Package ‘vroom’

December 5, 2023

Title Read and Write Rectangular Text Data Quickly
Version 1.6.5

Description The goal of 'vroom' is to read and write data (like 'csv',
'tsv' and 'fwf") quickly. When reading it uses a quick initial
indexing step, then reads the values lazily , so only the data you
actually use needs to be read. The writer formats the data in
parallel and writes to disk asynchronously from formatting.

License MIT + file LICENSE
URL https://vroom.r-1lib.org, https://github.com/tidyverse/vroom

BugReports https://github.com/tidyverse/vroom/issues
Depends R (>=3.6)

Imports bit64,
cli (>=3.2.0),
crayon,
glue,
hms,
lifecycle (>= 1.0.3),
methods,
rlang (>=0.4.2),
stats,
tibble (>= 2.0.0),
tidyselect,
tzdb (>=0.1.1),
vetrs (>= 0.2.0),
withr

Suggests archive,
bench (>=1.1.0),
covr,
curl,
dplyr,
forcats,
fs,
ggplot2,
knitr,
patchwork,
prettyunits,
purrr,

https://vroom.r-lib.org
https://github.com/tidyverse/vroom
https://github.com/tidyverse/vroom/issues

rmarkdown,
rstudioapi,

scales,

spelling,

testthat (>= 2.1.0),
tidyr,

utils,

waldo,

xml2

LinkingTo cppll (>=0.2.0),
progress (>=1.2.1),
tzdb (>=0.1.1)

VignetteBuilder knitr

Config/Needs/website nycflights13,
tidyverse/tidytemplate

Config/testthat/edition 3
Config/testthat/parallel false
Copyright file COPYRIGHTS
Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3.9000

R topics documented:

cols
cols_condense
date_ names
GENerators
gen_tbl
guess_type.
locale
problems
VIOOM . . o v v e v e e e e e e e e e e
vroom_altrep
vroom_altrep_opts
vroom_example
vroom_format
vroom_fwf
vroom_lines,
VIOOM_PIrOZIeSS . . « v v v v v v e e v v e e o
VIOOM_SIT v vt
VIOOM_WIite v v v e
vroom_write_lines

R topics documented:

cols 3

cols Create column specification

Description

cols() includes all columns in the input data, guessing the column types as the default. cols_only()
includes only the columns you explicitly specify, skipping the rest.

Usage
cols(..., .default = col_guess(), .delim = NULL)
cols_only(...)
col_logical(...)
col_integer(...)
col_big_integer(...)
col_double(...)
col_character(...)
col_skip(...)
col_number(...)

col_guess(...)

col_factor(levels = NULL, ordered = FALSE, include_na = FALSE, ...)
col_datetime(format = "", ...)
col_date(format = "", ...)

nn

col_time(format ,

1
~—

Arguments

Either column objects created by col_x(), or their abbreviated character names
(as described in the col_types argument of vroom()). If you’re only overriding
a few columns, it’s best to refer to columns by name. If not named, the column
types must match the column names exactly. In col_*() functions these are
stored in the object.

.default Any named columns not explicitly overridden in . . . will be read with this col-
umn type.

.delim The delimiter to use when parsing. If the delim argument used in the call to
vroom() it takes precedence over the one specified in col_types.

levels

ordered

include_na

format

Details

cols

Character vector of the allowed levels. When levels =NULL (the default),
levels are discovered from the unique values of x, in the order in which they
appear in x.

Is it an ordered factor?

If TRUE and x contains at least one NA, then NA is included in the levels of the
constructed factor.

A format specification, as described below. If set to "", date times are parsed
as ISO8601, dates and times used the date and time formats specified in the
locale().

Unlike strptime(), the format specification must match the complete string.

