278FFF", "fingerprint")
x3p_add_legend(logoplus)
```

End(Not run)

x3p_add_grid

Add a grid of helper lines to the mask of an x3p object

Description

Add a grid of lines to overlay the surface of an x3p object. Lines are added to a mask. In case no mask exists, one is created.

Usage

```
x3p_add_grid(
 x3p,
 spaces,
 size = c(1, 3, 5),
 color = c("grey50", "black", "darkred")
)
```

Arguments

х3р	x3p object
spaces	space between grid lines, doubled for x
size	width (in pixels) of the lines
color	(vector of) character values to describe color of lines

Value

x3p object with added vertical lines in the mask

x3p_add_hline

Examples

```
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
# ten vertical lines across:
logoplus <- x3p_add_grid(logo,
   spaces = 50e-6, size = c(1, 3, 5),
   color = c("grey50", "black", "darkred")
)
x3p_image(logoplus, size = c(741, 419), zoom = 0.5)
## End(Not run)
```

x3p_add_hline Add horizontal line to the mask of an x3p object

Description

Add horizontal lines to overlay the surface of an x3p object. Lines are added to a mask. In case no mask exists, one is created.

Usage

```
x3p_add_hline(x3p, yintercept, size = 5, color = "#e6bf98")
```

Arguments

хЗр	x3p object
yintercept	(vector of) numerical values for the position of the lines.
size	width (in pixels) of the line
color	(vector of) character values to describe color of lines

Value

x3p object with added vertical lines in the mask

Examples

```
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
color_logo <- magick::image_read(system.file("csafe-color.png", package = "x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
# five horizontal lines at equal intervals:
logoplus <- x3p_add_hline(logo, seq(0, 418 * 6.4500e-7, length = 5), size = 3)
x3p_image(logoplus, size = c(741, 419), zoom = 0.5)
```

End(Not run)

x3p_add_legend

Description

Display the legend for colors and annotations in the active rgl window. In case no rgl window is opened, a new window displaying the x3p file (using default sizes and zoom) opens.

Usage

x3p_add_legend(x3p, colors = NULL)

Arguments

х3р	x3p object with a mask
colors	named character vector of colors (in hex format by default), names contain an-
	notations

Examples

```
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
## Not run:
# run when rgl can open window on the device
x3p_image(x3p)
x3p_add_legend(x3p) # add legend</pre>
```

End(Not run)

x3p_add_mask *Add/Exchange a mask for an x3p object*

Description

Create a mask for an x3p object in case it does not have a mask yet. Masks are used for overlaying colors on the bullets surface.

Usage

x3p_add_mask(x3p, mask = NULL)

Arguments

хЗр	x3p object
mask	raster matrix of colors with the same dimensions as the x3p surface. If NULL, an object of the right size will be created.

Value

x3p object with added/changed mask

Examples

```
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
# x3p file has mask consisting color raster image:
x3p$mask[1:5,1:5]
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
color_logo <- png::readPNG(system.file("csafe-color.png", package="x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
x3p_image(logoplus, multiply=50, size = c(741, 419),zoom = 0.5)</pre>
```

End(Not run)

x3p_add_mask_layer Add a layer to the mask

Description

Add a region a mask. The region is specified as TRUE values in a matrix of the same dimensions as the existing mask. In case no mask exists, one is created.

Usage

```
x3p_add_mask_layer(x3p, mask, color = "red", annotation = "")
```

Arguments

х3р	x3p object
mask	logical matrix of the same dimension as the surface matrix. Values of TRUE are assumed to be added in the mask, values of FALSE are being ignored.
color	name or hex value of color
annotation	character value describing the region

Value

x3p object with changed mask

x3p_add_meta

Description

Use a specified template to overwrite the general info in the x3p object (and structure of the feature info, if needed).

Usage

```
x3p_add_meta(x3p, template = NULL)
```

```
addtemplate_x3p(x3p, template = NULL)
```

Arguments

хЗр	x3p object
template	file path to xml template, use NULL for in-built package template

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# exchange meta information for general x3p information:
logo <- x3p_add_meta(logo, template = system.file("templateXML.xml", package="x3ptools"))
logo$general.info</pre>
```

x3p_add_vline Add vertical line to the mask of an x3p object

Description

Add vertical lines to overlay the surface of an x3p object. Lines are added to a mask. In case no mask exists, one is created.

