Package ‘virtuoso’

October 12, 2022

Type Package
Title Interface to 'Virtuoso' using 'ODBC'
Version 0.1.8

Description Provides users with a simple and convenient
mechanism to manage and query a 'Virtuoso' database using the 'DBI' (Data-Base Interface)
compatible 'ODBC' (Open Database Connectivity) interface.
"Virtuoso' is a high-performance ““universal server," which can act
as both a relational database, supporting standard Structured Query
Language ('SQL') queries, while also supporting data following the
Resource Description Framework (‘'RDF') model for Linked Data.
'RDF' data can be queried using 'SPARQL' ('SPARQL' Protocol and 'RDF' Query Language)
queries, a graph-based query that supports semantic reasoning.
This allows users to leverage the performance of local or remote 'Virtuoso' servers using
popular 'R' packages such as 'DBI' and 'dplyr’, while also providing a
high-performance solution for working with large 'RDF' 'triplestores' from 'R.'
The package also provides helper routines to install, launch, and manage
a "Virtuoso' server locally on 'Mac', "'Windows' and 'Linux' platforms using
the standard interactive installers from the 'R' command-line. By
automatically handling these setup steps, the package can make using "Virtuoso'
considerably faster and easier for a most users to deploy in a local
environment. Managing the bulk import of triples
from common serializations with a single intuitive command is another key
feature of this package. Bulk import performance can be tens to
hundreds of times faster than the comparable imports using existing R’ tools,
including 'rdflib' and 'redland' packages.

License MIT + file LICENSE
URL https://github.com/ropensci/virtuoso

BugReports https://github.com/ropensci/virtuoso/issues
Encoding UTF-8

Imports odbc, processx, DBI, utils, ini, rappdirs, curl, fs, digest,
ps
RoxygenNote 7.1.1

https://github.com/ropensci/virtuoso
https://github.com/ropensci/virtuoso/issues

2 has_virtuoso
Suggests knitr, rmarkdown, nycflights13, testthat, covr, jsonld,
dplyr, spelling
VignetteBuilder knitr
Language en-US
SystemRequirements virtuoso-opensource (Linux). For Mac & Windows,
this package can automate Virtuoso installation.
NeedsCompilation no
Author Carl Boettiger [aut, cre, cph]
(<https://orcid.org/0000-0002-1642-628X>),
Bryce Mecum [ctb] (<https://orcid.org/0000-0002-0381-3766>)
Maintainer Carl Boettiger <cboettig@gmail.com>
Repository CRAN
Date/Publication 2021-11-02 22:20:02 UTC
R topics documented:
has_viIrtuoso e e 2
VOS_CONfIGUIC o o e e e 3
VOS_COMNECE . o v v v v o o e e e e e e e e e e e 4
vos_delete_db e 5
vos_destroy_all 6
VOS_IMPOTt . . o v v e o e e e e e e e e e e e e e e e e e e 6
vos_install L e 8
vos_Kill . . . L e 9
vos_list_graphs L e 9
VOS_1OZ . . o e e e 10
vos_odbCInSt e e 11
VOS_PIOCESS . v v v v e 12
VOS_QUETY + v v v v v e 12
VOos_Set_paths L e e e e e e 13
VOS_SEArt . . . v v v o e e e e e e e e e e e 14
VOS_StAtUS . . . v v v o e e e e e e e e e e e 15
vos_uninstall L e e 16
Index 17
has_virtuoso check for Virtuoso
Description

test if the system has a virtuoso installation on the path

https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0002-0381-3766

vos_configure 3

Usage

has_virtuoso()

Value

logical indicating if virtuoso-t binary was found or now.

Examples

has_virtuoso()

vos_configure Configure Virtuoso Server ini file

Description

Virtuoso Server configuration is determined by a virtuoso.ini file when server starts. This file in-
cludes both system-specific information from your install (location of server files, addons, etc) and
user-configurable parameters. This helper function provides a way to create and modify an appro-
priate virtuoso.ini file.

Usage

vos_configure(
dirs_allowed = getwd(),
gigs_ram = 2,
template = find_virtuoso_ini(),
db_dir = vos_db()

Arguments

dirs_allowed Paths (relative or absolute) to directories from which Virtuoso should have read
and write access (e.g. for bulk uploading). Should be specified as a single
comma-separated string.

gigs_ram Indicate approximately the maximum GB of memory Virtuoso can have access
to. (Used to set NumberOfBuffers & MaxDirtyBuffers in config.)
template Location of an existing virtuoso.ini file which will be used as a template. By

default, vos_configure() will attempt to locate the appropriate template for
your system.

db_dir location where virtuoso.ini file should be written. Other Virtuoso database
log files will also be written here.

