
Package ‘virtualspecies’
September 26, 2023

Type Package

Title Generation of Virtual Species Distributions

Version 1.6

Author Boris Leroy [cre, aut], Christine N. Meynard [ctb],
Celine Bellard [ctb], Franck Courchamp [ctb], Robin Delsol [ctb],
Willson Gaul [ctb]

Maintainer Boris Leroy <leroy.boris@gmail.com>

Description Provides a framework for generating virtual species distributions,
a procedure increasingly used in ecology to improve species distribution
models. This package integrates the existing methodological approaches
with the objective of generating virtual species distributions with
increased ecological realism.

Encoding UTF-8

License GPL (>= 2.0)

Depends R (>= 3.5), terra

Imports ade4, graphics, grDevices, rnaturalearth, raster, stats,
utils, viridis

URL https://borisleroy.com/virtualspecies/

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-09-26 20:30:02 UTC

R topics documented:
virtualspecies-package . 2
betaFun . 3
convertToPA . 4
custnorm . 9
formatFunctions . 10
generateRandomSp . 12

1

https://borisleroy.com/virtualspecies/

2 virtualspecies-package

generateSpFromBCA . 15
generateSpFromFun . 18
generateSpFromPCA . 21
limitDistribution . 24
linearFun . 27
logisticFun . 28
plotResponse . 29
plotSuitabilityToProba . 31
quadraticFun . 32
removeCollinearity . 33
sampleOccurrences . 35
synchroniseNA . 40

Index 42

virtualspecies-package

Generation of virtual species

Description

This package allows generating virtual species distributions, for example for testing species distri-
bution modelling protocols. For a complete tutorial, see borisleroy.com/virtualspecies

Details

The process of generating a virtual species distribution is divided into four major steps.

1. Generate a virtual species distributions from environmental variables. This can be done by

• defining partial response functions to each environmental variable, and then combining
them to compute the overall environmental suitability, with generateSpFromFun

• computing a PCA among environmental variables, and simulating the response of the
species along the two first axes of the PCA with generateSpFromPCA

This step can be randomised with generateRandomSp

2. Convert the virtual species distribution into presence-absence, with convertToPA

3. Facultatively, introduce a distribution bias with limitDistribution

4. Sample occurrence points (presence only or presence-absence) inside the virtual species dis-
tribution, either randomly or with biases, with sampleOccurrences

There are other useful functions in the package:

• formatFunctions: this is a helper function to format and illustrate the response functions as
a correct input for generateSpFromFun

• plotResponse: to visualise the species-environment relationship of the virtual species

• removeCollinearity: this function can be used to remove collinearity among variables of a
stack by selecting a subset of non-colinear variables

betaFun 3

• synchroniseNA: this function can be used to synchronise NA values among layers of a stack

This packages makes use of different other packages:

• This package makes extensive use of the package terra to obtain spatialised environmental
variables, and produce spatialised virtual species distributions.

• ade4 is used to generate species with a PCA approach.

• rnaturalearth is used to obtain free world shapefiles, in order to create dispersal limitations
and sampling biases.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Maintainer: Boris Leroy <leroy.boris@gmail.com>

References

Leroy, B. et al. 2016. virtualspecies, an R package to generate virtual species distributions. Ecog-
raphy. 39(6):599-607

betaFun Beta response function

Description

Generation of a beta response curve (see references) according to the equation:

k ∗ (x− p1)α ∗ (p2− x)γ

k is automatically estimated to have a maximum value of P equal to 1.

Usage

betaFun(x, p1, p2, alpha, gamma)

Arguments

x a numeric value or vector. The input environmental variable.

p1 a numeric value or vector. Lower tolerance bound for the species

p2 a a numeric value or vector. Upper tolerance bound for the species

alpha a numeric value or vector. Parameter controlling the shape of the curve (see
details)

gamma a numeric value or vector. Parameter controlling the shape of the curve (see
details)

4 convertToPA

Details

p1 and p2 can be seen as the upper and lower critical threshold of the curve. alpha and gamma
control the shape of the curve near p1 and p2, respectively. When alpha = gamma, the curve is
symmetric. Low values of alpha and gamma result in smooth (< 1) to plateau (< 0.01) curves.
Higher values result in peak (> 10) curves.

When alpha < gamma, the curve is skewed to the right. When gamma < alpha, the curve is skewed
to the left.

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

References

Oksanen, J. & Minchin, P.R. (2002). Continuum theory revisited: what shape are species responses
along ecological gradients? Ecological Modelling 157:119-129.

See Also

linearFun, quadraticFun, custnorm

Examples

temp <- seq(-10, 40, length = 100)
A curve similar to a thermal performance curve
P <- betaFun(x = temp, p1 = 0, p2 = 35, alpha = 0.9, gamma = 0.08)
plot(P ~ temp, type = "l")

convertToPA Convert a virtual species distribution (or a suitability raster) into
presence-absence

Description

This functions converts the probabilities of presence from the output of generateSpFromFun,
generateSpFromPCA, generateRandomSp or a suitability raster into a presence-absence raster. The
conversion can be threshold-based, or based on a probability of conversion (see details).

convertToPA 5

Usage

convertToPA(
x,
PA.method = "probability",
prob.method = "logistic",
beta = "random",
alpha = -0.05,
a = NULL,
b = NULL,
species.prevalence = NULL,
plot = TRUE

)

Arguments

x the output from functions generateSpFromFun, generateSpFromPCA or generateRandomSp,
or a suitability SpatRaster

PA.method "threshold" or "probability". If "threshold", then occurrence probabili-
ties are simply converted into presence-absence according to the threshold beta.
If "probability", then probabilities are converted according to a logistic func-
tion of threshold beta and slope alpha.

prob.method "logistic" or "linear". Defines how the initial environmental suitability is
translated into probabilities of presence/absence.

beta "random", a numeric value in the range of your probabilities or NULL. This is the
threshold of conversion into presence-absence (if PA.method = "probability"
and prob.method = "logistic", then beta = the inflexion point). If "random",
a numeric value will be randomly generated within the range of x.

alpha NULL or a negative numeric value. Only useful if PA.method = "probability"
and proba.method = "logistic". The value of alpha will shape the logistic
function transforming occurrences into presence-absences. See logisticFun
and examples therein for the choice of alpha

a NULL or a numeric value. Only useful if PA.method = "probability" and
proba.method = "linear". Slope of the linear conversion of environmental
suitability.

b NULL or a numeric value. Only useful if PA.method = "probability" and
proba.method = "linear". Intercept of the linear conversion of environmental
suitability.

species.prevalence

NULL or a numeric value between 0 and 1. The species prevalence is the propor-
tion of sites actually occupied by the species.

plot TRUE or FALSE. If TRUE, maps of probabilities of occurrence and presence-absence
will be plotted.

Details

Online tutorial for this function

http://borisleroy.com/virtualspecies_tutorial/04-presenceabsence.html

6 convertToPA

The conversion of environmental suitability into presence - absence used to be performed by se-
lecting a threshold above which presence always occurs, and never below. However, this approach
may is unrealistic because species may sometime be present in areas with a low probability of oc-
currence, or be absent from areas with a high probability of occurrence. In addition, when using a
threshold you erase the previously generated response shapes: it all becomes threshold. Thus, this
threshold approach should be avoided.

A more realistic conversion consists in converting environmental suitability into presence - absence
with a probability function (see references). Such a probability conversion can be performed with
two different methods here:

1. Using a logistic transformation of environmental suitability (see logisticFun). A logistic
function on the other hand, will ensure that the simulated probability is within the 0-1 range
and allow easy control of species prevalence. However, the logistic function will also flatten
out the relationship at the extreme suitability values, and narrow or broaden the intermediate
probability values depending on the slope of the logistic curve

2. Using a linear transformation of environmental suitability. A linear transformation will pre-
serve the shape of the originally simulated occurrence-environment relationships, uniformly
increasing or decreasing the probabilities of occurrence across the landscape.

— note —

If the Virtual Species study aims at comparing simulated and predicted probability values, it is
important to recover the correct simulated probability instead of directly using the initial suitability
function.