Usage

```
x3p_add_vline(x3p, xintercept, size = 5, color = "#e6bf98")
```

Arguments

х3р	x3p object
xintercept	(vector of) numerical values for the position of the lines.
size	width (in pixels) of the line
color	(vector of) character values to describe color of lines

x3p_average

Value

x3p object with added vertical lines in the mask

Examples

```
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
logo_color <- magick::image_read(system.file("csafe-color.png", package = "x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(logo_color))
# ten vertical lines across:
logoplus <- x3p_add_vline(logo, seq(0, 740 * 6.4500e-7, length = 5), size = 3)
x3p_image(logoplus, size = c(741, 419), zoom = 0.5)
```

End(Not run)

x3p_average Average an x3p object

Description

Calculate blockwise summary statistics on the surface matrix of an x3p. If the x3p object has a mask, the mode of the mask value

Usage

 $x3p_average(x3p, b = 10, f = mean, ...)$

Arguments

хЗр	x3p object
b	positive integer value, block size
f	function aggregate function
	parameters passed on to function f. Make sure to use na.rm = T as needed.

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
small <- x3p_average(logo)</pre>
```

```
x3p_bin_stripes
```

Description

Apply gradient-based color shading to the mask of a 3d topographic surface. Gradients are determined empirically based on sequentical row- (or column-)wise differences of surface values. The direction parameter determines the direction of differencing. If direction is "vertical", columns in the surface matrix are differenced to identify whether 'vertical' stripes exist.

Usage

```
x3p_bin_stripes(
  x3p,
  direction = "vertical",
  colors = rev(c("#b12819", "#d7301f", "#e16457", "#fffffff", "#5186a2", "#175d82",
    "#134D6B")),
  freqs = c(0, 0.05, 0.1, 0.3, 0.7, 0.9, 0.95, 1)
)
```

Arguments

х3р	object containing a 3d topographic surface
direction	in which the stripes are created: vertical or horizontal.
colors	vector of colors
freqs	vector of values corresponding to color frequency (turned into quantiles of the differenced values)

Value

x3p object with mask colored by discretized surface gradient

```
data(wire)
x3p <- wire
if (interactive()) x3p_image(x3p, size = c(400, 400), zoom=0.8)
x3p_with <- x3p_bin_stripes(x3p, direction="vertical")
x3p_with <- x3p_bin_stripes(x3p, direction="vertical",
colors=c("#b12819","#ffffff","#134D6B"), freqs=c(0, 0.3, 0.7, 1))
if (interactive()) x3p_image(x3p_with, size = c(400, 400), zoom=0.8)
data(lea)
if (interactive()) {
    lea %>% x3p_bin_stripes() %>% x3p_image() # default stripes
# three colors only
```

```
lea %>% x3p_bin_stripes(
    colors=c("#b12819","#ffffff","#134D6B"),
    freqs=c(0, 0.3, 0.7, 1)) %>% x3p_image()
}
```

x3p_circle_select Select a circle area on the surface of an x3p file using rgl

Description

In the active rgl window select a circle on the scan's surface by clicking on three points along the circumference. Make sure that x3p file and the rgl window match. If no rgl window is active, an rgl window opens with the scan.

Usage

```
x3p_circle_select(x3p, col = "#FF0000", update = TRUE)
```

Arguments

x3p	x3p file
col	character value of the selection color
update	boolean value, whether the rgl window should be updated to show the selected circle

Value

x3p file with selected circle in mask

