Package 'weyl'

April 8, 2025

Type Package Title The Weyl Algebra Version 0.0-7 **Depends** methods, R (>= 4.1.0)Maintainer Robin K. S. Hankin <hankin.robin@gmail.com> **Description** A suite of routines for Weyl algebras. Notation follows Coutinho (1995, ISBN 0-521-55119-6, ``A Primer of Algebraic D-Modules"). Uses 'disordR' discipline (Hankin 2022 <doi:10.48550/arXiv.2210.03856>). To cite the package in publications, use Hankin 2022 <doi:10.48550/arXiv.2212.09230>. License GPL (>= 2) LazyData yes Suggests knitr, rmarkdown, test that, covr VignetteBuilder knitr **Imports** disordR (>= 0.0-8), freealg (>= 1.0-4), spray (>= 1.0-27) URL https://github.com/RobinHankin/weyl, https://robinhankin.github.io/weyl/ BugReports https://github.com/RobinHankin/weyl/issues NeedsCompilation no Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) **Repository** CRAN Date/Publication 2025-04-08 10:00:02 UTC

Contents

weyl-package	 2
coeffs	 3
constant	 4

weyl-package

	_
degree	5
derivation	6
dim	7
dot-class	8
drop	8
grade	9
horner	10
	11
	12
-r-	13
print.weyl	14
rweyl	16
spray	17
weyl	18
weyl-class	19
x_and_d	19
Zero	20
2010	20
	21

Index

weyl-package

The Weyl Algebra

Description

A suite of routines for Weyl algebras. Notation follows Coutinho (1995, ISBN 0-521-55119-6, "A Primer of Algebraic D-Modules"). Uses 'disordR' discipline (Hankin 2022 <doi:10.48550/arXiv.2210.03856>). To cite the package in publications, use Hankin 2022 <doi:10.48550/arXiv.2212.09230>.

Details

The DESCRIPTION file:

Package:	weyl
Туре:	Package
Title:	The Weyl Algebra
Version:	0.0-7
Depends:	methods, R (>= $4.1.0$)
Authors@R:	person(given=c("Robin", "K. S."), family="Hankin", role = c("aut", "cre"), email="hankin.robin@gmail.co
Maintainer:	Robin K. S. Hankin <hankin.robin@gmail.com></hankin.robin@gmail.com>
Description:	A suite of routines for Weyl algebras. Notation follows Coutinho (1995, ISBN 0-521-55119-6, "A Primer of
License:	GPL (>= 2)
LazyData:	yes
Suggests:	knitr,rmarkdown,testthat,covr
VignetteBuilder:	knitr
Imports:	disordR (>= 0.0-8), freealg (>= 1.0-4), spray (>= 1.0-27)
URL:	https://github.com/RobinHankin/weyl, https://robinhankin.github.io/weyl/
BugReports:	https://github.com/RobinHankin/weyl/issues

coeffs

Author:

Index of help topics:

Ops	Arithmetic Ops Group Methods for the Weyl algebra
coeffs	Manipulate the coefficients of a weyl object
constant	The constant term
degree	The degree of a 'weyl' object
derivation	Derivations
dim	The dimension of a 'weyl' object
dot-class	Class "dot"
drop	Drop redundant information
grade	The grade of a weyl object
horner	Horner's method
identity	The identity operator
ooom	One over one minus
print.weyl	Print methods for weyl objects
rweyl	Random weyl objects
spray	Create spray objects
weyl	The algebra and weyl objects
weyl-class	Class "weyl"
weyl-package	The Weyl Algebra
x_and_d	Generating elements for the first Weyl algebra
zero	The zero operator

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

Examples

```
x <- rweyl(d=1)
y <- rweyl(d=1)
z <- rweyl(d=1)
is.zero(x*(y*z) - (x*y)*z) # should be TRUE</pre>
```

```
coeffs
```

Manipulate the coefficients of a weyl object

Description

Manipulate the coefficients of a weyl object. The coefficients are disord objects.

constant

Usage

coeffs(S) <- value</pre>

Arguments

S	A weyl object
value	Numeric

Details

To access coefficients of a weyl object S, use spray::coeffs(S) [package idiom is coeffs(S)]. Similarly to access the index matrix use index(s).