Value

Writes the requested virtuoso.ini file to the db_dir specified and returns the path to this file.

4 vos_connect

References

http://docs.openlinksw.com/virtuoso/dbadm/

Examples

can take > 5s to test

configure with typical defaults:
vos_configure()

Increase or decrease RAM available to virtuoso:
vos_configure(gigs_ram = 1)

vos_connect Connect to a Virtuoso Server over ODBC

Description

Connect to a Virtuoso Server over ODBC

Usage

vos_connect(
driver = NULL,

uid = "dba",

pwd = "dba",

host = "localhost”,
port = "1111",

system_odbcinst = find_odbcinst(),
local_odbcinst = odbcinst_path()

)
Arguments
driver Name of the Driver line in the ODBC configuration
uid User id. Defaults to "dba"
pwd Password. Defaults to "dba"
host IP address of the Virtuoso Server
port Port used by Virtuoso. Defaults to the Virtuoso standard port, 1111

system_odbcinst

Path to the system odbcinst.ini file. (Does not require write access.) Default
will attempt to find the file for your system.

local_odbcinst Path to the local odbcinst we should use.

http://docs.openlinksw.com/virtuoso/dbadm/

vos_delete_db 5

Details

Default parameters are appropriate for the automatic installer provided by the package and for the
default settings typically used by local Virtuoso installers. Adjust these only if you are connecting
to a remote virtuoso server that is not controlled from the R package.

Value

a DBI connection to the Virtuoso database. This can be passed to additional virtuoso functions
such as vos_import() or vos_query(), and can also be used as a standard DBI or dplyr database
backend.

See Also

vos_install(), vos_start()

Examples

status <- vos_status()

if(has_virtuoso()){
start up
vos_start()
con <- vos_connect()

}

vos_delete_db Delete Virtuoso Database

Description

delete the entire Virtuoso database for a fresh start.

Usage

vos_delete_db(ask = is_interactive(), db_dir = vos_db())

Arguments

ask ask before deleting?

db_dir location of the directory to delete
Examples

vos_delete_db()

6 vos_import

vos_destroy_all Destroy all Virtuoso’s directories

Description

Provides a clean reset of the system that purges all data files, config files, cache and log files created
by virtuoso R package. This does not uninstall Virtuoso software itself, see vos_uninstall() to
uninstall.

Usage

vos_destroy_all(force = FALSE)

Arguments

force should permissions be changed (if possible) to allow deletion?

Value

TRUE if entirely successful in removing all files, FALSE otherwise (invisibly).

Examples

vos_destroy_all()

vos_import Bulk Import of RDF triples

Description

While triples data can be added one by one over SPARQL queries, Virtuoso bulk import is by far
the fastest way to import large triplestores in the database.

Usage
vos_import(
con,
files = NULL,
wd = ".",
glob = "x",

graph = "rdflib",
n_cores = 1L

vos_import

Arguments

con
files

wd

glob
graph

n_cores

Details

a ODBC connection to Virtuoso, from vos_connect ()
paths to files to be imported

Alternatively, can specify directory and globbing pattern to import. Note that in
this case, wd must be in (or a subdir of) the AllowedDirs list of virtuoso.ini
file created by vos_configure(). By default, this includes the working direc-
tory where you called vos_start() or vos_configure().

A wildcard aka globbing pattern (e.g. “"*.nq").

Name (technically URI) for a graph in the database. Can leave as default. If a
graph is already specified by the import file (e.g. in nquads), that will be used
instead.

specify the number of available cores for parallel loading. Particularly useful
when importing large numbers of bulk files.

the bulk importer imports all files matching a pattern in a given directory. If given a list of files,
these are temporarily symlinked (or copied on Windows machines) to the Virtuoso app cache dir
in a subdirectory, and the entire subdirectory is loaded (filtered by the globbing pattern). If files
are not specified, load is called directly on the specified directory and pattern. This is particularly
useful for loading large numbers of files.

Note that Virtuoso recommends breaking large files into multiple smaller ones, which can improve
loading time (particularly if using multiple cores.)

Virtuoso Bulk Importer recognizes the following file formats:

e .grdf
* .nq

e .owl
e .nt

e .rdf
* .trig
o . ttl
e .xml

Any of these can optionally be gzipped (with a . gz extension).

Value

(Invisibly) returns the status table of the bulk loader, indicating file loading time or errors.