The available specifications are: (long names in quotes and string abbreviations in brackets)

function long name short name description

col_logical() "logical" " Logical values containing only T, F, TRUE or F
col_integer() "integer” "i" Integer numbers.

col_big_integer() "big_integer" "T" Big Integers (64bit), requires the bit64 packa
col_double() "double", "numeric" "d" 64-bit double floating point numbers.
col_character() "character" "c" Character string data.

col_factor(levels, ordered) "factor" "t A fixed set of values.
col_date(format="") "date" "D" Calendar dates formatted with the locale’s da1
col_time(format="") "time" "t" Times formatted with the locale’s time_form:
col_datetime(format="") "datetime", "POSIXct" "T" ISO8601 date times.

col_number () "number" "n" Human readable numbers containing the grou
col_skip() "skip", "NULL" " Skip and don’t import this column.
col_guess() "guess", "NA" " Parse using the "best" guessed type based on t

Examples

cols(a = col_integer())
cols_only(a = col_integer())

You can also use the standard abbreviations

cols(a = "i")

cols(a = "i", b =

"qr o= " n)
’ -

Or long names (like utils::read.csv)
cols(a = "integer”, b = "double”, c = "skip")

You can also use multiple sets of column definitions by combining

them like so:

t1 <- cols(

column_one = col_integer(),
column_two = col_number())

t2 <- cols(

column_three = col_character())

t3 <- t1

t3$cols <- c(t1%$cols, t2%cols)

t3

cols_condense 5

cols_condense Examine the column specifications for a data frame

Description

cols_condense() takes a spec object and condenses its definition by setting the default column
type to the most frequent type and only listing columns with a different type.

spec() extracts the full column specification from a tibble created by readr.

Usage

cols_condense(x)
spec(x)

Arguments

X The data frame object to extract from

Value

A col_spec object.

Examples

df <- vroom(vroom_example("mtcars.csv"))
s <- spec(df)
s

cols_condense(s)

date_names Create or retrieve date names

Description

When parsing dates, you often need to know how weekdays of the week and months are represented
as text. This pair of functions allows you to either create your own, or retrieve from a standard list.
The standard list is derived from ICU (https://site.icu-project.org) via the stringi package.

Usage
date_names(mon, mon_ab = mon, day, day_ab = day, am_pm = c("AM", "PM"))
date_names_lang(language)

date_names_langs()

Arguments
mon, mon_ab
day, day_ab
am_pm

language

Examples

generators

Full and abbreviated month names.
Full and abbreviated week day names. Starts with Sunday.
Names used for AM and PM.

A BCP 47 locale, made up of a language and a region, e.g. "en_US" for Ameri-
can English. See date_names_langs() for a complete list of available locales.

date_names_lang("en")
date_names_lang("ko")
date_names_lang("fr")

generators

Generate individual vectors of the types supported by vroom

Description

Generate individual vectors of the types supported by vroom

Usage
gen_character(n, min = 5, max = 25, values = c(letters, LETTERS, 0:9), ...)
gen_double(n, f = stats::rnorm, ...)
gen_number(n, f = stats::rnorm, ...)
gen_integer(n, min = 1L, max = .Machine$integer.max, prob = NULL, ...)

gen_factor(
n,
levels = NULL

’

ordered = FALSE,

num_levels =
)
gen_time(n, min
gen_date(n, min

gen_datetime(
n’

gen_integer (1L, 1L, 25L),

= 0, max = hms::hms(days = 1), fractional = FALSE, ...)

= as.Date("2001-01-01"), max = as.Date("2021-01-01"), ...)

min = as.POSIXct("2001-01-01"),
max = as.POSIXct("2021-01-01"),

tz = "UTC",

gen_tbl

gen_logical(n,

gen_name(n)

Arguments

n
min
max

values

.F
prob

levels
ordered
num_levels
fractional

tz

Examples

characters
gen_character(4)

factors
gen_factor(4)

logical
gen_logical(4)

numbers
gen_double(4)
gen_integer(4)

temporal data
gen_time(4)
gen_date(4)
gen_datetime(4)

»)

The size of the vector to generate

The minimum range for the vector

The maximum range for the vector

The explicit values to use.

Additional arguments passed to internal generation functions
The random function to use.

a vector of probability weights for obtaining the elements of the vector being
sampled.

The explicit levels to use, if NULL random levels are generated using gen_name ().
Should the factors be ordered factors?

The number of factor levels to generate

Whether to generate times with fractional seconds

The timezone to use for dates

gen_tbl Generate a random tibble

Description

This is useful for benchmarking, but also for bug reports when you cannot share the real dataset.