The replacement method is package-specific; use coeffs(S) <-value.

Value

Extraction methods return a disord object (possibly dropped); replacement methods return a weyl object.

Author(s)

Robin K. S. Hankin

Examples

(a <- rweyl(9))
coeffs(a)
coeffs(a)[coeffs(a)<3] <- 100
a</pre>

constant

The constant term

Description

The constant of a weyl object is the coefficient of the term with all zeros.

Usage

constant(x, drop = TRUE)
constant(x) <- value</pre>

Arguments

х	Object of class weyl
drop	Boolean with default TRUE meaning to return the value of the coefficient, and FALSE meaning to return the corresponding Weyl object
value	Constant value to replace existing one

4

degree

Value

Returns a numeric or weyl object

Note

The constant.weyl() function is somewhat awkward because it has to deal with the difficult case where the constant is zero and drop=FALSE.

Author(s)

Robin K. S. Hankin

Examples

```
(a <- rweyl()+700)
constant(a)
constant(a,drop=FALSE)
constant(a) <- 0
constant(a)
constant(a,drop=FALSE)</pre>
```

constant(a+66) == constant(a) + 66

degree

The degree of a weyl object

Description

The *degree* of a monomial weyl object $x^a \partial^b$ is defined as a + b. The degree of a general weyl object expressed as a linear combination of monomials is the maximum of the degrees of these monomials. Following Coutinho we have:

- $\deg(d_1 + d_2) \le \max(\deg(d_1) + \deg(d_2))$
- $\deg(d_1d_2) = \deg(d_1) + \deg(d_2)$
- $\deg(d_1d_2 d_2d_1) \le \deg(d_1) + \deg(d_2) 2$

Usage

deg(S)

Arguments S

Object of class weyl

Value

Nonnegative integer (or $-\infty$ for the zero Weyl object)

6

Note

The degree of the zero object is conventionally $-\infty$.

Author(s)

Robin K. S. Hankin

Examples

```
(a <- rweyl())
deg(a)
d1 <- rweyl(n=2)
d2 <- rweyl(n=2)
deg(d1+d2) <= deg(d1) + deg(d2)
deg(d1*d2) == deg(d1) + deg(d2)
deg(d1*d2-d2*d1) <= deg(d1) + deg(d2) -2</pre>
```

derivation

Derivations

Description

A derivation D of an algebra A is a linear operator that satisfies $D(d_1d_2) = d_1D(d_2) + D(d_1)d_2$, for every $d_1, d_2 \in A$. If a derivation is of the form D(d) = [d, f] = df - fd for some fixed $f \in A$, we say that D is an *inner* derivation.

Function as.der() returns a derivation with as.der(f)(g)=fg-gf.

Usage

as.der(S)

Arguments S

Weyl object

Value

Returns a function, a derivation

Author(s)

Robin K. S. Hankin

dim

Examples

(o <- rweyl(n=2,d=2))
(f <- as.der(o))
d1 <-rweyl(n=1,d=2)
d2 <-rweyl(n=2,d=2)
f(d1*d2) == d1*f(d2) + f(d1)*d2 # should be TRUE</pre>

dim

The dimension of a weyl object

Description

The dimension of a weyl algebra is the number of variables needed; it is half the spray::arity(). The dimension of a Weyl algebra generated by $\{x_1, x_2, \ldots, x_n, \partial_{x_1}, \partial_{x_2}, \ldots, \partial_{x_n}\}$ is $n \pmod{2n}$.

Usage

S3 method for class 'weyl'
dim(x)

Arguments

x Object of class weyl

Value

Integer

Note

Empty spray objects give zero-dimensional weyl objects.

Author(s)

Robin K. S. Hankin

Examples

(a <- rweyl())
dim(a)</pre>

dot-class

Description

The dot object is defined so that idiom like . [x, y] returns the commutator, that is, xy-yx.

The dot object is generated by running script inst/dot.Rmd, which includes some further discussion and technical documentation, and creates file dot.rda which resides in the data/ directory.

The borcherds vignette discusses this in a more general context.

