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The wCorr package can be used to calculate Pearson, Spearman, polyserial, and polychoric correlations, in
weighted or unweighted form.1 The package implements the tetrachoric correlation as a specific case of the
polychoric correlation and biserial correlation as a specific case of the polyserial correlation. When weights are
used, the correlation coefficients are calculated with so called sample weights or inverse probability weights.2

This vignette introduces the methodology used in the wCorr package for computing the Pearson, Spearman,
polyserial, and polychoric correlations, with and without weights applied. For the polyserial and polychoric
correlations, the coefficient is estimated using a numerical likelihood maximization.

The weighted (and unweighted) likelihood functions are presented. Then simulation evidence is presented
to show correctness of the methods, including an examination of the bias and consistency. This is done
separately for unweighted and weighted correlations.

Numerical simulations are used to show:

• The bias of the methods as a function of the true correlation coefficient (ρ) and the number of
observations (n) in the unweighted and weighted cases; and

• The accuracy [measured with root mean squared error (RMSE) and mean absolute deviation (MAD)]
of the methods as a function of ρ and n in the unweighted and weighed cases.

Note that here bias is used for the mean difference between true correlation and estimated correlation.

The wCorr Arguments vignette describes the effects the ML and fast arguments have on computation and
gives examples of calls to wCorr.

Specification of estimation formulas

Here we focus on specification of the correlation coefficients between two vectors of random variables that are
jointly bivariate normal. We call the two vectors X and Y . The ith members of the vectors are then called
xi and yi.

Formulas for Pearson correlations with and without weights

The weighted Pearson correlation is computed using the formula

rP earson =

∑n

i=1
[wi(xi − x̄)(yi − ȳ)]

√

∑n

i=1
(wi(xi − x̄)2)

∑n

i=1
(wi(yi − ȳ)2)

1The estimation procedure used by the wCorr package for the polyserial is based on the likelihood function in Cox, N. R.
(1974), “Estimation of the Correlation between a Continuous and a Discrete Variable.” Biometrics, 30 (1), pp 171-178. The
likelihood function for polychoric is from Olsson, U. (1979) “Maximum Likelihood Estimation of the Polychoric Correlation
Coefficient.” Psyhometrika, 44 (4), pp 443-460. The likelihood used for Pearson and Spearman is written down in many places.
One is the “correlate” function in Stata Corp, Stata Statistical Software: Release 8. College Station, TX: Stata Corp LP, 2003.

2Sample weights are comparable to pweight in Stata.
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where wi is the weights, x̄ is the weighted mean of the X variable (x̄ = 1
∑

n

i=1
wi

∑n

i=1
wixi), ȳ is the weighted

mean of the Y variable (ȳ = 1
∑

n

i=1
wi

∑n

i=1
wiyi), and n is the number of elements in X and Y .3

The unweighted Pearson correlation is calculated by setting all of the weights to one.

Formulas for Spearman correlations with and without weights

For the Spearman correlation coefficient the unweighted coefficient is calculated by ranking the data and
then using those ranks to calculate the Pearson correlation coefficient–so the ranks stand in for the X and Y

data. Again, similar to the Pearson, for the unweighted case the weights are all set to one.

For the unweighted case the highest rank receives a value of 1 and the second highest 2, and so on down to
the nth value. In addition, when data are ranked, ties must be handled in some way. The chosen method is
to use the average of all tied ranks. For example, if the second and third rank units are tied then both units
would receive a rank of 2.5 (the average of 2 and 3).

For the weighted case there is no commonly accepted weighted Spearman correlation coefficient. Stata does
not estimate a weighted Spearman and SAS does not document their methodology in either of the corr or
freq procedures.

The weighted case presents two issues. First, the ranks must be calculated. Second, the correlation coefficient
must be calculated.

Calculating the weighted rank for an individual level is done via two terms. For the jth element the rank is

rankj = aj + bj

The first term aj is the sum of all weights W less than or equal to this value of the outcome being ranked (ξj)

aj =

n
∑

i=1

wi1 (ξi < ξj)

where 1(·) is the indicator function that is one when the condition is true and 0 when the condition is false,
wi is the ith weight and ξi and ξj are the ith and jth value of the vector being ranked, respectively.

