Package 'wqtrends'

July 9, 2025

Title Assess Water Quality Trends with Generalized Additive Models

Version 1.5.1

Date 2025-07-09

Description Assess Water Quality Trends for Long-Term Monitoring Data in Estuaries using Generalized Additive Models following Wood (2017) <doi:10.1201/9781315370279> and Error Propagation with Mixed-Effects Meta-

Analysis following Sera et al. (2019) <doi:10.1002/sim.8362>.

Methods are available for model fitting, assessment of fit, annual and seasonal trend tests, and visualization of results.

Depends R (>= 3.5)

Imports dplyr, ggplot2, lubridate, mgcv, mixmeta, plotly, purrr, tibble, tidyr, viridisLite

License CC0

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

BugReports https://github.com/tbep-tech/wqtrends/issues

Suggests testthat (>= 2.1.0), covr, english, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Marcus Beck [aut, cre] (ORCID: <https://orcid.org/0000-0002-4996-0059>), Perry de Valpine [aut], Rebecca Murphy [aut], Ian Wren [aut], Ariella Chelsky [aut], Melissa Foley [aut] (ORCID: <https://orcid.org/0000-0002-5832-6404>), David Senn [aut] (ORCID: <https://orcid.org/0000-0002-4869-3550>)

Maintainer Marcus Beck <mbeck@tbep.org>

Repository CRAN

Date/Publication 2025-07-09 20:50:02 UTC

Contents

2	lz_avgseason			2
8	lz_backtrans			3
8	lz_fit			4
8	lz_gam			5
8	lz_metseason			6
2	lz_mixmeta			7
8	lz_perchg			8
8	lz_prd			9
2	lz_prdday			9
8	lz_prdmatrix			10
8	lz_pvalformat			11
	lz_smooth			
8	lz_sumstats			12
	lz_sumtrndseason			14
	lz_trans			
	lz_trndseason			
	wdat			
	ow_metseason			
	ow_mettrndseason			
	ow_perchg			
	ow_prd3d			
	ow_prddoy			
	ow_prdseason			
	ow_prdseries			
	ow_sumtrndseason			
	ow_sumtrndseason2			
S	ow_trndseason	•••	•	30
				32

Index

anlz_avgseason Ex

Extract period (seasonal) averages from fitted GAM

Description

Extract period (seasonal) averages from fitted GAM

Usage

```
anlz_avgseason(mod, doystr = 1, doyend = 364, yromit = NULL)
```

Arguments

mod	input model object as returned by anlz_gam
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
yromit	optional numeric vector for years to omit from the output

anlz_backtrans

Value

A data frame of period averages

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_avgseason(mod, doystr = 90, doyend = 180)</pre>
```

anlz_backtrans

Back-transform response variable

Description

Back-transform response variable after fitting GAM

Usage

anlz_backtrans(dat)

Arguments

dat input data with trans argument

Details

dat can be output from anlz_trans or anlz_prd

Value

dat with the value column back-transformed using info from the trans column

```
library(dplyr)
```

```
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl')
dat <- anlz_trans(tomod, trans = 'log10')
backtrans <- anlz_backtrans(dat)
head(backtrans)</pre>
```

```
mod <- anlz_gam(tomod, trans = 'log10')
dat <- anlz_prd(mod)
backtrans <- anlz_backtrans(dat)
head(backtrans)</pre>
```

anlz_fit

Return summary statistics for GAM fits

Description

Return summary statistics for GAM fits

Usage

anlz_fit(mod)

Arguments

mod

input model object as returned by anlz_gam

Details

Results show the overall summary of the model as Akaike Information Criterion (AIC), the generalized cross-validation score (GCV), and the R2 values. Lower values for AIC and GCV and higher values for R2 indicate improved model fit.

Value

A data.frame with summary statistics for GAM fits

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl')
mod <- anlz_gam(tomod, trans = 'log10')
anlz_fit(mod)</pre>
```