Therefore, the function stores the probability of occurrence in the output list, under the object
probability.of.occurrence. The initial suitability function (before logistic or linear conversion)
will still be stored in the output list as suitab.raster.

————————————————————————–

PROBABILISTIC CONVERSION - LOGISTIC METHOD
To perform the logistic transformation of environmental suitability you have to define two of the
three following parameters:

• beta: the ’threshold’ of the logistic function (i.e. the inflexion point. It should normaly be in
the range of values of your environmental suitability.)

• alpha: the slope of the logistic function. It should generally be in value equal to something
like 1/20 or 1/10 of your environmental suitability range

• species.prevalence: the proportion of sites in which the species occur

If you provide beta and alpha, the species.prevalence is calculated immediately calculated
after conversion into presence-absence.

On the other hand, if you provide species.prevalence and either beta or alpha, the function will
try to determine alpha (if you provided beta) or beta (if you provided alpha).

The relationship between species prevalence, alpha and beta is dependent on the available range of
environmental conditions (see Meynard and Kaplan, 2011 and especially the Supporting Informa-
tion). As a consequence, the desired species prevalence may not be available for the defined alpha
or beta. In these conditions, the function will retain the alpha or beta which provides the closest
prevalence to your species.prevalence, but you may also provide another value of alpha or beta
to obtain a closer prevalence.

convertToPA 7

————————————————————————–

PROBABILISTIC CONVERSION - LINEAR METHOD
To perform the linear transformation of environmental suitability you have to define *one* of the
following:

• nothing - in which case your input environmental suitability will be used as the probability of
occurrence for the Bernoulli trial (it is equivalent to defining a slope a of 1 and intercept b of
0.)

• the coefficients of the linear regression: slope a and intercept b. The transformed environmen-
tal suitability will be used as the probability of occurrence for the Bernoulli trial.

• species.prevalence: the proportion of sites in which the species occur. In this case, the
function will try to find coefficients of a linear regression which results in the requested
species.prevalence (see below).

Method used to find coefficients of a linear regression which results in the requested species.prevalence:

1. The simplest linear transformation of habitat suitability would be to just multiply the raw
suitability by a constant. For example, if the raw average suitability in the area is 0.04, it
means an expected prevalence of 0.40. To to go from this expected prevalence of 0.04 to an
expected prevalence of 0.4, we can just multiply the raw suitability by 10. It is the default
choice, unless it results in probabilities superior to 1 or raw suitability have values below 0, in
which case the function proceeds to method 2.

2. If it does not work, then we look at the line that passes through (min suitability, 0) and (mean
suitability, desired prevalence). For this line, we only need to ensure that the maximum prob-
ability of occurence is lower than 1. Otherwise, the function proceeds to method 3.

3. If method 2 fails, then we test the line going through (mean suitability, desired prevalence)
and (max suitability, 1). If the minimum probability resulting from this line is greater than 0,
then this method is correct.

One of these 3 lines should always work. In fact, one of the last two has to work, and it does not
hurt to try the first one which is simpler.

————————————————————————–

In all cases, the species.prevalence indicated in the output is the prevalence measured on the
output presence-absence map.

Value

a list containing 6 elements:

• approach: the approach used to generate the species, i.e., "response"
• details: the details and parameters used to generate the species
• suitab.raster: the environmental suitability of your virtual species, as a Raster object
• probability.of.occurrence: the probability of occurrence of your species, based on the

chosen transformation of environmental suitability, as a Raster object
• PA.conversion: the parameters used to convert the suitability into presence-absence
• pa.raster: the presence-absence map, as a Raster object containing 0 (absence) / 1 (presence)

/ NA

The structure of the virtualspecies object can be seen using str()

8 convertToPA

Note

The approximation of alpha or beta to the chosen species.prevalence may take time if you
work on very large rasters.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, D.M. Kaplan, C. Bellard & F. Courchamp

References

Meynard C.N. & Kaplan D.M. 2013. Using virtual species to study species distributions and model
performance. Journal of Biogeography 40:1-8

Meynard C.N. & Kaplan D.M. 2011. The effect of a gradual response to the environment on species
distribution model performance. Ecography 35:499-509

Examples

Create an example stack with two environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100))
names(env) <- c("variable1", "variable2")

Creation of the parameter list
parameters <- formatFunctions(variable1 = c(fun = 'dnorm', mean = 0.00012,

sd = 0.0001),
variable2 = c(fun = 'linearFun', a = 1, b = 0))

sp1 <- generateSpFromFun(env, parameters, plot = FALSE)

Conversion into presence-absence with a threshold-based approach
convertToPA(sp1, PA.method = "threshold", beta = 0.2, plot = TRUE)
convertToPA(sp1, PA.method = "threshold", beta = "random", plot = TRUE)

Conversion into presence-absence with a probability approach using logistic
method
convertToPA(sp1, PA.method = "probability", beta = 0.4,

alpha = -0.05, plot = TRUE)
convertToPA(sp1, PA.method = "probability", beta = "random",

alpha = -0.1, plot = TRUE)

Conversion into presence-absence with a probability approach using linear
method
convertToPA(sp1, PA.method = "probability", prob.method = "linear",

a = 1, b = 0, plot = TRUE)

Conversion into presence-absence by choosing the prevalence
Threshold method
convertToPA(sp1, PA.method = "threshold",

custnorm 9

species.prevalence = 0.3, plot = TRUE)
Logistic method, with alpha provided
convertToPA(sp1, PA.method = "probability", alpha = -0.1,

species.prevalence = 0.2, plot = TRUE)
Logistic method, with beta provided
convertToPA(sp1, PA.method = "probability", beta = 0.5,

species.prevalence = 0.2, alpha = NULL,
plot = TRUE)

Linear method
convertToPA(sp1, PA.method = "probability", prob.method = "linear",

species.prevalence = 0.2,
plot = TRUE)

convertToPA(sp1, PA.method = "probability", prob.method = "linear",
species.prevalence = 0.5,
plot = TRUE)

convertToPA(sp1, PA.method = "probability", prob.method = "linear",
species.prevalence = 0.8,
plot = TRUE)

Plot the output Presence-Absence raster only
sp1 <- convertToPA(sp1, plot = FALSE)
plot(sp1$pa.raster)

custnorm Normal function defined by extremes

Description

A modified version of the normal function based on three parameters:

• the mean

• the absolute difference between the mean and extreme values

• the percentage of area under the curve between the specified extreme values

See the example for an easier understanding.

Usage

custnorm(x, mean, diff, prob)

Arguments

x a numeric value or vector. The input environmental variable.

mean a numeric value or vector. The optimum (mean) of the normal curve

diff a numeric value or vector. The absolute difference between the mean and ex-
tremes.

prob a numeric value or vector. The percentage of the area under the curve between
the chosen extreme values

10 formatFunctions

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>, Florian David

Maintainer: Boris Leroy <leroy.boris@gmail.com>

Examples

Let's define the response of a species to temperature which
- has an optimum at 20 degrees C
- occurs 99% of the time between 13 and 27 degrees C.
In that case, mean = 20, diff = 7, and prob = 0.99

First, we generate an arbitrary temperature variable
between 0 and 30 degrees C
temp <- seq(0, 30, length = 1000)

Then, we calculate the response to this variable with the chosen values
response <- custnorm(x = temp, mean = 20, diff = 7, prob = .99)

plot(response ~ temp, type = "l")

formatFunctions Format and visualise functions used to generate virtual species with
generateSpFromFun

Description

This function is a helper function to simplify the formatting of functions for generateSpFromFun

Usage

formatFunctions(x = NULL, rescale = TRUE, ...)

Arguments

x NULL or a RasterStack. If you want to visualise the functions, provide your
RasterStack here.

rescale TRUE or FALSE. If TRUE, individual response plots are rescaled between 0 and 1
with the formula (val - min) / (max - min).

... the parameters to be formatted. See details.

formatFunctions 11

Details

This function formats the parameters argument of generateSpFromFun. For each environmental
variable, provide a vector containing the function name, and its arguments.