The term bj then deals with ties. When there are ties each unit receives the mean rank for all of the
tied units. When the weights are all one and there are n tied units the vector of tied ranks would be
v = (aj + 1, aj + 2, . . . , aj + n). The mean of this vector (here called rank1 to indicate it is a specific case of
rank when the weights are all one) is then

rank1
j =

1

n

n
∑

i=1

(aj + i)

=
1

n

(

naj +
n(n + 1)

2

)

= aj +
n + 1

2

thus

b1
j =

n + 1

2

3See the “correlate” function in Stata Corp, Stata Statistical Software: Release 8. College Station, TX: Stata Corp LP, 2003.
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where the superscript one is again used to indicate that this is only for the unweighted case where all weights
are set to one.

For the weighted case this could be v = (aj + w′
1, aj + w′

1 + w′
2, . . . , aj +

∑n

k=1
w′

k)
T

where W’ is a vector
containing the weights of the tied units. It is readily apparent that the mean of this vector value will depend
on the ordering of the weights. To avoid this, the overall mean of all possible permutations of the weights is
calculated. The following formula does just that

bj =
n + 1

2
w̄j

where w̄j is the mean weight of all of the tied units. It is easy to see that when the weights are all one w̄j = 1
and bj = b1

j . The latter (more general) formula is used for all cases.

After the X and Y vectors are ranked they are plugged into the weighted Pearson correlation coefficient
formula shown earlier.

##Formulas for polyserial correlation with and without weights For the polyserial correlation, it is again
assumed that there are two continuous variables X and Y that have a bivariate normal distribution.4

(

X
Y

)

∼ N

[(

µx

µy

)

, Σ

]

where N(A, Σ) is a bivariate normal distribution with mean vector A and covariance matrix Σ. For the
polyserial correlation, Y is discretized into the random variable M according to

mi =























1 ifθ2 < yi < θ3

2 ifθ3 < yi < θ4

...

t ifθt+1 < yi < θt+2

where θ indicates the cut points used to discretize Y into M , and t is the number of bins. For notational
convenience, θ2 ≡ −∞ and θt+2 ≡ ∞.5

To give a concrete example, the following figure shows the density of Y when the cuts points are, for this
example, θ = (−∞, −2, −0.5, 1.6, ∞). In this example, any value of −2 < yi < −0.5 would have mi = 2.

Figure 1 :. Density of Y for cutpoints θ = (−∞, −2, −0.5, 1.6, ∞).

hi

Figure 1 :. Density of Y for cutpoints θ = (−∞, −2, −0.5, 1.6, ∞).

4For a more complete treatment of the polyserial correlation, see Cox, N. R., “Estimation of the Correlation between a
Continuous and a Discrete Variable” Biometrics, 50 (March), 171-187, 1974.

5The indexing is somewhat odd to be consistent with Cox (1974). Nevertheless, this treatment does not use the Cox definition
of θ0, θ1 or θ2 which are either not estimated (as is the case for θ0, and θ1) or are reappropriated (as is the case for θ2). Cox
calls the correlation coefficient θ2 while this document uses ρ and uses θ2 to store −∞ as a convenience so that the vector θ

includes the (infinite) bounds as well as the interior points.
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θ3 θ4 θ5

m=1 m=2 m=3
m=4

de
ns

ity

Y

Notice that µy is not identified (or is irrelevant) because, for any a ∈ R, setting µ̃y = µy + a and θ̃ = θ + a
lead to exactly the same values of M and so one of the two must be arbitrarily assigned. A convenient
decision is to decide µy ≡ 0. A similar argument holds for σy so that σy ≡ 1.

For X , Cox (1974) observes that the MLE mean and standard deviation of X are simply the average and
(population) standard deviation of the data and do not depend on the other parameters.6 This can be taken
advantage of by defining z to be the standardized score of x so that z ≡ x−x̄

σ̂x
.