4

anlz_gam

Description

Fit a generalized additive model to a water quality time series

Usage

```
anlz_gam(moddat, kts = NULL, ...)
```

Arguments

moddat	input raw data, one station and paramater
kts	optional numeric vector for the upper limit for the number of knots in the term s(cont_year), see details
	additional arguments passed to other methods, i.e., trans = 'log10' (default) or trans = 'ident' passed to anlz_trans

Details

The model structure is as follows:

model S: chl ~ s(cont_year, k = large)

The cont_year vector is measured as a continuous numeric variable for the annual effect (e.g., January 1st, 2000 is 2000.0, July 1st, 2000 is 2000.5, etc.) and doy is the day of year as a numeric value from 1 to 366. The function s models cont_year as a smoothed, non-linear variable. The optimal amount of smoothing on cont_year is determined by cross-validation as implemented in the mgcv package and an upper theoretical upper limit on the number of knots for k should be large enough to allow sufficient flexibility in the smoothing term. The upper limit of k was chosen as 12 times the number of years for the input data. If insufficient data are available to fit a model with the specified k, the number of knots is decreased until the data can be modelled, e.g., 11 times the number of years, 10 times the number of years, etc.

Value

a gam model object

```
library(dplyr)
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl')
anlz_gam(tomod, trans = 'log10')
```

anlz_metseason

Description

Extract period (seasonal) metrics from fitted GAM

Usage

```
anlz_metseason(
   mod,
   metfun = mean,
   doystr = 1,
   doyend = 364,
   nsim = 10000,
   yromit = NULL,
   ...
)
```

Arguments

mod	input model object as returned by anlz_gam
metfun	function input for metric to calculate, e.g., mean, var, max, etc
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
nsim	numeric indicating number of random draws for simulating uncertainty
yromit	optional numeric vector for years to omit from the output
	additional arguments passed to metfun, e.g., na.rm = TRUE

Details

This function estimates a metric of interest for a given seasonal period each year using results from a fitted GAM (i.e., from anlz_gam). The estimates are based on the predicted values for each seasonal period, with uncertainty of the metric based on repeated sampling of the predictions following uncertainty in the model coefficients.

Value

A data frame of period metrics

anlz_mixmeta

library(dplyr)

Examples

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_metseason(mod, mean, doystr = 90, doyend = 180, nsim = 100)
```

anlz_mixmeta Fit a mixed meta-analysis regression model of trends

Description

Fit a mixed meta-analysis regression model of trends

Usage

anlz_mixmeta(metseason, yrstr = 2000, yrend = 2019)

Arguments

metseason	output from anlz_metseason
yrstr	numeric for starting year
yrend	numeric for ending year

Details

Parameters are not back-transformed if the original GAM used a transformation of the response variable

Value

A list of mixmeta fitted model objects

```
library(dplyr)
```

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
```

```
mod <- anlz_gam(tomod, trans = 'log10')
metseason <- anlz_metseason(mod, doystr = 90, doyend = 180)
anlz_mixmeta(metseason, yrstr = 2016, yrend = 2019)</pre>
```

anlz_perchg

Estimate percent change trends from GAM results for selected time periods

Description

Estimate percent change trends from GAM results for selected time periods

Usage

anlz_perchg(mod, baseyr, testyr)

Arguments

mod	input model object as returned by anlz_gam
baseyr	numeric vector of starting years
testyr	numeric vector of ending years

Details

Working components of this function were taken from the gamDiff function in the baytrends package.

Value

A data frame of summary results for change between the years.