Usage

gen_tbl(
rows,
cols = NULL,

gen_tbl

col_types = NULL,
locale = default_locale(),

missing = @

Arguments

rows
cols

col_types

locale

missing

Details

Number of rows to generate
Number of columns to generate, if NULL this is derived from col_types.

One of NULL, a cols() specification, or a string.

If NULL, all column types will be imputed from guess_max rows on the input
interspersed throughout the file. This is convenient (and fast), but not robust. If
the imputation fails, you’ll need to increase the guess_max or supply the correct
types yourself.

Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().

Alternatively, you can use a compact string representation where each character
represents one column:

* ¢ = character

* i =integer

e n = number

e d =double

* I =logical

e f=factor

e D =date

¢ T = date time
* t=time

e ? =guess

e _or-=skip
By default, reading a file without a column specification will print a mes-
sage showing what readr guessed they were. To remove this message,
set show_col_types = FALSE or set options(readr.show_col_types =
FALSE).

The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

The percentage (from O to 1) of missing data to use

There is also a family of functions to generate individual vectors of each type.

guess_type

See Also

generators to generate individual vectors.

Examples

random 10 x 5 table with random column types
rand_tbl <- gen_tb1(10, 5)

rand_tbl

all double 25 x 4 table
dbl_tbl <- gen_tb1(25, 4, col_types = "dddd")

dbl_tbl

Use the dots in long form column types to change the random function and options
types <- rep(times = 4, list(col_double(f = stats::runif, min = -10, max = 25)))

types
dbl_tbl2 <- gen_tbl(25, 4, col_types = types)
dbl_tbl2
guess_type Guess the type of a vector
Description

Guess the type of a vector

Usage
guess_type(
X)
na = C(Hll’ HNAH),

locale = default_locale(),
guess_integer = FALSE

)

Arguments

X

na

locale

guess_integer

Character vector of values to parse.

Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

If TRUE, guess integer types for whole numbers, if FALSE guess numeric type for
all numbers.

10 locale

Examples

Logical vectors
guess_type(c("FALSE", "TRUE", "F", "T"))
Integers and doubles
guess_type(c("1","2","3"))
guess_type(c("1.6","2.6","3.4"))

Numbers containing grouping mark
guess_type(”1,234,566")

ISO 8601 date times
guess_type(c(”2010-10-10"))
guess_type(c(”2010-10-10 01:02:03"))
guess_type(c("01:02:03 AM"))

locale Create locales

Description

A locale object tries to capture all the defaults that can vary between countries. You set the locale
in once, and the details are automatically passed on down to the columns parsers. The defaults have
been chosen to match R (i.e. US English) as closely as possible. See vignette(”locales”) for
more details.

Usage

locale(
date_names = "en",
date_format = "%AD",
time_format = "%AT",

non

decimal_mark = ".",
grouping_mark = " ",
tz = "UTC",

encoding = "UTF-8"

default_locale()

Arguments

date_names Character representations of day and month names. Either the language code as
string (passed on to date_names_lang()) or an object created by date_names ().
date_format, time_format
Default date and time formats.
decimal_mark, grouping_mark
Symbols used to indicate the decimal place, and to chunk larger numbers. Dec-
imal mark can only be , or ..

tz Default tz. This is used both for input (if the time zone isn’t present in indi-
vidual strings), and for output (to control the default display). The default is
to use "UTC", a time zone that does not use daylight savings time (DST) and
hence is typically most useful for data. The absence of time zones makes it
approximately 50x faster to generate UTC times than any other time zone.

problems 11

Use "" to use the system default time zone, but beware that this will not be
reproducible across systems.

For a complete list of possible time zones, see O1lsonNames (). Americans, note
that "EST" is a Canadian time zone that does not have DST. It is not Eastern
Standard Time. It’s better to use "US/Eastern”, "US/Central" etc.

encoding Default encoding.

Examples

locale()
locale("fr")

South American locale

locale("es"”, decimal_mark = ",")
problems Retrieve parsing problems
Description

vroom will only fail to parse a file if the file is invalid in a way that is unrecoverable. However there
are a number of non-fatal problems that you might want to know about. You can retrieve a data
frame of these problems with this function.