For example, assume we want to generate a species responding to two environmental variables bio1
and bio2.

• The response to bio1 is a normal response (dnorm), of mean 1 and standard deviation 0.5.
• The response to bio2 is a linear response (linearFun), of slope (a) 2 and intercept (b) 5.

The correct writing is:

formatFunctions(bio1 = c(fun = "dnorm", mean = 1, sd = 0.5),bio2 = c(fun = "linearFun",
a = 2, b = 5))

Warning

Do not use ’x’ as a name for your environmental variables.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

my.parameters <- formatFunctions(variable1 = c(fun = 'dnorm',
mean = 0.00012, sd = 0.0001),

variable2 = c(fun = 'linearFun', a = 1, b = 0))

my.parameters <- formatFunctions(bio1 = c(fun = "logisticFun",
alpha = -12.7, beta = 68),

bio2 = c(fun = "linearFun",
a = -0.03, b = 191.2),

bio3 = c(fun = "dnorm",
mean = 86.4, sd = 19.1),

bio4 = c(fun = "logisticFun",
alpha = 2198.5, beta = 11381.4))

Not run:
An example using worldclim data
bio1.4 <- getData('worldclim', var='bio', res=10)[[1:4]]
my.parameters <- formatFunctions(x = bio1.4,

bio1 = c(fun = "logisticFun",
alpha = -12.7, beta = 68),

bio2 = c(fun = "linearFun",
a = -0.03, b = 191.2),

bio3 = c(fun = "dnorm",
mean = 86.4, sd = 19.1),

bio4 = c(fun = "logisticFun",
alpha = 2198.5, beta = 11381.4))

End(Not run)

12 generateRandomSp

generateRandomSp Generate a random virtual species distribution from environmental
variables

Description

This function generates randomly a virtual species distribution.

Usage

generateRandomSp(
raster.stack,
approach = "automatic",
rescale = TRUE,
convert.to.PA = TRUE,
relations = c("gaussian", "linear", "logistic", "quadratic"),
rescale.each.response = TRUE,
realistic.sp = TRUE,
species.type = "multiplicative",
niche.breadth = "any",
sample.points = FALSE,
nb.points = 10000,
PA.method = "probability",
alpha = -0.1,
adjust.alpha = TRUE,
beta = "random",
species.prevalence = NULL,
plot = TRUE

)

Arguments

raster.stack a SpatRaster object, in which each layer represent an environmental variable.

approach "automatic", "random", "response" or "pca". This parameters defines how
species will be generated. "automatic": If less than 6 variables in raster.stack,
a response approach will be used, otherwise a pca approach will be used. "random":
the approach will be randomly picked. Otherwise choose "response" or "pca".
See details.

rescale TRUE or FALSE. If TRUE, the final probability of presence is rescaled between 0
and 1.

convert.to.PA TRUE or FALSE. If TRUE, the virtual species distribution will also be converted
into Presence-Absence.

relations [response approach] a vector containing the possible types of response function.
The implemented type of relations are "gaussian", "linear", "logistic" and
"quadratic".

generateRandomSp 13

rescale.each.response

TRUE or FALSE. If TRUE, the individual responses to each environmental variable
are rescaled between 0 and 1

realistic.sp [response approach] TRUE or FALSE. If TRUE, the function will try to define re-
sponses that can form a viable species. If FALSE, the responses will be randomly
generated (may result in environmental conditions that do not co-exist).

species.type [response approach] "additive" or "multiplicative". Defines how the fi-
nal probability of presence is calculated: if "additive", responses to each
variable are summed; if "multiplicative", responses are multiplied. See
generateSpFromFun

niche.breadth [pca approach] "any", "narrow" or "wide". This parameter defines how toler-
ant is the species regarding environmental conditions by adjusting the standard
deviations of the gaussian functions. See generateSpFromPCA

sample.points [pca approach] TRUE of FALSE. If you have a large raster file then use this pa-
rameter to sample a number of points equal to nb.points.

nb.points [pca approach] a numeric value. Only useful if sample.points = TRUE. The
number of sampled points from the raster, to perform the PCA. A too small
value may not be representative of the environmental conditions in your raster.

PA.method "threshold" or "probability". If "threshold", then occurrence probabili-
ties are simply converted into presence-absence according to the threshold beta.
If "probability", then probabilities are converted according to a logistic func-
tion of threshold beta and slope alpha.

alpha NULL or a negative numeric value. Only useful if PA.method = "probability".
The value of alpha will shape the logistic function transforming occurrences
into presence-absences. See logisticFun and examples therein for the choice
of alpha

adjust.alpha TRUE or FALSE. Only useful if rescale = FALSE. If adjust.alpha = TRUE, then
the value of alpha will be adjusted to an appropriate value for the range of
suitabilities.

beta "random", a numeric value in the range of your probabilities or NULL. This
is the threshold of conversion into presence-absence (= the inflexion point if
PA.method = "probability"). If "random", a numeric value will be randomly
generated within the range of probabilities of occurrence. See convertToPA

species.prevalence

NULL or a numeric value between 0 and 1. The species prevalence is the propor-
tion of sites actually occupied by the species. See convertToPA

plot TRUE or FALSE. If TRUE, the generated virtual species will be plotted.

Details

Online tutorial for this function

This function generate random virtual species, either using a PCA approach, or using a response
approach. In case of a response approach, only four response functions are currently used: gaussian,
linear, logistic and quadratic functions.

http://borisleroy.com/virtualspecies_tutorial/05-randomspecies.html

14 generateRandomSp

Note that in case of numerous predictor variables, the "response" approach will not work well
because it will often generate contradicting response functions (e.g., mean annual temperature opti-
mum at degrees C and temperature of the coldest month at 10 degrees C). In these case, it is advised
to use the PCA approach (by default, a PCA approach will be used if there are more than 6 predictor
variables).

If rescale.each.response = TRUE, then the probability response to each variable will be nor-
malised between 0 and 1 according to the following formula: P.rescaled = (P - min(P)) / (max(P) -
min (P)). Similarly, if rescale = TRUE, the final environmental suitability will be rescaled between
0 and 1 with the same formula.

By default, the function will perform a probabilistic conversion into presence- absence, with a
randomly chosen beta threshold. If you want to customise the conversion parameters, you have to
define two of the three following parameters:

• beta: the ’threshold’ of the logistic function (i.e. the inflexion point)

• alpha: the slope of the logistic function

• species.prevalence: the proportion of sites in which the species occur

If you provide beta and alpha, the species.prevalence is calculated immediately calculated
after conversion into presence-absence.

As explained in convertToPA, if you choose choose a precise species.prevalence, it may not
be possible to reach this particular value because of the availability of environmental conditions.
Several runs may be necessary to reach the desired species.prevalence.

Value

a list with 3 to 5 elements (depending if the conversion to presence-absence was performed):

• approach: the approach used to generate the species, i.e., "response"

• details: the details and parameters used to generate the species

• suitab.raster: the virtual species distribution, as a SpatRaster object containing the envi-
ronmental suitability)

• PA.conversion: the parameters used to convert the suitability into presence-absence

• pa.raster: the presence-absence map, as a SpatRaster object containing 0 (absence) / 1
(presence) / NA

The structure of the virtualspecies can object be seen using str()

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

Create an example stack with six environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

generateSpFromBCA 15

rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)),
rast(exp(a)),
rast(log(a)))

names(env) <- paste("Var", 1:6, sep = "")

More than 6 variables: by default a PCA approach will be used
generateRandomSp(env)

Manually choosing a response approach: this may fail because it is hard
to find a realistic species with six distinct responses to six variables

generateRandomSp(env, approach = "response")

Randomly choosing the approach
generateRandomSp(env, approach = "random")

generateSpFromBCA Generate a virtual species distribution from a Between Component
Analysis of environmental variables

Description

A Between Component Analysis is similar to a PCA, except that two sets of environmental condi-
tions (e.g. current and future) will be used. This function is useful to generate species designed to
test the extrapolation capacity of models, e.g. for climate change extrapolations