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl')
mod <- anlz_gam(tomod, trans = 'log10')
anlz_perchg(mod, baseyr = 1990, testyr = 2016)</pre>
```

8

anlz_prd

Description

Get predicted data from fitted GAMs across period of observation

Usage

```
anlz_prd(mod, annual = FALSE)
```

Arguments

mod	input model object as returned by anlz_gam
annual	logical indicating if predictions only for the cont_year smoother are returned

Value

a data.frame with predictions

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_prd(mod)</pre>
```

anlz_prdday	Get predicted data from fitted GAMs across period of observation, ev-
	ery day

Description

Get predicted data from fitted GAMs across period of observation, every day

Usage

anlz_prdday(mod)

Arguments

mod

input model object as returned by anlz_gam

Value

a data.frame with predictions

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl') %>%
  filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_prdday(mod)</pre>
```

anlz_prdmatrix Get prediction matrix for a fitted GAM

Description

Get prediction matrix for a fitted GAM

Usage

```
anlz_prdmatrix(mod, doystr = 1, doyend = 364, avemat = FALSE)
```

Arguments

mod	input model object as returned by anlz_gam
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
avemat	logical indicating if the prediction matrix is to be passed to anlz_metseason (default) or anlz_avgseason

Details

Used internally by anlz_metseason, not to be used by itself

Value

a data.frame with predictors to use with the fitted GAM

anlz_pvalformat

library(dplyr)

Examples

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_prdmatrix(mod, doystr = 90, doyend = 180)
```

anlz_pvalformat Format p-values for show functions

Description

Format p-values for show functions

Usage

anlz_pvalformat(x)

Arguments

х

numeric input p-value

Value

p-value formatted as a text string, one of p < 0.001, 'p < 0.01', p < 0.05, or ns for not significant

Examples

anlz_pvalformat(0.05)

anlz_smooth Return summary statistics for smoothers of GAMs

Description

Return summary statistics for smoothers of GAMs

Usage

anlz_smooth(mod)

Arguments

mod

input model object as returned by anlz_gam

Details

Results show the individual effects of the modelled components of each model as the estimated degrees of freedom (edf), the reference degrees of freedom (Ref.df), the test statistic (F), and significance of the component (p-value). The significance of the component is in part based on the difference between edf and Ref.df.

Value

a data. frame with summary statistics for smoothers in each GAM

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl')
mod <- anlz_gam(tomod, trans = 'log10')
anlz_smooth(mod)</pre>
```

anlz_sumstats

Retrieve summary statistics for seasonal metrics and trend results

Description

Retrieve summary statistics for seasonal metrics and trend results

Usage

```
anlz_sumstats(
    mod,
    metfun = mean,
    doystr = 1,
    doyend = 364,
    yrstr = 2000,
    yrend = 2019,
    yromit = NULL,
    nsim = 10000,
    confint = 0.95,
    useave = FALSE,
    ...
)
```

anlz_sumstats

Arguments

mod	input model object as returned by anlz_gam
metfun	function input for metric to calculate, e.g., mean, var, max, etc
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
yrstr	numeric for starting year for trend model, see details
yrend	numeric for ending year for trend model, see details
yromit	optional numeric vector for years to omit from the plot, see details
nsim	numeric indicating number of random draws for simulating uncertainty
confint	numeric from zero to one indicating confidence interval level for summarizing the mixed-effects meta-analysis model, see details
useave	logical indicating if anlz_avgseason is used for the seasonal metric calculation, see details
	additional arguments passed to metfun, e.g., na.rm = TRUE

Details

This function is primarily for convenience to return summary statistics of a fitted GAM from anlz_gam.

Note that confint only applies to the summary and coeffs list outputs. It does not apply to the metseason list element output that is default set to 95

Set useave = T to speed up calculations if metfun = mean. This will use anlz_avgseason to estimate the seasonal summary metrics using a non-stochastic equation.

Value

A list object with named elements:

- mixmet: mixmeta object of the fitted mixed-effects meta-analysis trend model
- metseason: tibble object of the fitted seasonal metrics as returned by anlz_metseason or anlz_avgseason
- summary: summary of the mixmet object
- coeffs: tibble object of the slope estimate coefficients from the mixmet model. An approximately linear slope estimate will be included as slope.approx if trans = 'log10' for the GAM used in mod.