Arguments

х	Object of any class
i,j	elements to commute
	Further arguments to dot_error(), currently ignored

Value

Always returns an object of the same class as xy.

Author(s)

Robin K. S. Hankin

Examples

x <- rweyl(n=1,d=2)
y <- rweyl(n=1,d=2)
z <- rweyl(n=1,d=2)
.[x,.[y,z]] + .[y,.[z,x]] + .[z,.[x,y]] # Jacobi identity</pre>

drop

Drop redundant information

Description

Coerce constant weyl objects to numeric

Usage

drop(x)

grade

Arguments

x Weyl object

Details

If its argument is a constant weyl object, coerce to numeric.

Value

Returns either a length-one numeric vector or its argument, a weyl object

Note

Many functions in the package take drop as an argument which, if TRUE, means that the function returns a dropped value.

Author(s)

Robin K. S. Hankin

Examples

a <- rweyl() + 67 drop(a) drop(idweyl(9)) drop(constant(a,drop=FALSE))

grade

The grade of a weyl object

Description

The grade of a homogeneous term of a Weyl algebra is the sum of the powers. Thus the grade of $4xy^2\partial_x^3\partial_y^4$ is 1+2+3+4=10.

The functionality documented here closely follows the equivalent in the clifford package.

Coutinho calls this the symbol map.

Usage

grade(C, n, drop=TRUE)
grade(C,n) <- value
grades(x)</pre>

horner

Arguments

С, х	Weyl object
n	Integer vector specifying grades to extract
value	Replacement value, a numeric vector
drop	Boolean, with default TRUE meaning to coerce a constant operator to numeric, and FALSE meaning not to

Details

Function grades() returns an (unordered) vector specifying the grades of the constituent terms. Function grades<-() allows idiom such as grade(x, 1:2) <-7 to operate as expected [here to set all coefficients of terms with grades 1 or 2 to value 7].

Function grade(C,n) returns a Weyl object with just the elements of grade g, where g %in% n.

The zero grade term, grade(C, 0), is given more naturally by constant(C).

Value

Integer vector or weyl object

Author(s)

Robin K. S. Hankin

Examples

```
a <- rweyl(30)
grades(a)
grade(a,1:4)
grade(a,5:9) <- -99
a</pre>
```

horner

Horner's method

Description

Horner's method

Usage

horner(W,v)

Arguments

W	Weyl object
V	Numeric vector of coefficients

identity

Details

Given a formal polynomial

$$p(x) = a_0 + a_1 + a_2 x^2 + \dots + a_n x^n$$

it is possible to express p(x) in the algebraically equivalent form

$$p(x) = a_0 + x (a_1 + x (a_2 + \dots + x (a_{n-1} + xa_n) \dots))$$

which is much more efficient for evaluation, as it requires only n multiplications and n additions, and this is optimal.

Author(s)

Robin K. S. Hankin

See Also

ooom

Examples

```
horner(x,1:5)
horner(x+d,1:3)
```

2+x+d |> horner(1:3) |> horner(1:2)

identity

The identity operator

Description

The identity operator maps any function to itself.

Usage

```
idweyl(d)
## S3 method for class 'weyl'
as.id(S)
is.id(S)
```

Arguments

d	Integer specifying dimensionality of the weyl object (twice the spray arity)
S	A weyl object

Value

A weyl object corresponding to the identity operator

Note

The identity function cannot be called "id()" because then R would not know whether to create a spray or a weyl object.

Examples

```
idweyl(7)
a <- rweyl(d=5)
a
is.id(a)
is.id(1+a-a)
as.id(a)
a == a*1
a == a*as.id(a)</pre>
```

ooomOne over one minus

Description

Uses Taylor's theorem to give one over one minus a Weyl object

Usage

ooom(W,n)

Arguments

W	Weyl object
n	Order of expansion

Author(s)

Robin K. S. Hankin

See Also

horner

Ops

Examples

ooom(x+d, 4)

W <- x+x*d ooom(W,4)*(1-W) == 1-W^5

0ps

Arithmetic Ops Group Methods for the Weyl algebra

Description

Allows arithmetic operators such as addition, multiplication, division, integer powers, etc. to be used for weyl objects. Idiom such as $x^2 + y \cdot z/5$ should work as expected. Addition and subtraction, and scalar multiplication, are the same as those of the **spray** package; but "*" is interpreted as operator composition, and "^" is interpreted as repeated composition. A number of helper functions are documented here (which are not designed for the end-user).