Usage

problems(x = .Last.value, lazy = FALSE)

Arguments
X A data frame from vroom: : vroom().
lazy If TRUE, just the problems found so far are returned. If FALSE (the default) the
lazy data is first read completely and all problems are returned.
Value

A data frame with one row for each problem and four columns:

* row,col - Row and column number that caused the problem, referencing the original input
* expected - What vroom expected to find

* actual - What it actually found

* file - The file with the problem

12 vroom

vroom Read a delimited file into a tibble

Description

Read a delimited file into a tibble

Usage

vroom(
file,
delim = NULL,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
skip = 0,
n_max = Inf,
na = c("", "NA"),
quote = "\"",
comment = "",
skip_empty_rows = TRUE,
trim_ws = TRUE,
escape_double = TRUE,
escape_backslash = FALSE,
locale = default_locale(),
guess_max = 100,
altrep = TRUE,
altrep_opts = deprecated(),
num_threads = vroom_threads(),
progress = vroom_progress(),
show_col_types = NULL,
.name_repair = "unique”

)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector). file can also be a character vector containing multiple filepaths or a
list containing multiple connections.
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, wrap the input with I().

delim One or more characters used to delimit fields within a file. If NULL the delimiter

n on n.,n

is guessed from the set of c(”,”, "\t", " ", "|", ":", ";

col_names Either TRUE, FALSE or a character vector of column names.

vroom

col_types

col_select

id

skip

n_max

na

quote

13

If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.

If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.

Missing (NA) column names will generate a warning, and be filled in with dummy
names .. .1, ...2 etc. Duplicate column names will generate a warning and be
made unique, see name_repair to control how this is done.

One of NULL, a cols() specification, or a string.

If NULL, all column types will be imputed from guess_max rows on the input
interspersed throughout the file. This is convenient (and fast), but not robust. If
the imputation fails, you’ll need to increase the guess_max or supply the correct
types yourself.

Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().

Alternatively, you can use a compact string representation where each character
represents one column:

e ¢ = character

* i=integer

¢ n = number

* d =double

* 1 =logical

e f = factor

e D =date

e T = date time
* t=time

e ? =guess

e _or-=skip

By default, reading a file without a column specification will print a mes-
sage showing what readr guessed they were. To remove this message,
set show_col_types = FALSE or set options(readr.show_col_types =
FALSE).

Columns to include in the results. You can use the same mini-language as
dplyr::select() to refer to the columns by name. Use c() to use more than
one selection expression. Although this usage is less common, col_select also
accepts a numeric column index. See ?tidyselect::language for full details
on the selection language.

Either a string or "NULL’. If a string, the output will contain a variable with that
name with the filename(s) as the value. If "NULL’, the default, no variable will
be created.

Number of lines to skip before reading data. If comment is supplied any com-
mented lines are ignored after skipping.

Maximum number of lines to read.

Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

Single character used to quote strings.

14 vroom

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

trim_ws Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed
from each field before parsing it?

escape_double Does the file escape quotes by doubling them? i.e. If this option is TRUE, the
Value EALALE]

EXIR)

represents a single quote, *"’.

escape_backslash
Does the file use backslashes to escape special characters? This is more gen-
eral than escape_double as backslashes can be used to escape the delimiter
character, the quote character, or to add special characters like \\n.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

guess_max Maximum number of lines to use for guessing column types. See vignette(”column-types”,
package = "readr") for more details.

altrep Control which column types use Altrep representations, either a character vector
of types, TRUE or FALSE. See vroom_altrep() for for full details.

altrep_opts [Deprecated]

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The automatic progress bar can be disabled
by setting option readr. show_progress to FALSE.

show_col_types Control showing the column specifications. If TRUE column specifications are
always show, if FALSE they are never shown. If NULL (the default) they are shown
only if an explicit specification is not given to col_types.

.name_repair Handling of column names. The default behaviour is to ensure column names
are "unique”. Various repair strategies are supported:
* "minimal”: No name repair or checks, beyond basic existence of names.
e "unique” (default value): Make sure names are unique and not empty.
e "check_unique": no name repair, but check they are unique.
e "universal”: Make the names unique and syntactic.

* A function: apply custom name repair (e.g., name_repair = make.names
for names in the style of base R).

* A purrr-style anonymous function, see rlang: :as_function().