```
library(dplyr)
```

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
```

```
mod <- anlz_gam(tomod, trans = 'log10')
anlz_sumstats(mod, metfun = mean, doystr = 90, doyend = 180, yrstr = 2016,
yrend = 2019, nsim = 100)</pre>
```

anlz_sumtrndseason Estimate seasonal rates of change based on average estimates for multiple window widths

Description

Estimate seasonal rates of change based on average estimates for multiple window widths

Usage

```
anlz_sumtrndseason(
  mod,
  doystr = 1,
  doyend = 364,
  justify = c("center", "left", "right"),
  win = 5:15,
  yromit = NULL
)
```

Arguments

mod input model object as returned by anlz_gam	
doystr numeric indicating start Julian day for extracting averages	
doyend numeric indicating ending Julian day for extracting averages	
justify chr string indicating the justification for the trend window	
win numeric vector indicating number of years to use for the trend wind	ow
yromit optional numeric vector for years to omit from the plot, see details	

Details

The optional yromit vector can be used to omit years from the plot and trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.

This function is a wrapper to anlz_trndseason to loop across values in win, using useave = TRUE for quicker calculation of average seasonal metrics. It does not work with any other seasonal metric calculations.

Value

A data frame of slope estimates and p-values for each year

anlz_trans

See Also

Other analyze: anlz_trans(), anlz_trndseason()

Examples

```
library(dplyr)
# data to model
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl') %>%
  filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_sumtrndseason(mod, doystr = 90, doyend = 180, justify = 'center', win = 2:3)</pre>
```

anlz_trans

Transform response variable

Description

Transform response variable prior to fitting GAM

Usage

```
anlz_trans(moddat, trans = c("log10", "ident"))
```

Arguments

moddat	input raw data, one station and paramater
trans	chr string indicating desired type of transformation, one of log10 or ident (no transformation)

Value

moddat with the value column transformed as indicated

See Also

Other analyze: anlz_sumtrndseason(), anlz_trndseason()

```
library(dplyr)
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl')
anlz_trans(tomod, trans = 'log10')
```

anlz_trndseason

Description

Estimate rates of change based on seasonal metrics

Usage

```
anlz_trndseason(
  mod,
  metfun = mean,
  doystr = 1,
  doyend = 364,
  justify = c("center", "left", "right"),
  win = 5,
  nsim = 10000,
  yromit = NULL,
  useave = FALSE,
  ...
)
```

Arguments

mod	input model object as returned by anlz_gam
metfun	function input for metric to calculate, e.g., mean, var, max, etc
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
justify	chr string indicating the justification for the trend window
win	numeric indicating number of years to use for the trend window, see details
nsim	numeric indicating number of random draws for simulating uncertainty
yromit	optional numeric vector for years to omit from the output
useave	logical indicating if anlz_avgseason is used for the seasonal metric calculation, see details
	additional arguments passed to metfun, e.g., na.rm = TRUE

Details

Trends are based on the slope of the fitted linear trend within the window, where the linear trend is estimated using a meta-analysis regression model (from anlz_mixmeta) for the seasonal metrics (from anlz_metseason). Set useave = T to speed up calculations if metfun = mean. This will use anlz_avgseason to estimate the seasonal summary metrics using a non-stochastic equation.

Note that for left and right windows, the exact number of years in win is used. For example, a left-centered window for 1990 of ten years will include exactly ten years from 1990, 1991, ... ,

rawdat

1999. The same applies to a right-centered window, e.g., 1990 would include 1981, 1982, ..., 1990 (if those years have data). However, for a centered window, picking an even number of years for the window width will create a slightly off-centered window because it is impossible to center on an even number of years. For example, if win = 8 and justify = 'center', the estimate for 2000 will be centered on 1997 to 2004 (three years left, four years right, eight years total). Centering for window widths with an odd number of years will always create a symmetrical window, i.e., if win = 7 and justify = 'center', the estimate for 2000 will be centered on 1997 and 2003 (three years left, three years right, seven years total).

The optional yromit vector can be used to omit years from the trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.