Usage

generateSpFromBCA(
raster.stack.current,
raster.stack.future,
rescale = TRUE,
niche.breadth = "any",
means = NULL,
sds = NULL,
bca = NULL,
sample.points = FALSE,
nb.points = 10000,
plot = TRUE

)

16 generateSpFromBCA

Arguments

raster.stack.current

a SpatRaster object, in which each layer represent an environmental variable
from the "current" time horizon.

raster.stack.future

a SpatRaster object, in which each layer represent an environmental variable
from a "future" time horizon.

rescale TRUE of FALSE. Should the output suitability raster be rescaled between 0 and 1?

niche.breadth "any", "narrow" or "wide". This parameter defines how tolerant is the species
regarding environmental conditions by adjusting the standard deviations of the
gaussian functions. See details.

means a vector containing two numeric values. Will be used to define the means of the
gaussian response functions to the axes of the BCA.

sds a vector containing two numeric values. Will be used to define the standard
deviations of the gaussian response functions to the axes of the BCA.

bca a bca object. You can provide a bca object that you already computed yourself
with generateSpFromBCA

sample.points TRUE of FALSE. If you have large raster files then use this parameter to sample
a number of points equal to nb.points. However the representation of your
environmental variables will not be complete.

nb.points a numeric value. Only useful if sample.points = TRUE. The number of sam-
pled points from the raster, to perform the PCA. A too small value may not be
representative of the environmental conditions in your rasters.

plot TRUE or FALSE. If TRUE, the generated virtual species will be plotted.

Details

This function generates a virtual species distribution by computing a Between Component Anal-
ysis based on two different stacks of environmental variables. The response of the species is
then simulated along the two first axes of the BCA with gaussian functions in the same way as
in generateSpFromPCA.

A Between Component Analysis is used to separate two sets of environmental conditions. This
function proceeds in 4 steps:

1. A Principal Component Analysis is generated based on both set of environmental conditions

2. A BCA of this PCA is generated using the function bca from package ade4. Note that at this
step we choose one random point from raster.stack.future, and we use this single point
as if it was a third set of environmental conditions for the BCA. This trick allows us to subtly
change the shape of the bca in order to generate different types of conditions.

3. Gaussian responses to the first two axes are computed

4. These responses are multiplied to obtain the final environmental suitability

If rescale = TRUE, the final environmental suitability is rescaled between 0 and 1, with the formula
(val - min) / (max - min).

generateSpFromBCA 17

The shape of gaussian responses can be randomly generated by the function or defined manually by
choosing means and sds. The random generation is constrained by the argument niche.breadth,
which controls the range of possible standard deviation values. This range of values is based on a
fraction of the axis:

• "any": the standard deviations can have values from 1% to 50% of axes’ ranges. For example
if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can range from
0.1 to 5.

• "narrow": the standard deviations are limited between 1% and 10% of axes’ ranges. For
example if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can
range from 0.1 to 1.

• "wide": the standard deviations are limited between 10% and 50% of axes’ ranges. For
example if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can
range from 1 to 5.

If a bca object is provided, the output bca object will contain the new environments coordinates
along the provided bca axes.

Value

a list with 4 elements:

• approach: the approach used to generate the species, i.e., "bca"

• details: the details and parameters used to generate the species

• suitab.raster.current: the virtual species distribution, as a SpatRaster object containing
the current environmental suitability

• suitab.raster.future: the virtual species distribution, as a SpatRaster object containing
the future environmental suitability

The structure of the virtualspecies object can be seen using str()

Note

To perform the BCA, the function has to transform rasters into matrices. This may not be feasible if
the chosen rasters are too large for the computer’s memory. In this case, you should run the function
with sample.points = TRUE and set the number of points to sample with nb.points.

Author(s)

Robin Delsol, Boris Leroy

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

generateSpFromFun to generate a virtual species with the responses to each environmental vari-
ables.generateSpFromPCA to generate a virtual species with the PCA of environmental variables.

18 generateSpFromFun

Examples

Create two example stacks with four environmental variables each
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)

env1 <- c(rast(a * dnorm(1:100, 50, sd = 25)),
rast(a * 1:100),
rast(a),
rast(t(a)))

names(env1) <- c("var1", "var2", "var3", "var4")
plot(env1) # Illustration of the variables

b <- matrix(rep(dnorm(1:100, 25, sd = 50)),
nrow = 100, ncol = 100, byrow = TRUE)

env2 <- c(rast(b * dnorm(1:100, 50, sd = 25)),
rast(b * 1:100),
rast(b),
rast(t(b)))

names(env2) <- c("var1", "var2", "var3", "var4")
plot(env2) # Illustration of the variables

Generating a species with the BCA

generateSpFromBCA(raster.stack.current = env1, raster.stack.future = env2)

The left part of the plot shows the BCA and the response functions along
the two axes.
The top-right part shows environmental suitability of the virtual
species in the current environment.
The bottom-right part shows environmental suitability of the virtual
species in the future environment.

Defining manually the response to axes

generateSpFromBCA(raster.stack.current = env1, raster.stack.future = env2,
means = c(-2, 0),
sds = c(0.6, 1.5))

generateSpFromFun Generate a virtual species distributions with responses to environmen-
tal variables

Description

This function generates a virtual species distribution from a stack of environmental variables and a
defined set of responses to each environmental parameter.

generateSpFromFun 19

Usage

generateSpFromFun(
raster.stack,
parameters,
rescale = TRUE,
formula = NULL,
species.type = "multiplicative",
rescale.each.response = TRUE,
plot = FALSE

)

Arguments

raster.stack a SpatRaster object, in which each layer represent an environmental variable.

parameters a list containing the functions of response of the species to environmental vari-
ables with their parameters. See details.

rescale TRUE or FALSE. If TRUE, the final probability of presence is rescaled between 0
and 1.

formula a character string or NULL. The formula used to combine partial responses into
the final environmental suitability value (e.g., "layername1 + 2 * layername2
+ layername3 * layername4 etc."). If NULL then partial responses will be
added or multiplied according to species.type

species.type "additive" or "multiplicative". Only used if formula = NULL. Defines how
the final environmental suitability is calculated: if "additive", responses to
each variable are summed; if "multiplicative", responses are multiplied.

rescale.each.response

TRUE or FALSE. If TRUE, the individual responses to each environmental variable
are rescaled between 0 and 1 (see details).

plot TRUE or FALSE. If TRUE, the generated virtual species will be plotted.

Details

Online tutorial for this function

This function proceeds in two steps:

1. The response to each environmental variable is calculated with the functions provided in
parameters. This results in a suitability of each variable.
By default, each response is rescaled between 0 and 1. Disable with rescale.each.response
= FALSE

2. The final environmental suitability is calculated according to the chosen species.type.
By default, the final suitability is rescaled between 0 and 1. Disable with rescale = FALSE

The SpatRaster stack containing environmental variables must have consistent names, because they
will be checked with the parameters. For example, they can be named var1, var2, etc. Names can
be checked and set with names(my.stack).

The parameters have to be carefully created, otherwise the function will not work:

http://borisleroy.com/virtualspecies_tutorial/02-response.html

20 generateSpFromFun

• Either see formatFunctions to easily create your list of parameters

• Or create a list defined according to the following template:
list(var1 = list(fun = 'fun1', args = list(arg1 = ..., arg2 = ..., etc.)), var2 = list(fun
= 'fun2', args = list(arg1 = ..., arg2 = ..., etc.)))
It is important to keep the same names in the parameters as in the stack of environmental
variables. Similarly, argument names must be identical to argument names in the associated
function (e.g., if you use fun = 'dnorm', then args should look like list(mean = 0, sd = 1)).
See the example section below for more examples.

Any response function that can be applied to the environmental variables can be chosen here. Sev-
eral functions are proposed in this package: linearFun, logisticFun and quadraticFun. Another
classical example is the normal distribution: stats::dnorm(). Users can also create and use their
own functions very easily.