This argument is passed on as repair to vctrs: :vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

Examples

get path to example file
input_file <- vroom_example("mtcars.csv")

vroom

input_file
Read from a path

INPUt SOUMCES === === — oo
Read from a path

vroom(input_file)

You can also use paths directly

vroom("mtcars.csv")

Not run:
Including remote paths
vroom("https://github.com/tidyverse/vroom/raw/main/inst/extdata/mtcars.csv")

End(Not run)

Or directly from a string with "I()"
vroom(I("x,y\n1,2\n3,4\n"))

Column selection —-—--——=--——--———--——mm o
Pass column names or indexes directly to select them

vroom(input_file, col_select = c(model, cyl, gear))

vroom(input_file, col_select = c(1, 3, 11))

Or use the selection helpers
vroom(input_file, col_select = starts_with("d"))

You can also rename specific columns
vroom(input_file, col_select = c(car = model, everything()))

Column types —----———==------——mmm oo
By default, vroom guesses the columns types, looking at 1000 rows

throughout the dataset.

You can specify them explicitly with a compact specification:
vroom(I("x,y\n1,2\n3,4\n"), col_types = "dc")

Or with a list of column types:
vroom(I("x,y\n1,2\n3,4\n"), col_types = list(col_double(), col_character()))

File types ———=—=—=—=—=———— o
csv

vroom(I("a,b\n1.0,2.0\n"), delim = ",")

tsv

vroom(I("a\tb\n1.0\t2.0\n"))

Other delimiters

vroom(I("alb\n1.0|2.0\n"), delim = "|")

Read datasets across multiple files ---------—-------------—---———
mtcars_by_cyl <- vroom_example(vroom_examples("mtcars-"))
mtcars_by_cyl

Pass the filenames directly to vroom, they are efficiently combined
vroom(mtcars_by_cyl)

If you need to extract data from the filenames, use ~id™ to request a
column that reveals the underlying file path
dat <- vroom(mtcars_by_cyl, id = "source")

15

16 vroom_altrep

dat$source <- basename(dat$source)
dat

vroom_altrep Show which column types are using Altrep

Description

vroom_altrep() can be used directly as input to the altrep argument of vroom().

Usage

vroom_altrep(which = NULL)

Arguments
which A character vector of column types to use Altrep for. Can also take TRUE or
FALSE to use Altrep for all possible or none of the types
Details

Alternatively there is also a family of environment variables to control use of the Altrep framework.
These can then be set in your .Renviron file, e.g. with usethis::edit_r_environ(). For ver-
sions of R where the Altrep framework is unavailable (R < 3.5.0) they are automatically turned off
and the variables have no effect. The variables can take one of true, false, TRUE, FALSE, 1, or Q.

* VROOM_USE_ALTREP_NUMERICS - If set use Altrep for all numeric types (default false).

There are also individual variables for each type. Currently only VROOM_USE_ALTREP_CHR defaults
to true.

* VROOM_USE_ALTREP_CHR

* VROOM_USE_ALTREP_FCT

* VROOM_USE_ALTREP_INT

* VROOM_USE_ALTREP_BIG_INT

* VROOM_USE_ALTREP_DBL

* VROOM_USE_ALTREP_NUM

* VROOM_USE_ALTREP_LGL

* VROOM_USE_ALTREP_DTTM

* VROOM_USE_ALTREP_DATE

* VROOM_USE_ALTREP_TIME

Examples

vroom_altrep()

vroom_altrep(c("chr”, "fct”, "int"))
vroom_altrep(TRUE)
vroom_altrep(FALSE)

vroom_altrep_opts 17

vroom_altrep_opts Show which column types are using Altrep

Description

[Deprecated] This function is deprecated in favor of vroom_altrep().

Usage

vroom_altrep_opts(which = NULL)

Arguments
which A character vector of column types to use Altrep for. Can also take TRUE or
FALSE to use Altrep for all possible or none of the types
vroom_example Get path to vroom examples
Description

vroom comes bundled with a number of sample files in its ’inst/extdata’ directory. Use vroom_examples()
to list all the available examples and vroom_example() to retrieve the path to one example.