Value

A data frame of slope estimates and p-values for each year

See Also

Other analyze: anlz_sumtrndseason(), anlz_trans()

Examples

library(dplyr)

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
anlz_trndseason(mod, doystr = 90, doyend = 180, justify = 'center', win = 4)
```

rawdat

Raw data from San Francisco Estuary (South Bay)

Description

Raw data from San Francisco Estuary (South Bay)

Usage

rawdat

Format

A data.frame object with 12411 rows and 8 columns

date Date station int param chr value num doy num cont_year num yr num mo Ord.factor

Details

Data from datprc object in https://github.com/fawda123/SFbaytrends

show_metseason	Plot period (seasonal) averages from fitted GAM
----------------	---

Description

Plot period (seasonal) averages from fitted GAM

Usage

```
show_metseason(
 mod,
 metfun = mean,
 doystr = 1,
 doyend = 364,
 yrstr = 2000,
 yrend = 2019,
 yromit = NULL,
 ylab,
 width = 0.9,
  size = 1.5,
  seascol = "deepskyblue3",
  trndcol = "pink",
  nsim = 10000,
 useave = FALSE,
 base_size = 11,
 xlim = NULL,
 ylim = NULL,
  . . .
)
```

18

Arguments

mod	input model object as returned by anlz_gam
metfun	function input for metric to calculate, e.g., mean, var, max, etc
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
yrstr	numeric for starting year for trend model, see details
yrend	numeric for ending year for trend model, see details
yromit	optional numeric vector for years to omit from the plot, see details
ylab	chr string for y-axis label
width	numeric for width of error bars
size	numeric for point size
seascol	chr string for color of the seasonal averages
trndcol	chr sting for color of the trend line
nsim	numeric indicating number of random draws for simulating uncertainty
useave	logical indicating if anlz_avgseason is used for the seasonal metric calculation, see details
base_size	numeric indicating base font size, passed to theme_bw
xlim	optional numeric vector of length two for x-axis limits
ylim	optional numeric vector of length two for y-axis limits
	additional arguments passed to metfun, e.g., na.rm = TRUE

Details

Setting yrstr or yrend to NULL will suppress plotting of the trend line for the meta-analysis regression model.

The optional yromit vector can be used to omit years from the plot and trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.

Set useave = T to speed up calculations if metfun = mean. This will use anlz_avgseason to estimate the seasonal summary metrics using a non-stochastic equation.

Value

A ggplot object

```
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
```

```
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'ident')
show_metseason(mod, doystr = 90, doyend = 180, yrstr = 2016, yrend = 2019,
    ylab = 'Chlorophyll-a (ug/L)')
# show seasonal metrics without annual trend
show_metseason(mod, doystr = 90, doyend = 180, yrstr = NULL, yrend = NULL,
    ylab = 'Chlorophyll-a (ug/L)')
# omit years from the analysis
show_metseason(mod, doystr = 90, doyend = 180, yrstr = 2016, yrend = 2019,
    yromit = 2017, ylab = 'Chlorophyll-a (ug/L)')</pre>
```

show_mettrndseason Plot seasonal metrics and rates of change

Description

Plot seasonal metrics and rates of change

Usage