If rescale.each.response = TRUE, then the probability response to each variable will be nor-
malised between 0 and 1 according to the following formula: P.rescaled = (P - min(P)) / (max(P)
- min (P)) This rescaling has a strong impact on response functions, so users may prefer to use
rescale.each.response = FALSE and apply their own rescaling within their response functions.

Value

a list with 3 elements:

• approach: the approach used to generate the species, i.e., "response"

• details: the details and parameters used to generate the species

• suitab.raster: the raster containing the environmental suitability of the virtual species

The structure of the virtualspecies object can be seen using str()

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

See Also

generateSpFromPCA to generate a virtual species with a PCA approach

Examples

Create an example stack with two environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100))
names(env) <- c("variable1", "variable2")
plot(env) # Illustration of the variables

Easy creation of the parameter list:
see in real time the shape of the response functions
parameters <- formatFunctions(variable1 = c(fun = 'dnorm', mean = 1e-04,

generateSpFromPCA 21

sd = 1e-04),
variable2 = c(fun = 'linearFun', a = 1, b = 0))

If you provide env, then you can see the shape of response functions:
parameters <- formatFunctions(x = env,

variable1 = c(fun = 'dnorm', mean = 1e-04,
sd = 1e-04),

variable2 = c(fun = 'linearFun', a = 1, b = 0))

Generation of the virtual species
sp1 <- generateSpFromFun(env, parameters)
sp1
par(mfrow = c(1, 1))
plot(sp1)

Manual creation of the parameter list
Note that the variable names are the same as above
parameters <- list(variable1 = list(fun = 'dnorm',

args = list(mean = 0.00012,
sd = 0.0001)),

variable2 = list(fun = 'linearFun',
args = list(a = 1, b = 0)))

Generation of the virtual species
sp1 <- generateSpFromFun(env, parameters, plot = TRUE)
sp1
plot(sp1)

generateSpFromPCA Generate a virtual species distribution with a PCA of environmental
variables

Description

This functions generates a virtual species distribution by computing a PCA among environmental
variables, and simulating the response of the species along the two first axes of the PCA. The
response to axes of the PCA is determined with gaussian functions.

Usage

generateSpFromPCA(
raster.stack,
rescale = TRUE,
niche.breadth = "any",
axes = c(1, 2),
means = NULL,
sds = NULL,
pca = NULL,
sample.points = FALSE,

22 generateSpFromPCA

nb.points = 10000,
plot = TRUE

)

Arguments

raster.stack a SpatRaster object, in which each layer represent an environmental variable.

rescale TRUE or FALSE. Should the output suitability raster be rescaled between 0 and 1?

niche.breadth "any", "narrow" or "wide". This parameter defines how tolerant is the species
regarding environmental conditions by adjusting the standard deviations of the
gaussian functions. See details.

axes a vector of values. Which axes would you like to keep in your PCA? At least 2
axes should be included (Only 1 axis currently not supported)

means a vector containing as many numeric values as axes. Will be used to define the
means of the gaussian response functions to the axes of the PCA.

sds a vector containing as many numeric values as axes. Will be used to define the
standard deviations of the gaussian response functions to the axes of the PCA.

pca a dudi.pca object. You can provide a pca object that you computed yourself
with dudi.pca

sample.points TRUE of FALSE. If you have a large raster file then use this parameter to sample
a number of points equal to nb.points.

nb.points a numeric value. Only useful if sample.points = TRUE. The number of sam-
pled points from the raster, to perform the PCA. A too small value may not be
representative of the environmental conditions in your raster.

plot TRUE or FALSE. If TRUE, the generated virtual species will be plotted.

Details

Online tutorial for this function

This function proceeds in 3 steps:

1. A PCA of environmental conditions is generated

2. Gaussian responses to the first two axes are computed

3. These responses are multiplied to obtain the final environmental suitability

If rescale = TRUE, the final environmental suitability is rescaled between 0 and 1, with the formula
(val - min) / (max - min).

The shape of gaussian responses can be randomly generated by the function or defined manually by
choosing means and sds. The random generation is constrained by the argument niche.breadth,
which controls the range of possible standard deviation values. This range of values is based on a
fraction of the axis:

• "any": the standard deviations can have values from 1% to 50% of axes’ ranges. For example
if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can range from
0.1 to 5.

http://borisleroy.com/virtualspecies_tutorial/03-PCA.html

generateSpFromPCA 23

• "narrow": the standard deviations are limited between 1% and 10% of axes’ ranges. For
example if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can
range from 0.1 to 1.

• "wide": the standard deviations are limited between 10% and 50% of axes’ ranges. For
example if the first axis of the PCA ranges from -5 to +5, then sd values along this axis can
range from 1 to 5.

Value

a list with 3 elements:

• approach: the approach used to generate the species, i.e., "pca"

• details: the details and parameters used to generate the species

• suitab.raster: the virtual species distribution, as a SpatRaster object containing the envi-
ronmental suitability

The structure of the virtualspecies object can be seen using str()

Note

To perform the PCA, the function has to transform the raster into a matrix. This may not be feasible
if the raster is too large for the computer’s memory. In this case, you should perform the PCA on a
sample of your raster with set sample.points = TRUE and choose the number of points to sample
with nb.points.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

See Also

generateSpFromFun to generate a virtual species with the responses to each environmental vari-
ables.

Examples

Create an example stack with four environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)))

names(env) <- c("var1", "var2", "var3", "var4")
plot(env) # Illustration of the variables

24 limitDistribution

Generating a species with the PCA

generateSpFromPCA(raster.stack = env)

The top part of the plot shows the PCA and the response functions along
the two axes.
The bottom part shows the probabilities of occurrence of the virtual
species.

Defining manually the response to axes

generateSpFromPCA(raster.stack = env,
means = c(-2, 0),
sds = c(0.6, 1.5))

This species can be seen as occupying intermediate altitude ranges of a
conic mountain.

Beyond the first two axes
generateSpFromPCA(raster.stack = env,

axes = c(1, 3))

sp <- generateSpFromPCA(raster.stack = env,
axes = 1:3)

plotResponse(sp, axes = c(1, 2))
plotResponse(sp, axes = c(1, 3))
plotResponse(sp, axes = c(2, 3))

limitDistribution Limit a virtual species distribution to a defined area

Description

This function is designed to limit species distributions to a subsample of their total distribution
range. It will thus generate a species which is not at the equilibrium with its environment (i.e.,
which did not occupy the full range of suitable environmental conditions).

This function basically takes any type of raster and will limit values above 0 to areas where the
species is allowed to disperse.

Usage

limitDistribution(x, geographical.limit = "extent", area = NULL, plot = TRUE)

limitDistribution 25

Arguments

x a SpatRaster object composed of 0, 1 and NA, or the output list from generateSpFromFun,
generateSpFromPCA or generateRandomSp

geographical.limit

"country", "region", "continent", "polygon", "raster" or "extent". The
method used to limit the distribution range: see details.

area NULL, a character string, a polygon, a raster or an extent object. The area in
which the distribution range will be limited: see details. If NULL and geographical.limit
= "extent", then you will be asked to draw an extent on the map.

plot TRUE or FALSE. If TRUE, the resulting limited distribution will be plotted.

Details

Online tutorial for this function

How the function works:

The function will remove occurrences of the species outside the chosen area:

• NA are kept unchanged

• 0 are kept unchanged

• values > 0 within the limits of area are kept unchanged

• values > 0 outside the limits of area are set to 0

How to define the area in which the range is limited:

You can choose to limit the distribution range of the species to:

1. a particular country, region or continent (assuming your raster has the WGS84 projection):
Set the argument geographical.limit to "country", "region" or "continent", and pro-
vide the name(s) of the associated countries, regions or continents to area (see examples).
List of possible area names:

• Countries: type unique(rnaturalearth::ne_countries(returnclass ='sf')$sovereignt)
in the console

• Regions: "Africa", "Antarctica", "Asia", "Oceania", "Europe", "Americas"
• Continents: "Africa", "Antarctica", "Asia", "Europe", "North America", "Oceania", "South

America"

2. a polygon:
Set geographical.limit to "polygon", and provide your polygon to area.