```
## Not run:
if (interactive) {
    if (!file.exists("fadul1-1.x3p")) {
        url <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/DownloadMeasurement"
        file <- "2d9cc51f-6f66-40a0-973a-a9292dbee36d"
        download.file(file.path(url, file), destfile="fadul1-1.x3p")
    }
    x3p <- x3p_read("fadul1-1.x3p")
    x3p_image(x3p, size=c(500,500), zoom=.8)
    x3p <- x3p_circle_select(x3p, update=TRUE, col="#FF0000")
    logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
    x3p_image(logo, size=c(500,500), zoom = 1)
    x3p_circle_select(logo, update=TRUE, col="#00FF00")
}
## End(Not run)
```

x3p_crop

Description

Cuts out a rectangle of size width x height from the location (x, y) of an x3p object. x and y specify the bottom right corner of the rectangle. In case the dimensions of the surface matrix do not allow for the full dimensions of the rectangle cutout the dimensions are adjusted accordingly.

Usage

 $x^{2}p_{rop}(x^{2}p, x = 1, y = 1, width = 128, height = 128)$

Arguments

х3р	x3p object
x	integer, location (in pixels) of the leftmost side of the rectangle,
У	integer, location (in pixels) of the leftmost side of the rectangle,
width	integer, width (in pixels) of the rectangle,
height	integer, height (in pixels) of the rectangle,

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# crop the x3p file to just the CSAFE logo
logo_only <- x3p_crop(logo, x=20, y=50, width = 255 ,height =310)
logo_only <- x3p_crop(logo, x=20, y=50, width = 255 ,height =510)
# x3p_image(logo_only, size=c(500,500), zoom = 1)</pre>
```

```
x3p_darker Darken active rgl object
```

Description

Makes the currently active rgl object darker by removing a light source. Once all light sources are removed the object can not be any darker.

Usage

x3p_darker()

x3p_delete_mask

Examples

```
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
## Not run:
x3p_image(x3p) # run when rgl can open window on the device
x3p_darker() # remove a light source</pre>
```

End(Not run)

x3p_delete_mask Delete mask from an x3p object

Description

Deletes mask and its annotations from an x3p file.

Usage

x3p_delete_mask(x3p)

Arguments

x3p x3p object

Value

x3p object without the mask

x3p_extract

Extract values from a surface matrix based on a mask

Description

If a mask is present, a subset of the surface matrix is extracted based on specified value(s).

Usage

x3p_extract(x3p, mask_vals)

Arguments

х3р	x3p object
mask_vals	vector of mask value(s)

Value

x3p object

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# add a mask
logo <- x3p_add_mask(logo)
mask <- t(logo$surface.matrix==median(logo$surface.matrix))
logo <- x3p_add_mask_layer(logo, mask, color = "red", annotation = "median")
x3p_extract(logo, "#cd7f32")
# x3p_image(logo, size=c(500,500), zoom = 1)</pre>
```

x3p_extract_profile Interactively select a line on the active rgl device

Description

In the active rgl device select a line on the 3d surface by clicking on start and end-point (order matters). These points define the beginning and end of a line segment. The line segment is drawn on the mask of the x3p object. The line object is returned as part of the x3p object, if line_result is set to TRUE

Usage

```
x3p_extract_profile(
  x3p,
  col = "#FF0000",
  update = TRUE,
  line_result = "equi-spaced",
  multiply = 5,
  linewidth = 1
)
```

Arguments

хЗр	x3p file
col	character value of the selection color
update	boolean value, whether the rgl window should be updated to show the selected circle
line_result	enhance result by a data frame of the line: NULL for no, "raw" for data frame of original x and y (in the mask) and projected x onto the line, "equi-spaced" (default) returns a data frame with equispaced x values after fitting a loess smooth to the raw values. Note that variable x indicates the direction from first click $(x=0)$ to the second click (max x).
multiply	integer value, factor to multiply surface values. Only applied if update is true. Defaults to 5,
linewidth	line width of the extracted line. Defaults to 1.

Value

x3p file with identified line in the mask. Depending on the setting of line_result additional information on the line is attached as a data frame.

Examples

```
## Not run:
if (interactive) {
 x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))</pre>
 x3p %>% image_x3p(size=dim(x3p$surface.matrix), multiply=1, zoom=.3)
 x3p <- x3p_extract_profile(x3p, update=TRUE, col="#FFFFF")</pre>
 x3p$line_df %>%
    ggplot(aes(x = x, y = value)) + geom_line()
 x3p$line_df$y <- 1
 sigs <- bulletxtrctr::cc_get_signature(ccdata = x3p$line_df,</pre>
   grooves = list(groove=range(x3p$line_df$x)), span1 = 0.75, span2 = 0.03)
 sigs %>%
  ggplot(aes(x = x)) +
     geom_line(aes(y = raw_sig), colour = "grey50") +
     geom_line(aes(y = sig), size = 1) +
     theme_bw()
}
## End(Not run)
```

x3p_extract_profile_segments *Extract profiles from surface using multiple segments*

Description

The 3d topographic surface is split into multiple segments of width width (in pixels) using an overlap of 10% between segments. For each segment, a line is extracted (with x3p_extract_profile). Line segments are projected onto the mask of the initial x3p object and exported as a lines attribute.

Usage