```
show_mettrndseason(
 mod,
 metfun = mean,
 doystr = 1,
 doyend = 364,
  justify = c("center", "left", "right"),
 win = 5,
 nsim = 10000,
 useave = FALSE,
 yromit = NULL,
 ylab,
 width = 0.9,
  size = 3,
 nms = NULL,
  fils = NULL,
  cmbn = F,
 base_size = 11,
 xlim = NULL,
 ylim = NULL,
  . . .
)
```

Arguments

mod	input model object as returned by anlz_gam
metfun	function input for metric to calculate, e.g., mean, var, max, etc
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
justify	chr string indicating the justification for the trend window
win	numeric indicating number of years to use for the trend window, see details
nsim	numeric indicating number of random draws for simulating uncertainty
useave	logical indicating if anlz_avgseason is used for the seasonal metric calculation, see details
yromit	optional numeric vector for years to omit from the plot, see details
ylab	chr string for y-axis label
width	numeric for width of error bars
size	numeric for point size
nms	optional character vector for trend names, see details
fils	optional character vector for the fill of interior point colors, see details
cmbn	logical indicating if the no trend and no estimate colors should be combined, see details
base_size	numeric indicating base font size, passed to theme_bw
xlim	optional numeric vector of length two for x-axis limits
ylim	optional numeric vector of length two for y-axis limits
	additional arguments passed to metfun, e.g., na.rm = TRUE

Details

The plot is the same as that returned by show_metseason with the addition of points for the seasonal metrics colored by the trends estimated from anlz_trndseason for the specified window and justification.

Four colors are used to define increasing, decreasing, no trend, or no estimate (i.e., too few points for the window). The names and the colors can be changed using the nms and fils arguments, respectively. The cmbn argument can be used to combine the no trend and no estimate colors into one color and label. Although this may be desired for aesthetic reasons, the colors and labels may be misleading with the default names since no trend is shown for points where no estimates were made.

The optional yromit vector can be used to omit years from the plot and trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.

Value

A ggplot object

Examples

library(dplyr)

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
show_mettrndseason(mod, metfun = mean, doystr = 90, doyend = 180, justify = 'center',
win = 4, ylab = 'Chlorophyll-a (ug/L)')
```

show_perchg

```
Plot percent change trends from GAM results for selected time periods
```

Description

Plot percent change trends from GAM results for selected time periods

Usage

```
show_perchg(
  mod,
  baseyr,
  testyr,
  ylab,
  base_size = 11,
  xlim = NULL,
  ylim = NULL
)
```

Arguments

mod	input model object as returned by anlz_gam
baseyr	numeric vector of starting years
testyr	numeric vector of ending years
ylab	chr string for y-axis label
base_size	numeric indicating base font size, passed to theme_bw
xlim	optional numeric vector of length two for x-axis limits
ylim	optional numeric vector of length two for y-axis limits

Value

A ggplot object

22

show_prd3d

Examples

library(dplyr)

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl')
mod <- anlz_gam(tomod, trans = 'log10')
show_perchg(mod, baseyr = 1995, testyr = 2016, ylab = 'Chlorophyll-a (ug/L)')
```

show_prd3d Plot a 3-d surface of predictions

Description

Plot a 3-d surface of predictions

Usage

show_prd3d(mod, ylab)

Arguments

mod	input model object as returned by anlz_gam
ylab	chr string for y-axis label

Value

a plotly surface

```
library(dplyr)
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
show_prd3d(mod, ylab = 'Chlorophyll-a (ug/L)')</pre>
```

show_prddoy

Description

Plot predictions for GAMs against day of year

Usage

show_prddoy(mod, ylab, yromit = NULL, size = 0.5, alpha = 1, base_size = 11)

Arguments

mod	input model object as returned by anlz_gam
ylab	chr string for y-axis label
yromit	optional numeric vector for years to omit from the plot, see details
size	numeric indicating line size
alpha	numeric from 0 to 1 indicating line transparency
base_size	numeric indicating base font size, passed to theme_bw

Details

The optional yromit vector can be used to omit years from the plot. This may be preferred if the predicted values from the model deviate substantially from other years likely due to missing data.

Value

A ggplot object

```
library(dplyr)
# data to model
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl')
mod <- anlz_gam(tomod, trans = 'log10')
show_prddoy(mod, ylab = 'Chlorophyll-a (ug/L)')</pre>
```

show_prdseason

Description

Plot predictions for GAMs over time, by season

Usage

```
show_prdseason(
 mod,
 ylab,
 yromit = NULL,
 base_size = 11,
 xlim = NULL,
 ylim = NULL
)
```

Arguments

mod	input model object as returned by anlz_gam
ylab	chr string for y-axis label
yromit	optional numeric vector for years to omit from the plot, see details
base_size	numeric indicating base font size, passed to theme_bw
xlim	optional numeric vector of length two for x-axis limits
ylim	optional numeric vector of length two for y-axis limits

Value

A ggplot object