3. a raster:
Set geographical.limit to "raster", and provide your raster to area. Your raster values
should be 1 (suitable area), 0 (unsuitable area) or NA (outside your mask).

4. an extent object:
Set geographical.limit to "extent", and either provide your extent object to area, or leave
it NULL to draw an extent on the map.

http://borisleroy.com/virtualspecies_tutorial/08-dispersallimitation.html

26 limitDistribution

Value

a list containing 7 elements:

• approach: the approach used to generate the species, i.e., "response"

• details: the details and parameters used to generate the species

• suitab.raster: the virtual species distribution, as a Raster object containing the environ-
mental suitability)

• PA.conversion: the parameters used to convert the suitability into presence-absence

• pa.raster: the presence-absence map, as a Raster object containing 0 (absence) / 1 (presence)
/ NA

• geographical.limit: the method used to limit the distribution and the area in which the
distribution is restricted

• occupied.area: the area occupied by the virtual species as a Raster of presence-absence

The structure of the virtualspecies object can be seen using str()

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

Create an example stack with six environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)),
rast(exp(a)),
rast(log(a)))

names(env) <- paste("Var", 1:6, sep = "")

More than 6 variables: by default a PCA approach will be used
sp <- generateRandomSp(env)

limiting the distribution to a specific extent
limit <- ext(1, 50, 1, 50)

limitDistribution(sp, area = limit)

Example of a raster of habitat patches
habitat.raster <- setValues(sp$pa.raster,

sample(c(0, 1), size = ncell(sp$pa.raster),
replace = TRUE))

plot(habitat.raster) # 1 = suitable habitat; 0 = unsuitable habitat

linearFun 27

sp <- limitDistribution(sp, geographical.limit = "raster", area = habitat.raster)
par(mfrow = c(2, 1))
plot(sp$pa.raster)
plot(sp$occupied.area) # Species could not occur in many cells because
habitat patches were unsuitable

linearFun Linear function

Description

A simple linear function of the form
ax+ b

Usage

linearFun(x, a, b)

Arguments

x a numeric value or vector

a a numeric value or vector

b a numeric value or vector

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

logisticFun, quadraticFun

Examples

x <- 1:100
y <- linearFun(x, a = 0.5, b = 0)
plot(y ~ x, type = "l")

28 logisticFun

logisticFun Logistic function

Description

A simple logistic function of the form
1

1 + e
x−β
α

Usage

logisticFun(x, alpha, beta)

Arguments

x a numeric value or vector

alpha a numeric value or vector

beta a numeric value or vector

Details

The value of beta determines the ’threshold’ of the logistic curve (i.e. the inflexion point).

The value of alpha determines the slope of the curve (see examples):

• alpha very close to 0 will result in a threshold-like response.

• Values of alpha with the same order of magnitude as the range of x (e.g., the range ofx / 10)
will result in a logistic function.

• alpha very far from 0 will result in a linear function.

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

linearFun, quadraticFun

plotResponse 29

Examples

x <- 1:100
y <- logisticFun(x, alpha = -10, b = 50)
plot(y ~ x, type = "l")

The effect of alpha:
y1 <- logisticFun(x, alpha = -0.01, b = 50)
y2 <- logisticFun(x, alpha = -10, b = 50)
y3 <- logisticFun(x, alpha = -1000, b = 50)

par(mfrow = c(1, 3))
plot(y1 ~ x, type = "l", main = expression(alpha %->% 0))
plot(y2 ~ x, type = "l", main = expression(alpha %~~% range(x)/10))
plot(y3 ~ x, type = "l", main = expression(alpha %->% infinity))

plotResponse Visualise the response of the virtual species to environmental variables

Description

This function plots the relationships between the virtual species and the environmental variables.
It requires either the output from generateSpFromFun, generateSpFromPCA, generateRandomSp,
or a manually defined set of environmental variables and response functions.

Usage

plotResponse(
x,
parameters = NULL,
approach = NULL,
rescale = NULL,
axes.to.plot = NULL,
no.plot.reset = FALSE,
rescale.each.response = NULL,
...

)

Arguments

x the output from generateSpFromFun, generateSpFromPCA, generateRandomSp,
or a raster layer/stack of environmental variables (see details for the latter).

parameters in case of manually defined response functions, a list containing the associated
parameters. See details.

approach in case of manually defined response functions, the chosen approach: either
"response" for a per-variable response approach, or "pca" for a PCA approach.

rescale TRUE or FALSE. If TRUE, individual response plots are rescaled between 0 and 1.

30 plotResponse

axes.to.plot a vector of 2 values listing the two axes of the PCA to plot. Only useful for a
PCA species.

no.plot.reset TRUE or FALSE. If FALSE, the plot window will be reset to its initial state after
the response has been plotted.

rescale.each.response

TRUE or FALSE. If TRUE, the individual responses to each environmental variable
are rescaled between 0 and 1.

... further arguments to be passed to plot. See plot and par.

Details

If you provide the output from generateSpFromFun, generateSpFromPCA or generateRandomSp
then the function will automatically make the appropriate plots.

Otherwise, you can provide a raster layer/stack of environmental variables to x and a list of functions
to parameters to perform the plot. In that case, you have to specify the approach: "reponse" or
"PCA":

• if approach = "response": Provide to parameters a list exactly as defined in generateSpFromFun:
list(var1 = list(fun = 'fun1', args = list(arg1 = ..., arg2 = ..., etc.)), var2 = list(fun
= 'fun2', args = list(arg1 = ..., arg2 = ..., etc.)))

• if approach = "PCA": Provide to parameters a list containing the following elements:

– pca: a dudi.pca object computed with dudi.pca

– means: a vector containing two numeric values. Will be used to define the means of the
gaussian response functions to the axes of the PCA.

– sds a vector containing two numeric values. Will be used to define the standard deviations
of the gaussian response functions to the axes of the PCA.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

Create an example stack with four environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)))

names(env) <- c("var1", "var2", "var3", "var4")

Per-variable response approach:
parameters <- formatFunctions(var1 = c(fun = 'dnorm', mean = 0.00012,

sd = 0.0001),
var2 = c(fun = 'linearFun', a = 1, b = 0),

plotSuitabilityToProba 31

var3 = c(fun = 'quadraticFun', a = -20, b = 0.2,
c = 0),

var4 = c(fun = 'logisticFun', alpha = -0.001,
beta = 0.002))

sp1 <- generateSpFromFun(env, parameters, plot = TRUE)
plotResponse(sp1)

PCA approach:
sp2 <- generateSpFromPCA(env, plot = FALSE)
par(mfrow = c(1, 1))
plotResponse(sp2)

plotSuitabilityToProba

Visualise the function that was used to transform environmental suit-
ability into probability of occurrence

Description

This function plots the relationships between the environmental suitability and the probability of
occurrence, which is used to generate the presence- absence distribution. It requires the output
from convertToPA.

Usage

plotSuitabilityToProba(sp, add = FALSE, ...)

Arguments

sp the output from convertToPA.

add TRUE or FALSE. If TRUE, the relationship will be added to the currently active
graph.