Usage

vroom_example(path)

vroom_examples(pattern = NULL)

Arguments
path Name of file.
pattern A regular expression of filenames to match. If NULL, all available files are re-
turned.
Examples

List all available examples
vroom_examples()

Get path to one example
vroom_example("mtcars.csv")

18 vroom_format

vroom_format Convert a data frame to a delimited string

Description

This is equivalent to vroom_write(), but instead of writing to disk, it returns a string. It is primarily
useful for examples and for testing.

Usage
vroom_format (
X ’
delim = "\t",
eol = "\n",
na = "NA",
col_names = TRUE,
escape = c("double”, "backslash”, "none"),
quote = c("needed”, "all”, "none"),
bom = FALSE,
num_threads = vroom_threads()
)
Arguments
X A data frame or tibble to write to disk.
delim Delimiter used to separate values. Defaults to \t to write tab separated value
(TSV) files.
eol The end of line character to use. Most commonly either "\n" for Unix style
newlines, or "\r\n" for Windows style newlines.
na String used for missing values. Defaults to "NA’.
col_names If FALSE, column names will not be included at the top of the file. If TRUE, col-
umn names will be included. If not specified, col_names will take the opposite
value given to append.
escape The type of escape to use when quotes are in the data.
* double - quotes are escaped by doubling them.
* backslash - quotes are escaped by a preceding backslash.
* none - quotes are not escaped.
quote How to handle fields which contain characters that need to be quoted.

* needed - Values are only quoted if needed: if they contain a delimiter,
quote, or newline.
* all - Quote all fields.

* none - Never quote fields.

bom If TRUE add a UTF-8 BOM at the beginning of the file. This is recommended
when saving data for consumption by excel, as it will force excel to read the data
with the correct encoding (UTF-8)

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

vroom_fwf 19

vroom_fwf Read a fixed width file into a tibble

Description

Read a fixed width file into a tibble

Usage

vroom_fwf (
file,
col_positions = fwf_empty(file, skip, n = guess_max),
col_types = NULL,
col_select = NULL,

id = NULL,

locale = default_locale(),
na = C(HH’ HNAII),

comment = "",

skip_empty_rows = TRUE,
trim_ws = TRUE,

skip = 0,

n_max = Inf,

guess_max = 100,

altrep = TRUE,

altrep_opts = deprecated(),
num_threads = vroom_threads(),
progress = vroom_progress(),
show_col_types = NULL,
.name_repair = "unique”

)

nn

fwf_empty(file, skip = @, col_names = NULL, comment = , h = 100L)
fwf_widths(widths, col_names = NULL)
fwf_positions(start, end = NULL, col_names = NULL)

fwf_cols(...)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.
Using a value of clipboard() will read from the system clipboard.

vroom_fwf

col_positions Column positions, as created by fwf_empty (), fwf_widths() or fwf_positions().
To read in only selected fields, use fwf_positions(). If the width of the last
column is variable (a ragged fwf file), supply the last end position as NA.

col_types One of NULL, a cols() specification, or a string. See vignette("readr") for
more details.
If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.
Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().
Alternatively, you can use a compact string representation where each character
represents one column:

e ¢ = character
* i=integer
e n = number

e d =double

* I =logical

e f=factor

* D =date

e T =date time
e t=time

* 7 =guess

e _or-=skip

By default, reading a file without a column specification will print a message
showing what readr guessed they were. To remove this message, set show_col_types
= FALSE or set ‘options(readr.show_col_types = FALSE).

col_select Columns to include in the results. You can use the same mini-language as
dplyr::select() to refer to the columns by name. Use c() to use more than
one selection expression. Although this usage is less common, col_select also
accepts a numeric column index. See ?tidyselect: :language for full details
on the selection language.