```
library(dplyr)
# data to model
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl') %>%
  filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')</pre>
show_prdseason(mod, ylab = 'Chlorophyll-a (ug/L)')
```

show_prdseries

Description

Plot predictions for GAMs over time series

Usage

```
show_prdseries(
  mod,
  ylab,
  yromit = NULL,
  alpha = 0.7,
  base_size = 11,
  xlim = NULL,
  ylim = NULL,
  col = "brown"
)
```

Arguments

mod	input model object as returned by anlz_gam
ylab	chr string for y-axis label
yromit	optional numeric vector for years to omit from the plot, see details
alpha	numeric from 0 to 1 indicating line transparency
base_size	numeric indicating base font size, passed to theme_bw
xlim	optional numeric vector of length two for x-axis limits
ylim	optional numeric vector of length two for y-axis limits
col	optional chr string for line color

Details

The optional yromit vector can be used to omit years from the plot. This may be preferred if the predicted values from the model deviate substantially from other years likely due to missing data.

Value

A ggplot object

show_sumtrndseason

library(dplyr)

Examples

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl')
mod <- anlz_gam(tomod, trans = 'log10')
show_prdseries(mod, ylab = 'Chlorophyll-a (ug/L)')
```

show_sumtrndseason Plot seasonal rates of change based on average estimates for multiple window widths

Description

Plot seasonal rates of change based on average estimates for multiple window widths

Usage

```
show_sumtrndseason(
    mod,
    doystr = 1,
    doyend = 364,
    yromit = NULL,
    justify = c("center", "left", "right"),
    win = 5:15,
    txtsz = 6,
    cols = c("lightblue", "lightgreen"),
    base_size = 11
)
```

Arguments

mod	input model object as returned by anlz_gam
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
yromit	optional numeric vector for years to omit from the plot, see details
justify	chr string indicating the justification for the trend window
win	numeric vector indicating number of years to use for the trend window
txtsz	numeric for size of text labels inside the plot
cols	vector of low/high colors for trends
base_size	numeric indicating base font size, passed to theme_bw

Details

This function plots output from anlz_sumtrndseason.

The optional yromit vector can be used to omit years from the plot and trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.

Value

A ggplot2 plot

See Also

Other show: show_sumtrndseason2()

Examples

```
library(dplyr)
```

```
# data to model
tomod <- rawdat %>%
filter(station %in% 34) %>%
filter(param %in% 'chl') %>%
filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
show_sumtrndseason(mod, doystr = 90, doyend = 180, justify = 'center', win = 2:3)
```

show_sumtrndseason2 Plot seasonal rates of change in quarters based on average estimates for multiple window widths

Description

Plot seasonal rates of change in quarters based on average estimates for multiple window widths

Usage

```
show_sumtrndseason2(
   mod,
   yromit = NULL,
   justify = c("center", "left", "right"),
   win = 5:15,
   txtsz = 6,
   cols = c("lightblue", "lightgreen"),
   base_size = 11
)
```

Arguments

mod	input model object as returned by anlz_gam
yromit	optional numeric vector for years to omit from the plot, see details
justify	chr string indicating the justification for the trend window
win	numeric vector indicating number of years to use for the trend window
txtsz	numeric for size of text labels inside the plot
cols	vector of low/high colors for trends
base_size	numeric indicating base font size, passed to theme_bw

Details

This function is similar to show_sumtrndseason but results are grouped into seasonal quarters as four separate plots with a combined color scale.

The optional yromit vector can be used to omit years from the plot and trend assessment. This may be preferred if seasonal estimates for a given year have very wide confidence intervals likely due to limited data, which can skew the trend assessments.