... further arguments to be passed to plot. See plot and par.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Examples

Create an example stack with two environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100))
names(env) <- c("variable1", "variable2")

32 quadraticFun

parameters <- formatFunctions(variable1 = c(fun = 'dnorm', mean = 1e-04,
sd = 1e-04),

variable2 = c(fun = 'linearFun', a = 1, b = 0))
Generation of the virtual species
sp1 <- generateSpFromFun(env, parameters)
sp1

Converting to presence-absence, probablistic method, logistic conversion
A species with a low prevalence:

sp1.lowprev <- convertToPA(sp1, species.prevalence = 0.1)
plotSuitabilityToProba(sp1.lowprev)

A species with a high prevalence:

sp1.highprev <- convertToPA(sp1, species.prevalence = 0.9)
plotSuitabilityToProba(sp1.lowprev)

Converting to presence-absence, probablistic method, linear conversion
A species with a low prevalence:

sp1.lowprev <- convertToPA(sp1, species.prevalence = 0.1,
prob.method = "linear")

plotSuitabilityToProba(sp1.highprev)

A species with a high prevalence:

sp1.highprev <- convertToPA(sp1, species.prevalence = 0.9,
prob.method = "linear")

plotSuitabilityToProba(sp1.highprev)

quadraticFun Quadratic function

Description

A simple quadratic function of the form

ax2 + bx+ c

Usage

quadraticFun(x, a, b, c)

Arguments

x a numeric value or vector

a a numeric value or vector

removeCollinearity 33

b a numeric value or vector

c a numeric value or vector

Value

a numeric value or vector resulting from the function

Author(s)

Boris Leroy <leroy.boris@gmail.com>

Maintainer: Boris Leroy <leroy.boris@gmail.com>

See Also

linearFun, quadraticFun

Examples

x <- 1:100
y <- quadraticFun(x, a = 2, b = 2, c = 3)
plot(y ~ x, type = "l")

removeCollinearity Remove collinearity among variables of a raster stack

Description

This functions analyses the correlation among variables of the provided stack of environmental
variables (using Pearson’s R), and can return a vector containing names of variables that are not
colinear, or a list containing grouping variables according to their degree of collinearity.

Usage

removeCollinearity(
raster.stack,
multicollinearity.cutoff = 0.7,
select.variables = FALSE,
sample.points = FALSE,
nb.points = 10000,
plot = FALSE,
method = "pearson"

)

34 removeCollinearity

Arguments

raster.stack a SpatRaster object, in which each layer represent an environmental variable.
multicollinearity.cutoff

a numeric value corresponding to the cutoff of correlation above which to group
variables.

select.variables

TRUE or FALSE. If TRUE, then the function will choose one variable among each
group to return a vector of non correlated variables (see details). If FALSE, the
function will return a list containing the groups of correlated variables.

sample.points TRUE or FALSE. If you have a large raster file then use this parameter to sample
a number of points equal to nb.points.

nb.points a numeric value. Only useful if sample.points = TRUE. The number of sam-
pled points from the raster, to perform the PCA. A too small value may not be
representative of the environmental conditions in your raster.

plot TRUE or FALSE. If TRUE, the hierarchical ascendant classification used to group
variables will be plotted.

method "pearson", "spearman" or "kendall". The correlation method to be used. If
your variables are skewed or have outliers (e.g. when working with precipitation
variables) you should favour the Spearman or Kendall methods.

Details

This function uses the Pearson’s correlation coefficient to analyse correlation among variables. This
coefficient is then used to compute a distance matrix, which in turn is used it compute an ascendant
hierarchical classification, with the ’complete’ method (see hclust). If at least one correlation
above the multicollinearity.cutoff is detected, then the variables will be grouped according
to their degree of correlation.

If select.variables = TRUE, then the function will return a vector containing variables that are
not colinear. The variables not correlated to any other variables are automatically included in this
vector. For each group of colinear variables, one variable will be randomly chosen and included in
this vector.

Value

a vector of non correlated variables, or a list where each element is a group of non correlated
variables.

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

Create an example stack with six environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)

sampleOccurrences 35

env <- c(rast(a * dnorm(1:100, 50, sd = 25)),
rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)),
rast(exp(a)),
rast(log(a)))

names(env) <- paste("Var", 1:6, sep = "")

Defaults settings: cutoff at 0.7
removeCollinearity(env, plot = TRUE)

Changing cutoff to 0.5
removeCollinearity(env, plot = TRUE, multicollinearity.cutoff = 0.5)

Automatic selection of variables not intercorrelated
removeCollinearity(env, plot = TRUE, select.variables = TRUE)

Assuming a very large raster file: selecting a subset of points
removeCollinearity(env, plot = TRUE, select.variables = TRUE,

sample.points = TRUE, nb.points = 5000)

sampleOccurrences Sample occurrences in a virtual species distribution

Description

This function samples occurrences/records (presence only or presence-absence) within a species
distribution, either randomly or with a sampling bias. The sampling bias can be defined manually
or with a set of predefined biases.

Usage

sampleOccurrences(
x,
n,
type = "presence only",
extract.probability = FALSE,
sampling.area = NULL,
detection.probability = 1,
correct.by.suitability = FALSE,
error.probability = 0,
bias = "no.bias",
bias.strength = 50,
bias.area = NULL,
weights = NULL,
sample.prevalence = NULL,
replacement = FALSE,

36 sampleOccurrences

plot = TRUE
)

Arguments

x a SpatRaster object or the output list from generateSpFromFun, generateSpFromPCA,
generateRandomSp, convertToPA or limitDistribution The raster must con-
tain values of 0 or 1 (or NA).

n an integer. The number of occurrence points / records to sample.

type "presence only" or "presence-absence". The type of occurrence points to
sample.

extract.probability

TRUE or FALSE. If TRUE, then true probability at sampled locations will also be
extracted

sampling.area a character string, a polygon or an extent object. The area in which the sam-
pling will take place. See details.

detection.probability

a numeric value between 0 and 1, corresponding to the probability of detection
of the species. See details.

correct.by.suitability

TRUE or FALSE. If TRUE, then the probability of detection will be weighted by
the suitability, such that cells with lower suitabilities will further decrease the
chance that the species is detected when sampled. NOTE: this will NOT in-
crease likelihood of samplings in areas of high suitability. In this case look for
argument weights.

error.probability

TRUE or FALSE. Probability to attribute an erroneous presence (False Positive) in
cells where the species is actually absent.

bias "no.bias", "country", "region", "extent", "polygon" or "manual". The
method used to generate a sampling bias: see details.

bias.strength a positive numeric value. The strength of the bias to be applied in area (as a
multiplier). Above 1, area will be oversampled. Below 1, area will be under-
sampled.

bias.area NULL, a character string, a polygon or an extent object. The area in which the
sampling will be biased: see details. If NULL and bias = "extent", then you
will be asked to draw an extent on the map.

weights NULL or a raster layer. Only used if bias = "manual". The raster of bias weights
to be applied to the sampling of occurrences. Higher weights mean a higher
probability of sampling. For example, species suitability raster can be entered
here to increase likelihood of sampling occurrences in areas with high suitability.

sample.prevalence

NULL or a numeric value between 0 and 1. Only useful if type = "presence-absence".
Defines the sample prevalence, i.e. the proportion of presences sampled. Note
that the probabilities of detection and error are applied AFTER this parameter,
so the final sample prevalence may not different if you apply probabilities of
detection and/or error

sampleOccurrences 37

replacement TRUE or FALSE. If TRUE, multiple samples can occur in the same cell. Can be
useful to mimic real datasets where samplings can be duplicated or repeated in
time.

plot TRUE or FALSE. If TRUE, the sampled occurrence points will be plotted.

Details

Online tutorial for this function

How the function works:
The function randomly selects n cells in which samples occur. If a bias is chosen, then the selection
of these cells will be biased according to the type and strength of bias chosen. If the sampling is of
type "presence only", then only cells where the species is present will be chosen. If the sampling
is of type "presence-absence", then all non-NA cells can be chosen.

The function then samples the species inside the chosen cells. In cells where the species is present
the species will always be sampled unless the parameter detection.probability is lower than 1.
In that case the species will be sampled with the associated probability of detection.

In cells where the species is absent (in case of a "presence-absence" sampling), the function will
always assign absence unless error.probability is greater than 1. In that case, the species can
be found present with the associated probability of error. Note that this step happens AFTER the
detection step. Hence, in cells where the species is present but not detected, it can still be sampled
due to a sampling error.

How to restrict the sampling area:
Use the argument sampling.area:

• Provide the name (s) (or a combination of names) of country(ies), region(s) or continent(s).
Examples:

– sampling.area = "Africa"

– sampling.area = c("Africa", "North America", "France")

• Provide a polygon (SpatialPolygons or SpatialPolygonsDataFrame of package sp)

• Provide an extent object

How the sampling bias works:
The argument bias.strength indicates the strength of the bias. For example, a value of 50 will
result in 50 times more samples within the bias.area than outside. Conversely, a value of 0.5 will
result in half less samples within the bias.area than outside.