```
x3p_extract_profile_segments(
  x3p,
  width,
  col = "#FF0000",
  linewidth = 11,
  verbose = TRUE
)
```

Arguments

хЗр	object
width	segment width
col	color
linewidth	integer value specifying the width for the profile
verbose	logical

Value

x3p object with added lines attribute.

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
logo <- x3p_m_to_mum(logo)
if(interactive())
x3p_extract_profile_segments(logo, 850, col="#ffffff", linewidth=5)</pre>
```

x3p_flip_x Flip the x coordinate of an x3p file

Description

Flip the surface matrix of an x3p file along the x axis.

Usage

x3p_flip_x(x3p)

x_flip_x3p(x3p)

Arguments

x3p x3p object

Value

x3p object in which the x coordinate is reversed.

x3p_flip_y

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
## Not run:
x3p_image(logo)
## End(Not run)
# flip the y-axis for the old ISO standard:
logoflip <- x3p_flip_x(logo)
dim(logoflip$surface.matrix)
## Not run:
x3p_image(logoflip)
## End(Not run)
```

x3p_flip_y

Flip the y coordinate of an x3p image

Description

One of the major changes between the previous two ISO standards is the way the y axis is defined in a scan. The entry (0,0) used to refer to the top left corner of a scan, now it refers to the bottom right corner, which means that all legacy x3p files have to flip their y axis in order to conform to the newest ISO norm.

Usage

x3p_flip_y(x3p)
y_flip_x3p(x3p)

Arguments

x3p x3p object

Value

x3p object in which the y coordinate is reversed.

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
## Not run:
x3p_image(logo)
## End(Not run)</pre>
```

```
# flip the y-axis for the old ISO standard:
logoflip <- x3p_flip_y(logo)</pre>
```

```
dim(logoflip$surface.matrix)
## Not run:
x3p_image(logoflip)
```

End(Not run)

x3p_fuzzyselect Interactive selection of region of interest

Description

Interactive selection of region of interest

Usage

```
x3p_fuzzyselect(x3p, col = "#FF0000", mad = 5, type = "plane", update = TRUE)
```

Arguments

хЗр	x3p file
col	character value of the selection color
mad	scalar
type	only "plane" is implemented at the moment
update	boolean value, whether the rgl window should be updated to show the selected rectangle

Value

x3p file with updated mask

Examples

```
## Not run:
if (interactive) {
    if (!file.exists("fadul1-1.x3p")) {
        url <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/DownloadMeasurement"
        file <- "2d9cc51f-6f66-40a0-973a-a9292dbee36d"
        download.file(file.path(url, file), destfile="fadul1-1.x3p")
    }
    x3p <- x3p_read("fadul1-1.x3p")
    x3p_image(x3p, size=c(500,500), zoom=.8)
    x3p <- x3p_fuzzyselect(x3p, update=TRUE, col="#FF0000")
    logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
    x3p_image(logo, size=c(500,500), zoom = 1)
    x3p_fuzzyselect(logo, update=TRUE, col="#00FF00")
}
## End(Not run)
```

Description

Scans in x3p format capture 3d topogographic surfaces. According to ISO standard ISO5436 - 2000 scans are supposed to be captured in meters. For microscopic images capture in meters might be impractical.

Usage

x3p_get_scale(x3p)

Arguments

x3p object

Value

numeric value of resolution per pixel

x3p_image

Plot x3p object as an image

Description

Plot an interactive surface plot of the x3p matrix. This implementation uses the rgl package. In case rgl.useNULL is set to TRUE (i.e. no separate window will be opened), an rgl widget can be used to show the surface in the viewer window (see the example).