Combining these simplifications, the probability of any given xi, mi pair is

Pr (ρ = r, Θ = θ; Z = zi, M = mi) = ϕ(zi)

∫ θmi+2

θmi+1

f(y|Z = zi, ρ = r)dy

where Pr (ρ = r, Θ = θ; Z = zi, M = mi) is the probability of the event ρ = r and the cuts points are θ, given
the ith data point zi and mi; ϕ(·) is the standard normal; and f(Y |Z, ρ) is the distribution of Y conditional
on Z and ρ. Because Y and Z are jointly normally distributed (by assumption)

f(Y |Z = zi, ρ = r) = N

(

µy +
σy

σz

r(zi − µz), (1 − r2)σy
2

)

because both Z and Y are standard normals

f(y|Z = zi, ρ = r) = N
(

r · zi, (1 − r2)
)

Noticing that y−r·z√
1−r2

has a standard normal distribution

Pr (ρ = r, Θ = θ; Z = zi, M = mi) = ϕ(zi)

[

Φ

(

θmi+2 − r · zi√
1 − r2

)

− Φ

(

θmi+1 − r · zi√
1 − r2

)]

where Φ(·) is the standard normal cumulative density function. Using the above probability function as an
objective, the log-likelihood is then maximized.

ℓ(ρ = r, Θ = θ; Z = z, M = m) =
n
∑

i=1

wi ln [Pr (ρ = r, Θ = θ; Z = zi, M = mi)]

where wi is the weight of the ith members of the vectors Z and Y . For the unweighted case, all of the weights
are set to one.

6The population standard deviation is used because it is the MLE for the standard deviation. Notice that, while the sample
variance is an unbiased estimator of the variance and the population variance is not an unbaised estimator of the variance, they
are very similar and the variance is also a nuisance parameter, not a parameter of interest when finding the correlation.
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The value of the nuisance parameter θ is chosen to be

θ̂j+2 = Φ−1(n/N)

where n is the number of values to the left of the jth cut point (θj+2 value) and N is the number of data
points overall. Here two is added to j to make the indexing of θ agree with Cox (1974) as noted before. For
the weighted cause n is replaced by the sum of the weights to the left of the jth cut point and N is replaced
by the total weight of all units

θ̂j+2 = Φ−1

(

∑N

i=1
wi1(mi < j)
∑N

i=1
wi

)

where 1 is the indicator function that is 1 when the condition is true and 0 otherwise.

###Computation of polyserial correlation For the polyserial, derivatives of ℓ can be written down but are
not readily computed. When the ML argument is set to FALSE (the default), a one dimensional optimization
of ρ is calculated using the optimize function in the stats package and the values of θ from the previous
paragraph. When the ML argument is set to TRUE, a multi-dimensional optimization is done for ρ and θ using
the bobyqa function in the minqa package. See the wCorr Arguments vignette for a comparison of these two
methods.

Because the numerical optimization is not perfect when the correlation is in a boundary condition (ρ ∈ {−1, 1}),
a check for perfect correlation is performed before the above optimization by simply examining if the values
of X and M have agreeing order (or opposite but agreeing order) and then the MLE correlation of 1 (or -1)
is returned.

##Methodology for polychoric correlation with and without weights

Similar to the polyserial correlation, the polychoric correlation is a simple case of two continuous variables X

and Y that have a bivariate normal distribution. In the case of the polyserial correlation the continuous
(latent) variable Y was observed as a discretized variable M . For the polychoric correlation, this is again
true but now the continuous (latent) variable X is observed as a discrete variable P according to

pi =























1 ifθ′
2 < xi < θ′

3

2 ifθ′
3 < xi < θ′

4

...

t ifθ′
t′+1 < xi < θ′

t′+2

where θ remains the cut points for the distibution defining the transformation of Y to M , θ
′ is the cut

points for the transformation from X to P, and t′ is the number of bins for P. Similar to θ, θ
′ has θ′

2 ≡ −∞
and θ′

t′+2 ≡ ∞.

As in the polyserial correlation, µy is not identified (or is irrelevant) because, for any a ∈ R, setting µ̃y = µy +a
and θ̃ = θ + a lead to exactly the same values of M and so one of the two must be arbitrarily assigned. The
same is true for µx. A convenient decision is to decide µy = µx ≡ 0. A similar argument holds for σy and σx

so that σy = σx ≡ 1

Then the probability of any given mi, pi pair is

Pr
(

ρ = r, Θ = θ, Θ′ = θ
′; P = pi, M = mi

)

=

∫ θ′

pi+2

θ′

pi+1

∫ θmi+2

θmi+1

f(x, y|ρ = r)dydx

where ρ is the correlation coefficient.
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Using this function as an objective, the log-likelihood is then maximized.