How to choose where the sampling is biased:
You can choose to bias the sampling in:

1. a particular country, region or continent (assuming your raster has the WGS84 projection):
Set the argument bias to "country", "region" or "continent", and provide the name(s) of
the associated countries, regions or continents to bias.area (see examples).
List of possible bias.area names:

• Countries: type unique(rnaturalearth::ne_countries(returnclass ='sf')$sovereignt)
in the console

• Regions: "Africa", "Antarctica", "Asia", "Oceania", "Europe", "Americas"

http://borisleroy.com/virtualspecies_tutorial/07-sampleoccurrences.html

38 sampleOccurrences

• Continents: "Africa", "Antarctica", "Asia", "Europe", "North America", "Oceania", "South
America"

2. a polygon:
Set bias to "polygon", and provide your polygon to area.

3. an extent object:
Set bias to "extent", and either provide your extent object to bias.area, or leave it NULL to
draw an extent on the map.

Otherwise you can enter a raster of sampling probability. It can be useful if you want to increase
likelihood of samplings in areas of high suitability (simply enter the suitability raster in weights;
see examples below), or if you want to define sampling biases manually, e.g. to to create biases
along roads. In that case you have to provide to weights a raster layer in which each cell contains
the probability to be sampled.

The .Random.seed and RNGkind are stored as attributes when the function is called, and can
be used to reproduce the results as shown in the examples (though it is preferable to set the seed
with set.seed before calling sampleOccurrences() and to then use the same value in set.seed
to reproduce results later. Note that reproducing the sampling will only work if the same original
distribution map is used.

Value

a list with 8 elements:

• type: type of occurrence sampled (presence-absences or presence-only)

• sample.points: data.frame containing the coordinates of samples, true and sampled obser-
vations (i.e, 1, 0 or NA), and, if asked, the true environmental suitability in sampled locations

• detection.probability: the chosen probability of detection of the virtual species

• error.probability: the chosen probability to assign presence in cells where the species is
absent

• bias: if a bias was chosen, then the type of bias and the associated area will be included.

• replacement: indicates whether multiple samples could occur in the same cells

• original.distribution.raster: the distribution raster from which samples were drawn

• sample.plot: a recorded plot showing the sampled points overlaying the original distribution.

Note

Setting sample.prevalence may at least partly override bias, e.g. if bias is specified with
extent to an area that contains no presences, but sample prevalence is set to > 0, then cells
outside of the biased sampling extent will be sampled until the number of presences required by
sample.prevalence are obtained, after which the sampling of absences will proceed according to
the specified bias.

Author(s)

Boris Leroy <leroy.boris@gmail.com> Willson Gaul <wgaul@hotmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

sampleOccurrences 39

Examples

Create an example stack with six environmental variables
a <- matrix(rep(dnorm(1:100, 50, sd = 25)),

nrow = 100, ncol = 100, byrow = TRUE)
env <- c(rast(a * dnorm(1:100, 50, sd = 25)),

rast(a * 1:100),
rast(a * logisticFun(1:100, alpha = 10, beta = 70)),
rast(t(a)),
rast(exp(a)),
rast(log(a)))

names(env) <- paste("Var", 1:6, sep = "")

More than 6 variables: by default a PCA approach will be used
sp <- generateRandomSp(env, niche.breadth = "wide")

Sampling of 25 presences
sampleOccurrences(sp, n = 25)

Sampling of 30 presences and absences
sampleOccurrences(sp, n = 30, type = "presence-absence")

Reducing of the probability of detection
sampleOccurrences(sp, n = 30, type = "presence-absence",

detection.probability = 0.5)

Further reducing in relation to environmental suitability
sampleOccurrences(sp, n = 30, type = "presence-absence",

detection.probability = 0.5,
correct.by.suitability = TRUE)

Creating sampling errors (far too much)
sampleOccurrences(sp, n = 30, type = "presence-absence",

error.probability = 0.5)

Introducing a sampling bias (oversampling)
biased.area <- ext(1, 50, 1, 50)
sampleOccurrences(sp, n = 50, type = "presence-absence",

bias = "extent",
bias.area = biased.area)

Showing the area in which the sampling is biased
plot(biased.area, add = TRUE)

Introducing a sampling bias (no sampling at all in the chosen area)
biased.area <- ext(1, 50, 1, 50)
sampleOccurrences(sp, n = 50, type = "presence-absence",

bias = "extent",
bias.strength = 0,
bias.area = biased.area)

Showing the area in which the sampling is biased
plot(biased.area, add = TRUE)

40 synchroniseNA

samps <- sampleOccurrences(sp, n = 50,
bias = "manual",
weights = sp$suitab.raster)

plot(sp$suitab.raster)
points(samps$sample.points[, c("x", "y")])

Create a sampling bias so that more presences are sampled in areas with
higher suitability

Reproduce sampling based on the saved .Random.seed from a previous result
samps <- sampleOccurrences(sp, n = 100,

type = "presence-absence",
detection.probability = 0.7,
bias = "extent",
bias.strength = 50,
bias.area = biased.area)

Reset the random seed using the value saved in the attributes
.Random.seed <- attr(samps, "seed")
reproduced_samps <- sampleOccurrences(sp, n = 100,

type = "presence-absence",
detection.probability = 0.7,
bias = "extent",
bias.strength = 50,
bias.area = biased.area)

identical(samps$sample.points, reproduced_samps$sample.points)

synchroniseNA Synchronise NA values among layers of a stack

Description

This function ensures that cells containing NAs are the same among all the layers of a raster stack,
i.e.that for any given pixel of the stack, if one layer has a NA, then all layers should be set to NA
for that pixel.

Usage

synchroniseNA(x)

Arguments

x a raster stack object which needs to be synchronised.

Details

This function can do that in two different ways; if your computer has enough RAM a fast way will
be used; otherwise a slower but memory-safe way will be used.

synchroniseNA 41

Author(s)

Boris Leroy <leroy.boris@gmail.com>

with help from C. N. Meynard, C. Bellard & F. Courchamp

Examples

Creation of a stack with different NAs across layers
m <- matrix(nr = 10, nc = 10, 1:100)
r1 <- rast(m)
r2 <- rast(m)
r1[sample(1:ncell(r1), 20)] <- NA
r2[sample(1:ncell(r2), 20)] <- NA
s <- c(r1, r2)

Effect of the synchroniseNA() function
plot(s) # Not yet synchronised
s <- synchroniseNA(s)
plot(s) # Synchronised

Index

.Random.seed, 38

ade4, 3
attributes, 38

bca, 16
betaFun, 3

convertToPA, 2, 4, 13, 14, 31
custnorm, 4, 9

dnorm, 11
dudi.pca, 22, 30

formatFunctions, 2, 10, 20

generateRandomSp, 2, 4, 5, 12, 25, 29, 30
generateSpFromBCA, 15, 16
generateSpFromFun, 2, 4, 5, 10, 11, 13, 17,

18, 23, 25, 29, 30
generateSpFromPCA, 2, 4, 5, 13, 16, 17, 20,

21, 25, 29, 30

hclust, 34

limitDistribution, 2, 24
linearFun, 4, 11, 20, 27, 28, 33
logisticFun, 5, 6, 13, 20, 27, 28

par, 30, 31
plot, 30, 31
plotResponse, 2, 29
plotSuitabilityToProba, 31

quadraticFun, 4, 20, 27, 28, 32, 33

removeCollinearity, 2, 33
rnaturalearth, 3
RNGkind, 38

sampleOccurrences, 2, 35
set.seed, 38

stats::dnorm(), 20
synchroniseNA, 3, 40

terra, 3

virtualspecies-package, 2

42

	virtualspecies-package
	betaFun
	convertToPA
	custnorm
	formatFunctions
	generateRandomSp
	generateSpFromBCA
	generateSpFromFun
	generateSpFromPCA
	limitDistribution
	linearFun
	logisticFun
	plotResponse
	plotSuitabilityToProba
	quadraticFun
	removeCollinearity
	sampleOccurrences
	synchroniseNA
	Index