Usage

```
x3p_image(
  x3p,
  file = NULL,
  col = "#cd7f32",
  size = 750,
  zoom = 0.35,
  multiply = 5,
  update = FALSE,
  ...
)
image_x3p(
  x3p,
  file = NULL,
```

```
col = "#cd7f32",
size = c(750, 250),
zoom = 0.35,
multiply = 5,
...
```

Arguments

хЗр	x3p object
file	file name for saving, if file is NULL the opengl device stays open. The file ex- tension determines the type of output. Possible extensions are png, stl (suitable for 3d printing), or svg.
col	color specification
size	vector of width and height. If only one value is given, height or width will be adjusted proportionally to the dimensions of the surface matrix of the scan to reach an upper bound of size.
zoom	numeric value indicating the amount of zoom
multiply	exaggerate the relief by factor multiply
update	Boolean value indicating whether a scene should be updated (defaults to FALSE). If FALSE, a new rgl device is opened.
	not used

Examples

```
save <- getOption("rgl.useNULL")
options(rgl.useNULL=TRUE)
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
x3p_image(logo, size = c(741, 419), zoom=0.5)
# add crosscut:
logoplus <- x3p_add_hline(logo, yintercept = 50*.645e-6, color = "#e6bf98", size = 5)
x3p_image(logoplus, size = c(741, 419), zoom=0.5)
widget <- rgl::rglwidget()
if (interactive())
widget
options(rgl.useNULL=save)</pre>
```

x3p_interpolate Interpolate from an x3p object

x3p_lighter

Description

An interpolated scan is created at specified resolutions resx, resy in x and y direction. The interpolation is based on na.approx from the zoo package. It is possible to create interpolations at a higher resolution than the one specified in the data itself, but it is not recommended to do so. x3p_interpolate can also be used as a way to linearly interpolate any missing values in an existing scan without changing the resolution.

Usage

```
x3p_interpolate(x3p, resx = 1e-06, resy = resx, maxgap = 1)
interpolate_x3p(x3p, resx = 1e-06, resy = resx, maxgap = 1)
```

Arguments

хЗр	x3p object
resx	numeric value specifying the new resolution for the x axis.
resy	numeric value specifying the new resolution for the y axis.
maxgap	integer variable used in na.approx to specify the maximum number of NAs to be interpolated, defaults to 1.

Value

interpolated x3p object

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# resolution:
logo$header.info$incrementX
# change resolution to 1 micron = 1e-6 meters
logo2 <- x3p_interpolate(logo, resx = 1e-6)
logo2$header.info$incrementX</pre>
```

x3p_lighter Lighten active rgl object

Description

Make the currently active rgl object lighter. Adds a light source. Up to eight light sources can be added. Alternatively, any rgl light source can be added (see light3d).

Usage

x3p_lighter()

Examples

```
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
## Not run:
x3p_image(x3p) # run when rgl can open window on the device
x3p_lighter() # add a light source
## End(Not run)</pre>
```

x3p_mask_legend Get legend for mask colors

Description

Retrieve color definitions and annotations from the mask. If available, results in a named vector of colors.

Usage

x3p_mask_legend(x3p)

Arguments

x3p x3p object with a mask

Value

named vector of colors, names show annotations. In case no annotations exist NULL is returned.

Examples

```
x3p <- x3p_read(system.file("sample-land.x3p", package="x3ptools"))
x3p_mask_legend(x3p) # annotations and color hex definitions</pre>
```

x3p_mask_quantile Draw a quantile region on the mask

Description

For each x value of the surface matrix add a region to the mask of an x3p object corresponding to the area between two specified quantiles.

x3p_modify_xml

Usage

```
x3p_mask_quantile(
  x3p,
  quantiles = c(0.25, 0.75),
  color = "red",
  annotation = "quantile-region"
)
```

Arguments

хЗр	x3p object
quantiles	vector of quantiles between which surface matrix values are included in the mask
color	name or hex value of color
annotation	character value describing the region

Value

x3p object with changed mask

x3p_modify_xml	Modify xml elements meta information in x3p object
Vob-moart A-vurt	

Description

Identify xml fields in the meta file of an x3p object by name and modify content if uniquely described.

Usage

x3p_modify_xml(x3p, element, value)

Arguments

х3р	x3p object
element	character or integer. In case of character, name of xml field in the meta file. Note that element can contain regular expressions, e.g. "*" returns all meta fields. In case of integer, element is used as an index for the meta fields.
value	character. Value to be given to the xml field in the meta file.

Value

x3p object with changed meta information

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
x3p_show_xml(logo, "creator")
x3p_modify_xml(logo, "creator", "I did that")
x3p_show_xml(logo, 20)
x3p_modify_xml(logo, 20, "I did that, too")</pre>
```

x3p_m_to_mum

Convert x3p header information to microns from meters

Description

ISO standard 5436_2 asks for specification of values in meters. For topographic surfaces collected by microscopes values in microns are more readable. Besides scaling the values in the surface matrix, corresponding increments are changed to microns as well.