ℓ(ρ = r, Θ = θ, Θ′ = θ
′; P = p, M = m) =

n
∑

i=1

wi ln
[

Pr
(

ρ = r, Θ = θ, Θ′ = θ
′; P = pi, M = mi

)]

This is the weighted log-likelihood function. For the unweighted case all of the weights are set to one.

###Computation of polychoric correlation This again mirrors the treatment of the polyserial. The derivatives
of ℓ for the polychoric can be written down but are not readily computed. When the ML argument is set to
FALSE (the default), a one dimensional optimization of ρ is calculated using the optimize function from the
stats package and values of θ and θ

′ are computed using the last equation in the section titled, “Formulas for
polyserial correlation with and without weights”. When the ML argument is set to TRUE a multi-dimensional
optimization is done for ρ, θ, and θ

′ using the bobyqa function in the minqa package. See the wCorr
Arguments vignette for a comparison of these two methods.

Because the optimization is not perfect when the correlation is in a boundary condition (ρ ∈ {−1, 1}), a
check for perfect correlation is performed before the above optimization by simply examining if the values of
P and M have a Goodman-Kruskal correlation coefficient of -1 or 1. When this is the case, the MLE of -1 or
1, respectively, is returned.

#Simulation evidence on the correctness of the estimating methods

It is easy to prove the consistency of the θ for the polyserial correlation and θ and θ
′ for the polychoric

correlation using the non-ML case. Similarly, for ρ, because it is an MLE that can be obtained by taking a
derivative and setting it equal to zero, the results are asymptotically unbiased and obtain the Cramer-Rao
lower bound.

This does not speak to the small sample properties of these correlation coefficients. Previous work has
described their properties by simulation; and that tradition is continued below.7

Simulation study of unweighted correlations

In what follows, when the exact method of selecting a parameter (such as n) is not noted in the above
descriptions it is described as part of each simulation.

Across a number of iterations (the exact number of times will be stated for each simulation), the following
procedure is used:

• select a true Pearson correlation coefficient ρ;
• select the number of observations n;
• generate X and Y to be bivariate normally distributed using a pseudo-Random Number Generator

(RNG);
• using a pseudo-RNG, select the number of bins for M and P (t and t′) independantly from the set {2,

3, 4, 5};8

• select the bin boundaries for M and P (θ and θ
′) by sorting the results of (t − 1) and (t′ − 1) draws,

respectively, from a normal distribution using a pseudo-RNG;
• confirm that at least 2 levels of each of M and P are occupied (if not, return to previous step); and
• calculate and record relevant statistics.

Bias, and RMSE of the unweighted correlations

This sections shows the bias of the correlations as a function of the true correlation coefficient, ρ. To that end,
a simulation was done at each level of the cartesian product of ρ ∈ (−0.99, −0.95, −0.90, −0.85, ..., 0.95, 0.99),

7See, for example, the introduction to Rigdon, E. E. and Ferguson C. E., “The Performance of the Polychoric Correlation
Coefficient and Selected Fitting Functions in Confirmatory Factor Analysis With Ordinal Data” Journal of Marketing Research

28 (4), pp. 491-497.
8This means that the simulation uses discrete ordinal variables (M and P) that have 2, 3, 4, or 5 discrete levels. Note that

the number of levels in M and P are chosen independently so that one could be 2 while the other is 5 (or any other possible
combination).
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and n ∈ {10, 100, 1000}. For precision, each level of ρ and n was run fifty times. The bias is the mean
difference between the true correlation coefficient (ρi) and estimate correlation coefficient (ri). The RMSE is
the square root of the mean squared error.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ri − ρi)
2

And the bias is given by

bias =
1

n

n
∑

i=1

(ri − ρi)

Figure 2 : shows the bias as a function of the true correlation ρ. Only the polyserial shows no bias at any
level of n, shown by no clear deviation from 0 at any level of ρ. For the Pearson correlation there is bias
when n = 10 that is not present when n = 100 or 1,000. This is a well known property of the estimator.9

Similarly, the polychoric shows bias when n = 10.

The Spearman correlation shows bias at all of the tested levels of n. The bias is zero when the true correlation
is 1, 0, or -1; is positive when ρ is below 0 (negative correlation); and is negative when ρ is above 0 (positive
correlation). In this section, the Spearman correlation coefficient is compared with the true Pearson correlation
coefficient. When this is done, the bias is expected because the Spearman correlation is not intended to
recover a Pearson type correlation coefficient; it is designed to measure a separate quantity.