id The name of a column in which to store the file path. This is useful when reading
multiple input files and there is data in the file paths, such as the data collection
date. If NULL (the default) no extra column is created.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

vroom_fwf
trim_ws
skip

n_max

guess_max

altrep

altrep_opts
num_threads

progress

show_col_types

.name_repair

col_names

n

widths

start, end

Details

21

Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed
from each field before parsing it?
Number of lines to skip before reading data.
Maximum number of lines to read.
Maximum number of lines to use for guessing column types. Will never use
more than the number of lines read. See vignette(”"column-types"”, package
= "readr") for more details.
Control which column types use Altrep representations, either a character vector
of types, TRUE or FALSE. See vroom_altrep() for for full details.
[Deprecated]
The number of processing threads to use for initial parsing and lazy reading of
data. If your data contains newlines within fields the parser should automatically
detect this and fall back to using one thread only. However if you know your file
has newlines within quoted fields it is safest to set num_threads = 1 explicitly.
Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The automatic progress bar can be disabled
by setting option readr. show_progress to FALSE.
If FALSE, do not show the guessed column types. If TRUE always show the
column types, even if they are supplied. If NULL (the default) only show the
column types if they are not explicitly supplied by the col_types argument.
Handling of column names. The default behaviour is to ensure column names
are "unique”. Various repair strategies are supported:

* "minimal”: No name repair or checks, beyond basic existence of names.

e "unique” (default value): Make sure names are unique and not empty.

* "check_unique"”: no name repair, but check they are unique.

e "universal”: Make the names unique and syntactic.

* A function: apply custom name repair (e.g., name_repair = make.names

for names in the style of base R).

* A purrr-style anonymous function, see rlang: :as_function().
This argument is passed on as repair to vctrs: :vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.
Either NULL, or a character vector column names.
Number of lines the tokenizer will read to determine file structure. By default it
is set to 100.
Width of each field. Use NA as width of last field when reading a ragged fwf
file.
Starting and ending (inclusive) positions of each field. Use NA as last end field
when reading a ragged fwf file.
If the first element is a data frame, then it must have all numeric columns and
either one or two rows. The column names are the variable names. The column
values are the variable widths if a length one vector, and if length two, variable

start and end positions. The elements of . .. are used to construct a data frame
with or or two rows as above.

Note: fwf_empty() cannot take a R connection such as a URL as input, as this would result in
reading from the connection twice. In these cases it is better to download the file first before

reading.

22

Examples

fwf_sample <- vroom_example("fwf-sample.txt")
writeLines(vroom_lines(fwf_sample))

You can specify column positions in several ways:
1. Guess based on position of empty columns

vroom_lines

vroom_fwf (fwf_sample, fwf_empty(fwf_sample, col_names = c("first”, "last”, "state”, "ssn")))

2. A vector of field widths

vroom_fwf (fwf_sample, fwf_widths(c(20, 10, 12), c("name”, "state"”, "ssn")))
3. Paired vectors of start and end positions

vroom_fwf (fwf_sample, fwf_positions(c(1, 30), c(20, 42), c("name”, "ssn")))
4. Named arguments with start and end positions

vroom_fwf (fwf_sample, fwf_cols(name = c(1, 20), ssn = c(30, 42)))
5. Named arguments with column widths
vroom_fwf (fwf_sample, fwf_cols(name = 20, state = 10, ssn = 12))

vroom_lines Read lines from a file

Description

vroom_lines() is similar to readLines(), however it reads the lines lazily like vroom(), so op-
erations like length(), head(), tail() and sample() can be done much more efficiently without

reading all the data into R.

Usage

vroom_lines(
file,
n_max = Inf,
skip = 0,
na = character(),
skip_empty_rows = FALSE,
locale = default_locale(),
altrep = TRUE,
altrep_opts = deprecated(),
num_threads = vroom_threads(),
progress = vroom_progress()

Arguments

file

Either a path to a file, a connection, or literal data (either a single string or a raw

vector). file can also be a character vector containing multiple filepaths or a

list containing multiple connections.

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and

decompressed.

Literal data is most useful for examples and tests. To be recognised as literal

data, wrap the input with I().

vroom_progress 23

n_max Maximum number of lines to read.

skip Number of lines to skip before reading data. If comment is supplied any com-
mented lines are ignored after skipping.

na Character vector of strings to interpret as missing values. Set this option to
character () to indicate no missing values.

skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

altrep Control which column types use Altrep representations, either a character vector
of types, TRUE or FALSE. See vroom_altrep() for for full details.

altrep_opts [Deprecated]

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The automatic progress bar can be disabled
by setting option readr. show_progress to FALSE.