Usage

```
## S3 method for class 'weyl'
Ops(e1, e2 = NULL)
weyl_prod_helper1(a,b,c,d)
weyl_prod_helper2(a,b,c,d)
weyl_prod_helper3(a,b,c,d)
weyl_prod_univariate_onerow(S1,S2,func)
weyl_prod_univariate_nrow(S1,S2)
weyl_prod_multivariate_onerow_singlecolumn(S1,S2,column)
weyl_prod_multivariate_nrow_allcolumns(S1,S2)
weyl_prod_multivariate_nrow_allcolumns(S1,S2)
weyl_power_scalar(S,n)
```

Arguments

S, S1, S2, e1, e2	Objects of class weyl, elements of a Weyl algebra
a, b, c, d	Integers, see details
column	column to be multiplied
n	Integer power (non-negative)
func	Function used for products

Details

All arithmetic is as for spray objects, apart from * and $^{}$. Here, * is interpreted as operator concatenation: Thus, if w_1 and w_2 are Weyl objects, then w_1w_2 is defined as the operator that takes fto $w_1(w_2f)$. Functions such as weyl_prod_multivariate_nrow_allcolumns() are low-level helper functions with self-explanatory names. In this context, "univariate" means the first Weyl algebra, generated by $\{x, \partial\}$, subject to $x\partial - \partial x = 1$; and "multivariate" means the algebra generated by $\{x_1, x_2, \ldots, x_n, \partial_{x_1}, \partial_{x_2}, \ldots, \partial_{x_n}\}$ where n > 1.

The product is somewhat user-customisable via option prodfunc, which affects function weyl_prod_univariate_onerow() Currently the package offers three examples: weyl_prod_helper1(), weyl_prod_helper2(), and weyl_prod_helper3(). These are algebraically identical but occupy different positions on the efficiency-readability scale. The option defaults to weyl_prod_helper3(), which is the fastest but most opaque. The vignette provides further details, motivation, and examples.

Powers, as in xⁿ, are defined in the usual way. Negative powers will always return an error.

Value

Generally, return a weyl object

Note

Function weyl_prod_univariate_nrow() is present for completeness, it is not used in the package

Author(s)

Robin K. S. Hankin

Examples

```
x <- rweyl(n=1,d=2)
y <- rweyl(n=1,d=2)
z <- rweyl(n=2,d=2)
x*(y+z) == x*y + x*z
is.zero(x*(y*z) - (x*y)*z)</pre>
```

print.weyl

Print methods for weyl objects

Description

Printing methods for weyl objects follow those for the **spray** package, with some additional functionality.

Usage

```
## S3 method for class 'weyl'
print(x, ...)
```

14

print.weyl

Arguments

х	A weyl object
	Further arguments, currently ignored

Details

Option polyform determines whether the object is to be printed in matrix form or polynomial form: as in the **spray** package, this option governs dispatch to either print_spray_polyform() or print_spray_matrixform().

```
> a <- rweyl()
      # default print method
> a
A member of the Weyl algebra:
 x y z dx dy dz
                      val
    2
       2
          2
            1
                0
                   =
                        3
  1
  2
    2 0 0 1 1 =
                        2
  0
    0
       0 1 1 2 =
                        1
> options(polyform = TRUE)
> a
A member of the Weyl algebra:
+3*x*y^2*z^2*dx^2*dy +2*x^2*y^2*dy*dz +dx*dy*dz^2
> options(polyform = FALSE) # restore default
```

Irrespective of the value of polyform, option weylvars controls the variable names. If NULL (the default), then sensible values are used: either [xyz] if the dimension is three or less, or integers. But option weylvars is user-settable:

```
> options(weylvars=letters[18:20])
> a
A member of the Weyl algebra:
     s t dr ds dt
                      val
  r
  1
    2 2 2 1
                0
                   =
                        3
  2
    2 0 0 1 1 =
                        2
                2 =
    0 0 1 1
                        1
  0
> options(polyform=TRUE)
> a
A member of the Weyl algebra:
+3*r*s^2*t^2*dr^2*ds +2*r^2*s^2*ds*dt +dr*ds*dt^2
> options(polyform=FALSE) ; options(weylvars=NULL)
```