References

http://vos.openlinksw.com/owiki/wiki/VOS/VirtBulkRDFLoader

http://vos.openlinksw.com/owiki/wiki/VOS/VirtBulkRDFLoader

8 vos_install

Examples

vos_status()

if(has_virtuoso()){
vos_start()
con <- vos_connect()

example <- system.file("extdata"”, "person.nq”, package = "virtuoso")
vos_import(con, example)
}
vos_install Helper method for installing Virtuoso Server
Description

Installation helper for Mac and Windows machines. By default, method will download and launch
the official .dmg or .exe installer for your platform, running the standard drag-n-drop installer or
interactive dialog. Setting ask = FALSE will allow the installer to run entirely unsupervised, which
is suitable for use in scripts. Mac users can alternatively opt to install Virtuoso through HomeBrew
by setting use_brew=TRUE. Linux users should simply install the virtuoso-opensource package
(e.g. in debian & ubuntu) using the package manager or by contacting your system administrator.

Usage

vos_install(ask = is_interactive(), use_brew = FALSE)

Arguments
ask Should we ask user for interactive installation?
use_brew Should we use homebrew to install? (MacOS only)
See Also

vos_start(), vos_uninstall()

Examples

vos_install()

vos_kill 9

vos_kill Stop (kill) the Virtuoso server

Description

Kill ends the process started by vos_start()

Usage
vos_kill(p = NA)

Arguments
p a process object, returned by vos_process() or vos_start (). (will be restored
from cache if not provided)
Details

vos_kill simply shuts down the local Virtuoso server, it does not remove any data stored in the
database system. vos_kill() terminates the process, removing the process id from the process
table.

See Also

vos_start()

Examples

if(has_virtuoso()){

vos_start()
vos_kill()

}

vos_list_graphs List graphs

Description

List graphs

Usage

vos_list_graphs(con)

10 vos_log

Arguments

con a ODBC connection to Virtuoso, from vos_connect ()

Examples

status <- vos_status()
if(has_virtuoso() & is.null(status)){
vos_start()

con <- vos_connect()
vos_list_graphs(con)

}

vos_log Query the server logs

Description

Query the server logs

Usage
vos_log(p = NA, collapse = NULL, just_errors = FALSE)

Arguments
p a process object, returned by vos_process() or vos_start (). (will be restored
from cache if not provided)
collapse an optional character string to separate the lines in a single character string.

just_errors logical, default FALSE. Set to TRUE to return just the lines that contain the term
"error", which can be useful in debugging or validating bulk imports.

Value

Virtuoso logs as a character vector.

See Also

vos_start()

Examples

if(has_virtuoso())
vos_log()

vos_odbcinst 11

vos_odbcinst Configure the ODBC Driver for Virtuoso

Description

ODBC uses an odbcinst. ini file to point ODBC at the library required to drive any given database.
This function helps us automatically locate the driver library on different operating systems and
configure the odbcinst appropriately for each OS.

Usage

vos_odbcinst(
system_odbcinst = find_odbcinst(),
local_odbcinst = odbcinst_path()

)

Arguments

system_odbcinst
Path to the system odbcinst.ini file. (Does not require write access.) Default
will attempt to find the file for your system.

local_odbcinst Path to the local odbcinst we should use.

Details

This function is called automatically by vos_install() and thus does not usually need to be called
by the user. Users can also manually configure ODBC as outlined in https://github.com/r-dbi/
odbc#dsn-configuration-files. This is merely a convenience function automating that process
on most systems.

Value

the path to the odbcinst file that is created or modified.

Examples

Configures ODBC and returns silently on success.
vos_odbcinst ()

see where the inst file is located:
inst <- vos_odbcinst()
inst

https://github.com/r-dbi/odbc#dsn-configuration-files
https://github.com/r-dbi/odbc#dsn-configuration-files

12 vos_query

VOS_process Return a handle to an existing Virtuoso Process

Description

Generally a user will not need to access this function directly, though it may be useful for debugging
purposes.

Usage

vos_process(p = NA)

Arguments
p a process object, returned by vos_process() or vos_start(). (will be restored
from cache if not provided)
Value

returns the processx: :process() object cached by vos_start() to control the external Virtuoso
sever process from R.

Examples

if(has_virtuoso())
vos_process()

vos_query Run a SPARQL query

Description

Run a SPARQL query

Usage

vos_query(con, query)

Arguments

con a ODBC connection to Virtuoso, from vos_connect ()

query a SPARQL query statement

vos_set_paths 13

Details

SPARQL is a graph query language similar in syntax SQL, but allows the use of variables to walk
through graph nodes.

Value

a data.frame containing the results of the query

References

e https://en.wikipedia.org/wiki/SPARQL
e https://docs.ropensci.org/rdflib/articles/rdf_intro.html

See Also

vos_start(), vos_connect()

Examples

vos_status()

if(has_virtuoso()){
vos_start()
con <- vos_connect()

show first 4 triples in the database
DBI: :dbGetQuery(con, "SPARQL SELECT * WHERE { ?s ?p ?0 } LIMIT 4")

}

vos_set_paths set Virtuoso paths

Description

Set the location of Virtuoso database, configure files, cache, and logs to your preferred location. Set
home to the location of your Virtuoso installation.