Figure 2 :. Bias Versus ρ for Unweighted Correlations.

ρ

B
ia

s

−0.05

0.00

0.05

−1.0 −0.5 0.0 0.5 1.0

Pearson Polychoric

Polyserial

−1.0 −0.5 0.0 0.5 1.0

−0.05

0.00

0.05

Spearman

10
100
1000

9see, for example, Olkin I. and Pratt, J. W. (1958), Unbiased Estimation of Certain Correlation Coefficients. Annals of

Mathematical Statistics, 29 (1), 201–211.
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Figure 3 : shows the RMSE as a function of ρ. All of the correlation coefficients have a uniform RMSE as a
function of ρ near ρ = 0 that decreases near |ρ| = 1. All plots also show a decrease in RMSE as n increases.
This plot shows that there is no appreciable RMSE differences as a functions of ρ. In addition, it show that
our attention to the MLE correlation of -1 or 1 at edge cases did not make the RMSE much worse in the
neighborhood of the edges (|ρ| ∼ 1).

Figure 3 :. Root Mean Square Error Versus ρ for Unweighted Correlations.

ρ

R
M

S
E

10^−3.0

10^−2.5

10^−2.0

10^−1.5

10^−1.0

10^−0.5

−1.0−0.5 0.0 0.5 1.0

Pearson

−1.0−0.5 0.0 0.5 1.0

Polychoric

−1.0−0.5 0.0 0.5 1.0

Polyserial

−1.0−0.5 0.0 0.5 1.0

Spearman

10
100
1000

Consistency of the correlations Figure 4 : shows the RMSE as a function of n. The purpose of this
plot is not to show an individual value but to show that the estimator is consistent. The plot shows a slope
of about − 1

2
for the Pearson, polychoric, and polyserial correlations. This is consistent with the expected

first order convergence for each correlation coefficient under the assumptions of this simulation. Results for
the Spearman also show approximate first order convergence but the slope increases slightly as n increases.
Again, the Spearman is not estimating the same quantity as the Pearson and so is expected to diverge.

The plot also shows that the RMSE is less than 0.1 for all methods when n > 100.

Figure 4 :. Root Mean Square Error Versus sample size for Unweighted Correlations.

n

R
M

S
E

10^−1.5

10^−1.0

10^−0.5

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0

Pearson
Polychoric
Polyserial
Spearman
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Computing Time Figure 5 : shows the mean time (in seconds) to compute a single correlation coefficient
as a function of ρ by n size. The plot shows linearly rising computation times with slopes of about one. This
is consistent with a linear computation cost. Using Big O notation, the computation cost is, in the range
shown, O(n). The slope of the Spearman is slightly faster and the algorithm has a O(nlg(n)) sort involved,
so this is, again, expected.

Figure 5 :. Computation time.

n

C
om

pu
tin

g 
tim

e 
(s

)

10^−4

10^−3

10^−2

10^−1

10^0

10^1

10^2

10^1 10^2 10^3 10^4 10^5 10^6 10^7

Pearson
Polychoric
Polyserial
Spearman

Simulation study of weighted correlations

When complex sampling (other than simple random sampling with replacement) is used, unweighted cor-
relations may or may not be consistent. In this section the consistency of the weighted coefficients is
examined.

When generating simulated data, decisions about the generating functions have to be made. These decisions
affect how the results are interpreted. For the weighted case, if these decisions lead to something about the
higher weight cases being different from the lower weight cases then the test will be more informative about
the role of weights. Thus, while it is not reasonable to always assume that there is a difference between
the high and low weight cases, the assumption (used in the simulations below) that there is an association
between weights and the correlation coefficients serves as a more robust test of the methods in this package.

##Results of weighted correlation simulations

Simulations are carried out in the same fashion as previously described but include a few extra steps to
accommodate weights. The following changes were made:

• Weights are assigned according to wi = (x − y)2 + 1, and the probability of inclusion in the sample was
then Pri = 1

wi
.

• For each unit, a uniformly distributed random number was drawn. When that value was less than the
probability of inclusion (Pri), the unit was included.

Units were generated until n units were in the sample.