Usage

x3p_m_to_mum(x3p)

Arguments

х3р

x3p file with header information in meters

Value

x3p with header information in microns

x3p_read

Read an x3p file into an x3p object

Description

Read file in x3p format. x3p formats describe 3d topological surface according to ISO standard ISO5436 – 2000. x3p files are a container format implemented as a zip archive of a folder consisting of an xml file of meta information and a binary matrix of numeric surface measurements.

Usage

x3p_read(file, size = NA, quiet = T, tmpdir = NULL)
read_x3p(file, size = NA, quiet = T, tmpdir = NULL)

x3p_read_dat

Arguments

file	The file path to the x3p file, or an url to an x3p file
size	size in bytes to use for reading the binary file. If not specified, default is used. Will be overwritten if specified in the xml meta file.
quiet	for url downloads, show download progress?
tmpdir	temporary directory to use to extract the x3p file (default NULL uses tempdir() to set a directory).

Value

x3p object consisting of a list of the surface matrix and the four records as specified in the ISO standard

Examples

logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))</pre>

x3p_read_dat

Read data from an x-y-z file

Description

Read data from an x-y-z file

Usage

x3p_read_dat(dat, delim = " ", col_names = FALSE)

Arguments

dat	path to the x-y-z file
delim	character determining delimiter
col_names	logical value - does the first line of the file contain the column names? Default is set to FALSE.

Value

x3p object

x3p_read_plux

Description

plux files are zip containers of 3d topographic scans in a format proprietary to SensofarTM. One of the files in the container is the file index.xml which contains meta-information on the instrument, scan settings, date, and creator. This information is added to the x3p meta-information.

Usage

```
x3p_read_plux(plux)
```

Arguments

plux path to plux file

Value

xml of general information as stored in the plux file

x3p_rotate

Rotate an x3p object

Description

Rotate the surface matrix and mask of an x3p object. Also adjust meta information.

Usage

x3p_rotate(x3p, angle = 90)

rotate_x3p(x3p, angle = 90)

Arguments

x3p	x3p object
angle	rotate counter-clockwise by angle in degrees.

x3p_sample

Examples

```
## Not run:
logo <- x3p_read(system.file("csafe-logo.x3p", package = "x3ptools"))
color_logo <- png::readPNG(system.file("csafe-color.png", package="x3ptools"))
logoplus <- x3p_add_mask(logo, as.raster(color_logo))
dim(logoplus$surface.matrix)
dim(logoplus$mask)
x3p_image(logoplus, multiply=50, size = c(741, 419),zoom = 0.5)
logoplus60 <- x3p_rotate(x3p = logoplus, angle = 60)
dim(logoplus60$surface.matrix)
dim(logoplus60$mask)
x3p_image(logoplus60, multiply=50, size = c(741, 419),zoom = 0.75)
## End(Not run)
```

x3p_sample

Sample from an x3p object

Description

Sample from an x3p object

Usage

```
x3p_sample(x3p, m = 2, mY = m, offset = 0, offsetY = offset)
sample_x3p(x3p, m = 2, mY = m, offset = 0, offsetY = offset)
```

Arguments

хЗр	x3p object
m	integer value - every mth value is included in the sample
mY	integer value - every mth value is included in the sample in x direction and every mYth value is included in y direction
offset	integer value between 0 and m-1 to specify offset of the sample
offsetY	integer value between 0 and mY-1 to specify different offsets for x and y direction

Value

down-sampled x3p object

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
# down-sample to one-fourth of the image:
logo4 <- x3p_sample(logo, m=4)
dim(logo4$surface.matrix)
## Not run:
x3p_image(logo)
x3p_image(logo4)</pre>
```

End(Not run)

x3p_scale_unit Scale x3p object by given unit

Description

x3p objects can be presented in different units. ISO standard 5436_2 asks for specification of values in meters. For topographic surfaces collected by microscopes values in microns are more readable. This functions allows to convert between different units.

Usage

