Package 'vivo'

October 12, 2022

Title Variable Importance via Oscillations

Version 0.2.1

Description

Provides an easy to calculate local variable importance measure based on Ceteris Paribus profile and global variable importance measure based on Partial Dependence Profiles.

Depends R (>= 3.0)

License GPL-2

Encoding UTF-8

LazyData true

Imports ggplot2, DALEX

Suggests knitr, rmarkdown, mlbench, randomForest, gridExtra, grid, lattice, testthat, ingredients

VignetteBuilder knitr

RoxygenNote 7.1.0

URL https://github.com/ModelOriented/vivo

BugReports https://github.com/ModelOriented/vivo/issues

NeedsCompilation no

Author Anna Kozak [aut, cre], Przemyslaw Biecek [aut, ths]

Maintainer Anna Kozak <anna1993kozak@gmail.com>

Repository CRAN

Date/Publication 2020-09-07 11:00:02 UTC

R topics documented:

calculate_variable_split	2
calculate_weight	2
global_variable_importance	3
local_variable_importance	4
plot.global_importance	6
plot.local_importance	7

Index

```
calculate_variable_split
```

Internal Function for Split Points for Selected Variables

Description

This function calculate candidate splits for each selected variable. For numerical variables splits are calculated as percentiles (in general uniform quantiles of the length grid_points). For all other variables splits are calculated as unique values.

Usage

```
calculate_variable_split(data, variables = colnames(data), grid_points = 101)
```

Arguments

data	validation dataset. Is used to determine distribution of observations.
variables	names of variables for which splits shall be calculated
grid_points	number of points used for response path

Value

A named list with splits for selected variables

Note

This function is a copy of calculate_varaible_split() from ingredients package with small change.

Author(s)

Przemyslaw Biecek

calculate_weight Calculated empirical density and weight based on variable split.

Description

This function calculate an empirical density of raw data based on variable split from Ceteris Paribus profiles. Then calculated weight for values generated by DALEX::predict_profile(), DALEX::individual_profile() or ingredients::ceteris_paribus().

Usage

```
calculate_weight(profiles, data, variable_split)
```

9

Arguments

profiles	<pre>data.frame generated by DALEX::predict_profile(), DALEX::individual_profile() or ingredients::ceteris_paribus()</pre>
data	data.frame with raw data to model
variable_split	list generated by vivo::calculate_variable_split()

Value

Return an weight based on empirical density.

Examples

global_variable_importance Global Variable Importance measure based on Partial Dependence profiles.

Description

This function calculate global importance measure.

Usage

global_variable_importance(profiles)

Arguments

profiles data.frame generated by DALEX::model_profile() or DALEX::variable_profile()

Value

A data.frame of the class global_variable_importance. It's a data.frame with calculated global variable importance measure.

Examples

local_variable_importance

Local Variable Importance measure based on Ceteris Paribus profiles.

Description

This function calculate local importance measure in eight variants. We obtain eight variants measure through the possible options of three parameters such as absolute_deviation, point and density.

Usage

```
local_variable_importance(
   profiles,
   data,
   absolute_deviation = TRUE,
   point = TRUE,
   density = TRUE,
   grid_points = 101
)
```

Arguments

profiles	<pre>data.frame generated by DALEX::predict_profile(), DALEX::individual_profile() or ingredients::ceteris_paribus()</pre>
data absolute_devia	data.frame with raw data to model tion
	logical parameter, if absolute_deviation = TRUE then measure is calculated as absolute deviation, else is calculated as a root from average squares
point	logical parameter, if point = TRUE then measure is calculated as a distance from $f(x)$, else measure is calculated as a distance from average profiles
density	logical parameter, if density = TRUE then measure is weighted based on the density of variable, else is not weighted
grid_points	maximum number of points for profile calculations, the default values is 101, the same as in ingredients::ceteris_paribus(), if you use a different on, you should also change here

Value

A data.frame of the class local_variable_importance. It's a data.frame with calculated local variable importance measure.

Examples

```
library("DALEX")
data(apartments)
library("randomForest")
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface +</pre>
                                     floor + no.rooms, data = apartments)
explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:5],</pre>
                        y = apartmentsTest$m2.price)
new_apartment <- data.frame(construction.year = 1998, surface = 88, floor = 2L, no.rooms = 3)</pre>
profiles <- predict_profile(explainer_rf, new_apartment)</pre>
library("vivo")
local_variable_importance(profiles, apartments[,2:5],
                           absolute_deviation = TRUE, point = TRUE, density = TRUE)
local_variable_importance(profiles, apartments[,2:5],
                           absolute_deviation = TRUE, point = TRUE, density = FALSE)
local_variable_importance(profiles, apartments[,2:5],
                           absolute_deviation = TRUE, point = FALSE, density = TRUE)
```

plot.global_importance

Plot Global Variable Importance measure

Description

Function plot.global_importance plots global importance measure based on Partial Dependence profiles.

Usage

```
## S3 method for class 'global_importance'
plot(x, ..., variables = NULL, type = NULL, title = "Variable importance")
```

Arguments

х	<pre>object returned from global_variable_importance() function</pre>
	other object returned from global_variable_importance() function that shall be plotted together
variables	if not NULL then only variables will be presented
type	a character. How variables shall be plotted? Either "bars" (default) or "lines".
title	the plot's title, by default 'Variable importance'

Value

a ggplot2 object

Examples

plot(measure)

plot.local_importance Plot Local Variable Importance measure

Description

Function plot.local_importance plots local importance measure based on Ceteris Paribus profiles.

Usage

```
## S3 method for class 'local_importance'
plot(
    x,
    ...,
    variables = NULL,
    color = NULL,
    type = NULL,
    title = "Local variable importance"
)
```

Arguments

х	<pre>object returned from local_variable_importance() function</pre>
	other object returned from local_variable_importance() function that shall be plotted together
variables	if not NULL then only variables will be presented
color	a character. How to aggregated measure? Either "_label_method_" or "_label_model_".
type	a character. How variables shall be plotted? Either "bars" (default) or "lines".
title	the plot's title, by default 'Local variable importance'

Value

a ggplot2 object

Examples

```
library("DALEX")
data(apartments)
```

Index

calculate_variable_split, 2
calculate_weight, 2

global_variable_importance, 3

local_variable_importance,4

plot.global_importance, 6
plot.local_importance, 7