If the user sets weylvars, the print method tries to do the Right Thing (tm). If set to c("a", "b", "c"), for example, the generators are named c(" a", "b", "c", "da", "db", "dc") [note the spaces]. If the algebra is univariate, the names will be something like d and x. No checking is performed and if the length is not equal to the dimension, undesirable behaviour may occur. For the love of God, do not use a variable named d. Internally, weylvars works by changing the sprayvars option in the **spray** package.

Note that, as for spray objects, this option has no algebraic significance: it only affects the print method.

Value

Returns a weyl object.

Author(s)

Robin K. S. Hankin

Examples

```
a <- rweyl()
print(a)
options(polyform=TRUE)
print(a)</pre>
```

rweyl

Random weyl objects

Description

Creates random weyl objects: quick-and-dirty examples of Weyl algebra elements

Usage

```
rweyl(nterms = 3, vals = seq_len(nterms), dim = 3, powers = 0:2)
rweyll(nterms = 15, vals = seq_len(nterms), dim = 4, powers = 0:5)
rweylll(nterms = 50, vals = seq_len(nterms), dim = 8, powers = 0:7)
```

Arguments

nterms	Number of terms in output
vals	Values of coefficients
dim	Dimension of weyl object
powers	Set from which to sample the entries of the index matrix

Details

Function rweyl() creates a smallish random Weyl object; rweyll() and rweylll() create successively more complicated objects.

These functions use spray::rspray(), so the note there about repeated rows in the index matrix resulting in fewer than nterms terms applies.

Function rweyl1() returns a one-dimensional Weyl object.

Value

Returns a weyl object

spray

Author(s)

Robin K. S. Hankin

Examples

```
rweyl()
rweyll()
rweyl(d=7)
options(polyform = TRUE)
rweyl1()
options(polyform = FALSE) # restore default
```

spray

Create spray objects

Description

Function spray() creates a sparse array; function weyl() coerces a spray object to a Weyl object.

Usage

```
spray(M,x,addrepeats=FALSE)
```

Arguments

М	An integer-valued matrix, the index of the weyl object
х	Numeric vector of coefficients
addrepeats	Boolean, specifying whether repeated rows are to be added

Details

The function is discussed and motivated in the spray package.

Value

Return a weyl or a Boolean

Author(s)

Robin K. S. Hankin

Examples

(W <- spray(matrix(1:36,6,6),1:6))
weyl(W)</pre>

as.weyl(15,d=3)

Description

Basic functions for weyl objects

Usage

```
weyl(M)
is.weyl(M)
as.weyl(val,d)
is.ok.weyl(M)
```

Arguments

М	A weyl or spray object
val,d	Value and dimension for weyl object

Details

To create a weyl object, pass a spray to function weyl(), as in weyl(M). To create a spray object to pass to weyl(), use function spray(), which is a synonym for spray::spray().

Function weyl() is the formal creator method; is.weyl() tests for weyl objects and is.ok.weyl() checks for well-formed sprays. Function as.weyl() tries (but not very hard) to infer what the user intended and return the right thing.

Value

Return a weyl or a Boolean

Author(s)

Robin K. S. Hankin

Examples

(W <- spray(matrix(1:36,6,6),1:6))
weyl(W)</pre>

as.weyl(15,d=3)

```
is.ok.weyl(spray(matrix(1:30,5,6)))
is.ok.weyl(spray(matrix(1:30,6,5)))
```

weyl-class

Class "weyl"

Description

The formal S4 class for weyls.

Objects from the Class

Objects *can* be created by calls of the form new("weyl", ...) but this is not encouraged. Use functions weyl() or as.weyl() instead.

Author(s)

Robin K. S. Hankin

x_and_d

Generating elements for the first Weyl algebra

Description

Variables x and d correspond to operator x and ∂_x ; they are provided for convenience. These elements generate the one-dimensional Weyl algebra.