```
x3p_scale_unit(x3p, scale_by)
```

Arguments

хЗр	object in x3p format, 3d topographic surface.
scale_by	numeric value. Value the surface to be scaled by. While not enforced, values of scale_by make most sense as multiples of 10 (for a metric system).

Value

x3p with header information in microns

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
logo # measurements in meters
x3p_scale_unit(logo, scale_by=10^6) # measurements in microns</pre>
```

Description

Interactive selection of rectangular area on the mask of an x3p object. Once the function runs, the active rgl window is brought to the front. Select the window with a click, then use click & drag to select a rectangular area. On release, this area is marked in the mask and (if update is TRUE) appears in the selection color in the active rgl window.

Usage

```
x3p_select(x3p, col = "#FF0000", update = TRUE)
```

Arguments

хЗр	x3p file
col	character value of the selection color
update	boolean value, whether the rgl window should be updated to show the selected rectangle

Value

x3p file with selection in mask

```
## Not run:
if (interactive) {
    if (!file.exists("fadul1-1.x3p")) {
        url <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement/DownloadMeasurement"
        file <- "2d9cc51f-6f66-40a0-973a-a9292dbee36d"
        download.file(file.path(url, file), destfile="fadul1-1.x3p")
    }
    x3p <- x3p_read("fadul1-1.x3p")
    x3p_image(x3p, size=c(500,500), zoom=.8)
    x3p <- x3p_select(x3p, update=TRUE, col="#FF0000")
    logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
    x3p_image(logo, size=c(500,500), zoom = 1)
    x3p_select(logo, update=TRUE, col="#00FF00")
}
## End(Not run)
```

x3p_shade_mask

Description

Apply color shading to the mask of a 3d topographic surface.

Usage

```
x3p_shade_mask(
  x3p,
  colors = rev(c("#b12819", "#d7301f", "#e16457", "#ffffff", "#5186a2", "#175d82",
    "#134D6B")),
  freqs = c(0, 0.05, 0.25, 0.45, 0.55, 0.75, 0.95, 1)
)
```

Arguments

хЗр	object containing a 3d topographic surface
colors	vector of colors
freqs	vector of values corresponding to color frequency (turned into quantiles of the differenced values)

Value

x3p object with color-shaded mask

```
## Not run:
data(wire)
x3p <- wire
x3p_image(x3p, size = c(400, 400), zoom=0.8)
x3p_with <- x3p %>% x3p_shade_mask()
x3p_image(x3p_with, size = c(400, 400), zoom=0.8)
data(lea)
lea %>% x3p_shade_mask() %>% x3p_image()
lea %>% x3p_shade_mask(freqs = c(0, 0.05, 0.1, 0.3,0.7, 0.9, 0.95, 1)) %>% x3p_image()
## End(Not run)
```

x3p_show_xml

Description

Identify xml fields by name and show content.

Usage

```
x3p_show_xml(x3p, element)
```

Arguments

x3p	x3p object
element	character or integer (vector). In case of character, name of xml field in the meta file. Note that element can contain regular expressions, e.g. "*" returns all meta
	fields. In case of integer, element is used as an index vector for the meta fields.

Value

list of exact field names and their contents

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
x3p_show_xml(logo, "creator") # all fields containing the word "creator"
x3p_show_xml(logo, "axis")
x3p_show_xml(logo, "CZ.AxisType")
# show all fields:
x3p_show_xml(logo, "*")
# show first five fields
x3p_show_xml(logo, 1:5)</pre>
```

x3p_snapshot Take a snapshot of the active rgl device and save in a file

Description

Make a snapshot of the current rgl device and save it to file. Options for file formats are png, svg, and stl (for 3d printing).

Usage

x3p_snapshot(file)

Arguments

file

file name for saving. The file extension determines the type of output. Possible extensions are png, stl (suitable for 3d printing), or svg.

x3p_to_df

Convert an x3p file into a data frame

Description

An x3p file consists of a list with meta info and a 2d matrix with scan depths. fortify turns the matrix into a data frame, using the parameters of the header as necessary.

Usage

x3p_to_df(x3p)

Arguments

х3р

a file in x3p format as returned by function x3p_read

Value

data frame with variables x, y, and value and meta function in attribute

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
logo_df <- x3p_to_df(logo)
head(logo_df)</pre>
```

x3p_transpose Transpose an x3p object

Description

Transpose the surface matrix of an x3p object. Also adjust meta information.