Usage

vos_set_paths(
db_dir = vos_db(),
config_dir = vos_config(),
cache_dir = vos_cache(),
log_dir = vos_logdir(),
home = virtuoso_home()

https://en.wikipedia.org/wiki/SPARQL
https://docs.ropensci.org/rdflib/articles/rdf_intro.html

14

Arguments
db_dir
config_dir
cache_dir
log_dir

home

Value

vos_start

Location of data in the Virtuoso (tables, triplestore)
Location of configuration files for Virtuoso
Location of cache for bulk importing

Location of Virutoso Server logs

Location of the Virtuoso installation

A logical vector, with elements being true if setting the corresponding variable succeeded (invisi-

bly).

Examples

if(has_virtuoso())

vos_set_paths()

vos_start

Start a Virtuoso Server

Description

This function will attempt to start a virtuoso server instance that can be managed completely from R.
This allows the user to easily start, stop, and access server logs and functions from the R command
line. This server will be automatically shut down when R exits or restarts, or can be explicitly
controlled using vos_kill(), vos_log(), and vos_status().

Usage

vos_start(ini = NULL, wait = 30)

Arguments

ini

wait

Details

path to a virtuoso.ini configuration file. If not provided, function will attempt to
determine the location of the default configuration file.

number of seconds to wait for server to come online

It can take some time for the server to come up before it is ready to accept queries. vos_start()
will return as soon as the server is active, which typically takes about 10 seconds on tested systems.
vos_start() monitors the Virtuoso logs every one second for a maximum time of wait seconds
(default 30 seconds) to see if the server is ready. If wait time is exceeded, vos_start() will
simply return the current server status. This does not mean that starting has failed, it may simply

vos_status 15

need longer before the server is active. Use vos_status() to continue to monitor the server status
manually.

If no virtuoso. ini configuration file is provided, vos_start () will automatically attempt to con-
figure one. For more control over this, use vos_configure(), see examples.

Value

invisibly returns the processx: : process() object which can be used to control the external process
from R. It is not necessary for a user to store this return object, as vos_start () caches the process
object so it can be automatically accessed by other functions without needing to store and pass the
return object.

See Also

vos_install()

Examples

if(has_virtuoso()){

vos_start()

or with custom config:
vos_start(vos_configure(gigs_ram = 3))

vos_status Query the server status

Description

Query the server status

Usage

vos_status(p = NA, wait = 10)

Arguments
p a process object, returned by vos_process() or vos_start(). (will be restored
from cache if not provided)
wait number of seconds to wait for server to come online
Details

Note: Use vos_log() to see the full log

16 vos_uninstall

Value
a character string indicating the state of the server:

* "not detected" if no process can be found

» "dead" process exists but reports that server is not alive. Server may fail to come online due
to errors in configuration file. see vos_configure()

* "running" Server is up and accepting queries.

* "sleeping" Server is up and accepting queries.

Examples

if(has_virtuoso())
vos_status()

vos_uninstall Uninstall Virtuoso

Description

Automatic uninstaller for Mac OSX and Windows clients.

Usage

vos_uninstall()

Examples

Not run:
vos_uninstall()

End(Not run)

Index

FALSE, 6, 10

has_virtuoso, 2

processx: :process(), 12, 15
TRUE, 6, 10

vos_configure, 3
vos_configure(), 7, 15, 16
vos_connect, 4
vos_connect(), 7, 10,12, 13
vos_delete_db, 5
vos_destroy_all, 6
vos_import, 6
vos_import(), 5
vos_install, 8
vos_install(), 5, 11,15
vos_kill, 9
vos_kill(), 9, 14
vos_list_graphs, 9
vos_log, 10
vos_log(), 14, 15
vos_odbcinst, 11
vos_process, 12
vos_process(), 9, 10,12, 15
vos_query, 12
vos_query(), 5
vos_set_paths, 13
vos_start, 14
vos_start(), 5, 7-10, 12-15
vos_status, 15
vos_status(), 14, 15
vos_uninstall, 16
vos_uninstall(), 6, 8

17

	has_virtuoso
	vos_configure
	vos_connect
	vos_delete_db
	vos_destroy_all
	vos_import
	vos_install
	vos_kill
	vos_list_graphs
	vos_log
	vos_odbcinst
	vos_process
	vos_query
	vos_set_paths
	vos_start
	vos_status
	vos_uninstall
	Index