Value

A ggplot2 plot

See Also

Other show: show_sumtrndseason()

```
library(dplyr)
```

```
# data to model
tomod <- rawdat %>%
  filter(station %in% 34) %>%
  filter(param %in% 'chl') %>%
  filter(yr > 2015)
mod <- anlz_gam(tomod, trans = 'log10')
show_sumtrndseason2(mod, justify = 'center', win = 2:3)
```

show_trndseason

Description

Plot rates of change based on seasonal metrics

Usage

```
show_trndseason(
 mod,
 metfun = mean,
 doystr = 1,
 doyend = 364,
  type = c("log10", "approx"),
  justify = c("left", "right", "center"),
 win = 5,
 ylab,
 nsim = 10000,
 yromit = NULL,
 useave = FALSE,
 base_size = 11,
 nms = NULL,
 fils = NULL,
 cols = NULL,
 xlim = NULL,
 ylim = NULL,
  . . .
)
```

Arguments

mod	input model object as returned by anlz_gam
metfun	function input for metric to calculate, e.g., mean, var, max, etc
doystr	numeric indicating start Julian day for extracting averages
doyend	numeric indicating ending Julian day for extracting averages
type	chr string indicating if log slopes are shown (if applicable)
justify	chr string indicating the justification for the trend window
win	numeric indicating number of years to use for the trend window, see details
ylab	chr string for y-axis label
nsim	numeric indicating number of random draws for simulating uncertainty
yromit	optional numeric vector for years to omit from the output
useave	logical indicating if anlz_avgseason is used for the seasonal metric calculation, see details

base_size	numeric indicating base font size, passed to theme_bw
nms	optional character vector for trend names
fils	optional character vector for the fill of interior point colors
cols	optional character vector for confidence interval colors
xlim	optional numeric vector of length two for x-axis limits
ylim	optional numeric vector of length two for y-axis limits
	additional arguments passed to metfun, e.g., na.rm = TRUE

Value

A ggplot object

Index

```
* analyze
    anlz_avgseason, 2
    anlz_backtrans, 3
    anlz_fit,4
    anlz_gam, 5
    anlz_metseason, 6
    anlz_mixmeta, 7
    anlz_perchg, 8
    anlz_prd, 9
    anlz_prdday, 9
    anlz_prdmatrix, 10
    anlz_pvalformat, 11
    anlz_smooth, 11
    anlz_sumstats, 12
    anlz_sumtrndseason, 14
    anlz_trans, 15
    anlz_trndseason, 16
* datasets
    rawdat, 17
* show
    show_metseason, 18
    show_mettrndseason, 20
    show_perchg, 22
    show_prd3d, 23
    show_prddoy, 24
    show_prdseason, 25
    show_prdseries, 26
    show_sumtrndseason, 27
    show_sumtrndseason2, 28
    show_trndseason, 30
* utilities
    rawdat, 17
anlz_avgseason, 2, 13, 16, 19
anlz_backtrans, 3
anlz_fit,4
anlz_gam, 2, 4, 5, 6, 8-10, 12-14, 16, 19,
        21–27, 29, 30
anlz_metseason, 6, 7, 10, 13, 16
anlz_mixmeta, 7, 16
```

anlz_perchg, 8 anlz_prd, 3, 9 anlz_prdday, 9 anlz_prdmatrix, 10 anlz_pvalformat, 11 anlz_smooth, 11 anlz_sumstats, 12 anlz_sumtrndseason, 14, 15, 17, 28 anlz_trans, 3, 5, 15, 15, 17 anlz_trndseason, 14, 15, 16, 21 gam, 5 ggplot, 19, 21, 22, 24-26, 31 ggplot2, 28, 29 mixmeta, 7, 13 rawdat, 17 s, 5 show_metseason, 18, 21 show_mettrndseason, 20 show_perchg, 22 show_prd3d, 23 show_prddoy, 24 show_prdseason, 25 show_prdseries, 26 show_sumtrndseason, 27, 29 show_sumtrndseason2, 28, 28

theme_bw, 19, 21, 22, 24-27, 29, 31

show_trndseason, 30