Note that a similar system for multivariate Weyl algebras is not desirable. We might want to consider the Weyl algebra generated by $\{x, y, z, \partial_x, \partial_y, \partial_z\}$ and correspondingly define R variables x, y, z, dx, dy, dz. But then variable x is ambiguous: is it a member of the first Weyl algebra or the third?

Usage

data(x_and_d)

Author(s)

Robin K. S. Hankin

Examples

```
d
x
.[d,x] # dx-xd==1
d^3 * x^4
(1-d*x*d)*(x^2-d^3)
```

zero

Description

The zero operator maps any function to the zero function (which maps anything to zero). To test for being zero, use spray::is.zero(); package idiom would be is.zero().

Usage

zero(d)

Arguments

d

Integer specifying dimensionality of the weyl object (twice the spray arity)

Value

A weyl object corresponding to the zero operator (or a Boolean for is.zero())

Examples

```
(a <- rweyl(d=5))
is.zero(a)
is.zero(a-a)
is.zero(a*0)</pre>
```

a == a + zero(dim(a))

Index

degree, 5

```
* classes
    weyl-class, 19
* datasets
    x_and_d, 19
* package
    weyl-package, 2
* symbol math
    horner, 10
. (dot-class), 8
[,dot,ANY,ANY-method (dot-class), 8
[,dot,ANY,missing-method (dot-class), 8
[,dot,matrix,matrix-method(dot-class),
         8
[,dot,missing,ANY-method(dot-class),8
[,dot,missing,missing-method
        (dot-class), 8
[,dot-method (dot-class), 8
[.dot(dot-class), 8
as.der(derivation), 6
as.id(identity), 11
as.identity (identity), 11
as.one.weyl (identity), 11
as.weyl (weyl), 18
coeff (coeffs), 3
coeffs, 3
coeffs, weyl-method (coeffs), 3
coeffs.weyl (coeffs), 3
coeffs<- (coeffs), 3</pre>
coeffs<-,weyl-method (coeffs), 3</pre>
coeffs<-.weyl (coeffs), 3</pre>
commutator (dot-class), 8
const (constant), 4
constant, 4
constant<- (constant), 4
d (x_and_d), 19
deg (degree), 5
```

grades (grade), 9 horner, 10, 12 id(identity), 11 identity, 11 idweyl (identity), 11 index (coeffs), 3 is.empty(zero), 20 is.id(identity), 11 is.identity(identity), 11 is.ok.weyl(weyl), 18 is.weyl (weyl), 18 is.zero(zero), 20 jacobi (dot-class), 8 ooom, 11, 12 0ps, 13 polyform(print.weyl), 14 print (print.weyl), 14 print.weyl, 14 prodfunc (Ops), 13

derivation, 6

dot-class.8

empty (zero), 20

grade<- (grade), 9

dimension(dim), 7
dot(dot-class), 8

dim.7

drop, 8

grade, 9

derivations (derivation), 6

dot_error (dot-class), 8

extract (dot-class), 8

drop,weyl-method (drop), 8

rwey1, 16

INDEX

```
rweyl1 (rweyl), 16
rweyll(rweyl), 16
rweylll (rweyl), 16
spray, 17
symbol_map (grade), 9
value (coeffs), 3
value,weyl-method (coeffs), 3
value.weyl (coeffs), 3
value<-(coeffs), 3</pre>
values (coeffs), 3
weyl, 18
weyl-class, 19
weyl-package, 2
weyl_power_scalar(Ops), 13
weyl_prod (Ops), 13
weyl_prod_helper1 (0ps), 13
weyl_prod_helper2 (0ps), 13
weyl_prod_helper3 (Ops), 13
weyl_prod_multivariate_nrow_allcolumns
        (0ps), 13
weyl_prod_multivariate_onerow_allcolumns
        (0ps), 13
weyl_prod_multivariate_onerow_singlecolumn
        (0ps), 13
weyl_prod_univariate_nrow(Ops), 13
weyl_prod_univariate_onerow(Ops), 13
weylvars(print.weyl), 14
x (x_and_d), 19
x_and_d, 19
```

zero, 20

22