Two simulations were run. The first shows the mean absolute deviation (MAD)
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MAD =
1

n

n
∑

i=1

|ri − ρi|

as a function of ρ and was run for n = 100 and ρ ∈ (−0.99, −0.95, −0.90, −0.85, ..., 0.95, 0.99), with 100
iterations run for each value of ρ.

The following plot shows the MAD for the weighted and unweighted results as a function of ρ when n = 100.
This shows that for values of ρ near zero, under our simulation assumptions (for all but the Spearman
correlation) the weighted correlation performs better than (that is, has lower MAD than) the unweighted
correlation for all correlation coefficients. Over the entire range, the difference between the two is never
such that the unweighted has a lower MAD. Thus, under the simulated conditions at least, the weighted
correlation has lower or approximately equal MAD for every value of the true correlation coefficient (ρ).

Figure 6 :. Mean Absolute Deviation Versus ρ (Weighted).

ρ

M
A

D

10^−2.5

10^−2.0

10^−1.5

10^−1.0

10^−0.5

−1.0 −0.5 0.0 0.5 1.0

Pearson Polychoric

Polyserial

−1.0 −0.5 0.0 0.5 1.0

10^−2.5

10^−2.0

10^−1.5

10^−1.0

10^−0.5

Spearman

Unweighted
Weighted

The second simulation (shown in Figure 7 :) used the same values of ρ and used n ∈ {10, 100, 1000, 10000}
and shows how RMSE and sample size are related. In particular, it shows first-order convergence of the
weighted Pearson, polyserial, and polychoric correlation coefficient.

For the previous plots the calculated Spearman correlation coefficient was compared to the generating Pearson
correlation coefficient. For this plot only, the Spearman correlation coefficient to the true Spearman correlation
coefficient. This is because the Spearman coefficient is not attempting to estimate the Pearson correlation.
To do this the simulation is modified slightly. A population of data is generated and the true Spearman
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correlation coefficient then is calculated as the population coefficient.10 Then, a sample from the population
with varying probability as described in the weighted simulation section is used to calculate sample Spearman
correlation coefficient. Then the root mean squared difference between the sample and population coefficients
are calculated as with the Pearson–except that the population Spearman correlation coefficient is used in
place of the Pearson correlation coefficient (ρ).

Thus, the results in Figure 7 : show that, when compared to the true Spearman correlation coefficient, the
weighted Spearman correlation coefficient is consistent.

In all cases the RMSE is lower for the weighted than the unweighted. Again, the fact that the simulations
show that the unweighted correlation coefficient is not consistent does not imply that it will always be that
way–only that this is possible for these coefficients to not be consistent.

Figure 7 :. Root Mean Square Error Versus ρ (Polyserial, Pearson, Polychoric panels) or Population
Spearman correlation coefficient (Spearman panel) for Weighted Correlations

n
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S
E

10^−2.0

10^−1.5

10^−1.0

10^−0.5

10^1.0 10^2.0 10^3.0 10^4.0

Pearson Polychoric

Polyserial

10^1.0 10^2.0 10^3.0 10^4.0

10^−2.0

10^−1.5

10^−1.0

10^−0.5

Spearman
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#Conclusion Overall the simulations show first order convergence for each unweighted correlation coefficient
with an approximately linear computation cost. Further, under our simulation assumptions, the weighted
correlation performs better than (has lower MAD or RMSE than) the unweighted correlation for all correlation
coefficients.

We show the first order convergence of the weighted Pearson, polyserial, and polychoric correlation coefficient.
The Spearman is shown to not consistently estimate the population Pearson correlation coefficient but is
shown to consistently estimate the population Spearman correlation coefficient–under the assumptions of our

10The R stats package cor function is used to calculate the population Spearman correlation coefficient; this results in an
unweighted coefficient, which is appropriate for the population parameter.
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simulation.

Appendix Proof of consistency of Horvitz-Thompson (HT) estimator
of a mean

An HT estimator of a sum takes the form

Ŷ =
n
∑

i=1

1

πi

yi

where there are n sampled units from a population of N units, each unit has a value y ∈ R, each unit is
sampled with probability πi, and Ŷ is the estimated of Y in a population. Here there is no assumed covariance
between sampling of unit i and unit j, and the inverse probability is also the unit’s weight wi, so that an
alternative specification of (1) is

Ŷ =

n
∑

i=1

wiyi .
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