Examples

lines <- vroom_lines(vroom_example(”"mtcars.csv"))

length(lines)
head(lines, n = 2)
tail(lines, n = 2)

sample(lines, size = 2)

Vroom_progress Determine whether progress bars should be shown

Description

By default, vroom shows progress bars. However, progress reporting is suppressed if any of the
following conditions hold:

* The bar is explicitly disabled by setting the environment variable VROOM_SHOW_PROGRESS to
"false”.

* The code is run in a non-interactive session, as determined by rlang::is_interactive().
* The code is run in an RStudio notebook chunk, as determined by getOption("rstudio.notebook.executing”).

Usage

vroom_progress()

Examples

vroom_progress()

24

vroom_write

vroom_str Structure of objects

Description

Similar to str() but with more information for Altrep objects.

Usage

vroom_str(x)

Arguments

X a vector

Examples

when used on non-altrep objects altrep will always be false
vroom_str(mtcars)

mt <- vroom(vroom_example("mtcars.csv”), ",", altrep = c("chr"”, "dbl"))
vroom_str(mt)

vroom_write Write a data frame to a delimited file

Description

Werite a data frame to a delimited file

Usage

vroom_write(
X,
file,
delim = "\t",
eol = "\n",
na = "NA",
col_names = !append,
append = FALSE,
quote = c("needed”, "all”, "none"),
escape = c("double”, "backslash”, "none"),
bom = FALSE,

num_threads = vroom_threads(),
progress = vroom_progress(),
path = deprecated()

vroom_write

Arguments

X
file
delim

eol

na
col_names

append

quote

escape

bom

num_threads

progress

path

Examples

25

A data frame or tibble to write to disk.
File or connection to write to.
Delimiter used to separate values. Defaults to \t to write tab separated value
(TSV) files.
The end of line character to use. Most commonly either "\n" for Unix style
newlines, or "\r\n" for Windows style newlines.
String used for missing values. Defaults to "NA’.
If FALSE, column names will not be included at the top of the file. If TRUE, col-
umn names will be included. If not specified, col_names will take the opposite
value given to append.
If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if the file does not exist a new file is created.
How to handle fields which contain characters that need to be quoted.

* needed - Values are only quoted if needed: if they contain a delimiter,

quote, or newline.

* all - Quote all fields.

* none - Never quote fields.
The type of escape to use when quotes are in the data.

* double - quotes are escaped by doubling them.

* backslash - quotes are escaped by a preceding backslash.

* none - quotes are not escaped.
If TRUE add a UTF-8 BOM at the beginning of the file. This is recommended
when saving data for consumption by excel, as it will force excel to read the data
with the correct encoding (UTF-8)
Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.
Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values
and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr. show_progress to
FALSE.

[Deprecated] is no longer supported, use file instead.

If you only specify a file name, vroom_write() will write
the file to your current working directory.

out_file <- tempfile(fileext = "csv")

vroom_write(mtcars, out_file, ",")

You can also use a literal filename
vroom_write(mtcars, "mtcars.tsv")

o o o R

If you add an extension to the file name, write_()* will
automatically compress the output.

vroom_write(mtcars, "mtcars.tsv.gz")
vroom_write(mtcars, "mtcars.tsv.bz2")
vroom_write(mtcars, "mtcars.tsv.xz")

26 vroom_write_lines

vroom_write_lines Write lines to a file

Description

Werite lines to a file

Usage
vroom_write_lines(
X’
file,
eol = "\n",
na = "NA",

append = FALSE,
num_threads = vroom_threads()

)
Arguments

X A character vector.

file File or connection to write to.

eol The end of line character to use. Most commonly either "\n" for Unix style
newlines, or "\r\n" for Windows style newlines.

na String used for missing values. Defaults to "NA’.

append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if the file does not exist a new file is created.

num_threads Number of threads to use when reading and materializing vectors. If your data

contains newlines within fields the parser will automatically be forced to use a
single thread only.

	cols
	cols_condense
	date_names
	generators
	gen_tbl
	guess_type
	locale
	problems
	vroom
	vroom_altrep
	vroom_altrep_opts
	vroom_example
	vroom_format
	vroom_fwf
	vroom_lines
	vroom_progress
	vroom_str
	vroom_write
	vroom_write_lines