Usage

x3p_transpose(x3p)

transpose_x3p(x3p)

Arguments

x3p x3p object

x3p_trim_na

Examples

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
dim(logo$surface.matrix)
## Not run:
x3p_image(logo)
## End(Not run)
# transpose the image
logotp <- x3p_transpose(logo)
dim(logotp$surface.matrix)
## Not run:
x3p_image(logotp)
## End(Not run)</pre>
```

x3p_trim_na

Trim rows and columns with missing values only from an x3p

Description

Trims rows and columns from the edges of a surface matrix that contain missing values only.

Usage

x3p_trim_na(x3p, ratio = 1)

Arguments

х3р	x3p object
ratio	ratio between zero and one, indicating the percent of values that need to be
	missing in each row and column, for the row or column to be removed

Value

x3p object of the same or smaller dimension where missing values are removed from the boundaries

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
logo$surface.matrix[logo$surface.matrix == median(logo$surface.matrix)] <- NA
x3p_trim_na(logo) # reduced to dimension: 668 by 268</pre>
```

x3p_write

Description

Write an x3p object to a file

Usage

```
x3p_write(x3p, file, size = 8, quiet = F, create_dir = T)
```

write_x3p(x3p, file, size = 8, quiet = F)

Arguments

x3p	x3p object
file	path to where the file should be written
size	integer. The number of bytes per element in the surface matrix used for creating the binary file. Use size = 4 for 32 bit IEEE 754 floating point numbers and size = 8 for 64 bit IEEE 754 floating point number (default).
quiet	suppress messages
create_dir	boolean. create directory for saving file, if necessary. Posts a message in case a directory is created.

```
logo <- x3p_read(system.file("csafe-logo.x3p", package="x3ptools"))
# write a copy of the file into a temporary file
x3p_write(logo, file = tempfile(fileext="x3p"))</pre>
```

Index

* datasets lea, 4 wire,7 addtemplate_x3p(x3p_add_meta), 12 df_to_x3p, 3 head.x3p, 3 image.x3p,4 image_x3p(x3p_image), 23 interpolate_x3p (x3p_interpolate), 24 lea,4 print.x3p, 5 read_x3p (x3p_read), 28 rotate_x3p (x3p_rotate), 30 sample_x3p(x3p_sample), 31 stl_to_x3p, 5 tmd_to_x3p, 6 transpose_x3p (x3p_transpose), 36 wire,7 write_x3p(x3p_write), 38 x3p_add_annotation,7 x3p_add_grid, 8 x3p_add_hline, 9 x3p_add_legend, 10 x3p_add_mask, 10 x3p_add_mask_layer,11 x3p_add_meta, 12 x3p_add_vline, 12 x3p_average, 13 x3p_bin_stripes, 14 x3p_circle_select, 15 x3p_crop, 16

x3p_darker, 16 x3p_delete_mask, 17 x3p_extract, 17 x3p_extract_profile, 18 x3p_extract_profile_segments, 19 x3p_flip_x, 20 x3p_flip_y, 21 x3p_fuzzyselect, 22 x3p_get_scale, 23 x3p_image, 23 x3p_interpolate, 24 x3p_lighter, 25 x3p_m_to_mum, 28 x3p_mask_legend, 26 x3p_mask_quantile, 26 x3p_modify_xml, 27 x3p_read, 28 x3p_read_dat, 29 x3p_read_plux, 30 x3p_rotate, 30 x3p_sample, 31 x3p_scale_unit, 32 x3p_select, 33 x3p_shade_mask, 34 x3p_show_xml, 35 x3p_snapshot, 35 x3p_to_df, 36 x3p_transpose, 36 x3p_trim_na, 37 x3p_write, 38 x_flip_x3p (x3p_flip_x), 20 y_flip_x3p (x3p_flip_y), 21