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check_cov_lower Check Lower Bound of Covariance Parameters

Description

Ensures that the covariance parameters define a positive definite covariance matrix. It takes the
vector (ρ1, σ2

1 , ..., ρq, σ
2
q , τ

2) and checks if all ρk > 0, all σ2
k >= 0, and τ2 > 0.

Usage

check_cov_lower(cv, q)
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Arguments

cv (numeric(2*q+1))
Covariance vector of SVC model.

q (numeric(1))
Integer indicating the number of SVCs.

Value

logical(1) with TRUE if all conditions above are fulfilled.

Examples

# first one is true, all other are false
check_cov_lower(c(0.1, 0, 0.2, 1, 0.2), q = 2)
check_cov_lower(c(0 , 0, 0.2, 1, 0.2), q = 2)
check_cov_lower(c(0.1, 0, 0.2, 1, 0 ), q = 2)
check_cov_lower(c(0.1, 0, 0.2, -1, 0 ), q = 2)

coef.SVC_mle Extact Mean Effects

Description

Method to extract the mean effects from an SVC_mle or SVC_selection object.

Usage

## S3 method for class 'SVC_mle'
coef(object, ...)

## S3 method for class 'SVC_selection'
coef(object, ...)

Arguments

object SVC_mle or SVC_selection object

... further arguments

Value

named vector with mean effects, i.e. µ from SVC_mle

Author(s)

Jakob Dambon
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cov_par Extact Covariance Parameters

Description

Function to extract the covariance parameters from an SVC_mle or SVC_selectionobject.

Usage

cov_par(...)

## S3 method for class 'SVC_mle'
cov_par(object, ...)

## S3 method for class 'SVC_selection'
cov_par(object, ...)

Arguments

... further arguments

object SVC_mle or SVC_selection object

Value

vector with covariance parameters with the following attributes:

• "GRF", charachter, describing the covariance function used for the GP, see SVC_mle_control.

• "tapering", either NULL if no tapering is applied of the taper range.

Author(s)

Jakob Dambon

fitted.SVC_mle Extact Model Fitted Values

Description

Method to extract the fitted values from an SVC_mle object. This is only possible if save.fitted
was set to TRUE in the control of the function call

Usage

## S3 method for class 'SVC_mle'
fitted(object, ...)
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Arguments

object SVC_mle object

... further arguments

Value

Data frame, fitted values to given data, i.e., the SVC as well as the response and their locations

Author(s)

Jakob Dambon

GLS_chol GLS Estimate using Cholesky Factor

Description

Computes the GLS estimate using the formula:

µGLS = (X⊤Σ−1X)−1X⊤Σ−1y.

The computation is done depending on the input class of the Cholesky factor R. It relies on the
classical solve or on using forwardsolve and backsolve functions of package spam, see solve.
This is much faster than computing the inverse of Σ, especially since we have to compute the
Cholesky decomposition of Σ either way.

Usage

GLS_chol(R, X, y)

## S3 method for class 'spam.chol.NgPeyton'
GLS_chol(R, X, y)

## S3 method for class 'matrix'
GLS_chol(R, X, y)

Arguments

R (spam.chol.NgPeyton or matrix(n, n))
Cholesky factor of the covariance matrix Σ. If covariance tapering and sparse
matrices are used, then the input is of class spam.chol.NgPeyton. Otherwise,
R is the output of a standard chol, i.e., a simple matrix

X (matrix(n, p))
Data / design matrix.

y (numeric(n))
Response vector
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Value

A numeric(p) vector, i.e., the mean effects.

Author(s)

Jakob Dambon

Examples

# generate data
n <- 10
X <- cbind(1, 20+1:n)
y <- rnorm(n)
A <- matrix(runif(n^2)*2-1, ncol=n)
Sigma <- t(A) %*% A
# two possibilities
## using standard Cholesky decomposition
R_mat <- chol(Sigma); str(R_mat)
mu_mat <- GLS_chol(R_mat, X, y)
## using spam
R_spam <- chol(spam::as.spam(Sigma)); str(R_spam)
mu_spam <- GLS_chol(R_spam, X, y)
# should be identical to the following
mu <- solve(crossprod(X, solve(Sigma, X))) %*%

crossprod(X, solve(Sigma, y))
## check
abs(mu - mu_mat)
abs(mu - mu_spam)

house Lucas County House Price Data

Description

A dataset containing the prices and other attributes of 25,357 houses in Lucas County, Ohio. The
selling dates span years 1993 to 1998. Data taken from house (spData package) and slightly
modified to a data.frame.

Usage

house

Format

A data frame with 25357 rows and 25 variables:

price (integer) selling price, in US dollars

yrbuilt (integer) year the house was built
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stories (factor) levels are "one", "bilevel", "multilvl", "one+half", "two", "two+half",
"three"

TLA (integer) total living area, in square feet.

wall (factor) levels are "stucdrvt", "ccbtile", "metlvnyl", "brick", "stone", "wood",
"partbrk"

beds, baths, halfbaths (integer) number of corresponding rooms / facilities.

frontage, depth dimensions of the lot. Unit is feet.

garage (factor) levels are "no garage", "basement", "attached", "detached", "carport"

garagesqft (integer) garage area, in square feet. If garage == "no garage", then garagesqft
== 0.

rooms (integer) number of rooms

lotsize (integer) area of lot, in square feet

sdate (Date) selling date, in format yyyy-mm-dd

avalue (int) appraised value

s1993, s1994, s1995, s1996, s1997, s1998 (int) dummies for selling year.

syear (factor) levels are selling years "1993", "1994", "1995", "1996", "1997", "1998"

long, lat (numeric) location of houses. Longitude and Latitude are given in CRS(+init=epsg:2834),
the Ohio North State Plane. Units are meters.

Source

http://www.spatial-econometrics.com/html/jplv6.zip

IC.SVC_mle Conditional Akaike’s and Bayesian Information Criteria

Description

Methods to calculate information criteria for SVC_mle objects. Currently, two are supported: the
conditional Akaike’s Information Criteria cAIC = −2 ∗ log − likelihood + 2 ∗ (edof + df) and
the Bayesian Information Criteria BIC = −2 ∗ log − likelihood + log(n) ∗ npar. Note that
the Akaike’s Information Criteria is of the corrected form, that is: edof is the effective degrees
of freedom which is derived as the trace of the hat matrices and df is the degree of freedoms with
respect to mean parameters.

Usage

## S3 method for class 'SVC_mle'
BIC(object, ...)

## S3 method for class 'SVC_mle'
AIC(object, conditional = "BW", ...)

http://www.spatial-econometrics.com/html/jplv6.zip


8 init_bounds_optim

Arguments

object SVC_mle object

... further arguments

conditional string. If conditional = "BW", the conditional AIC is calculated.

Value

numeric, value of information criteria

Author(s)

Jakob Dambon

init_bounds_optim Setting of Optimization Bounds and Initial Values

Description

Sets bounds and initial values for optim by extracting potentially given values from SVC_mle_control
and checking them, or calculating them from given data. See Details.

Usage

init_bounds_optim(control, p, q, id_obj, med_dist, y_var, OLS_mu)

Arguments

control (SVC_mle_control output, i.e. list)

p (numeric(1))
Number of fixed effects

q (numeric(1))
Number of SVCs

id_obj (numeric(2*q+1+q))
Index vector to identify the arguments of objective function.

med_dist (numeric(1))
Median distance between observations

y_var (numeric(1))
Variance of response y

OLS_mu (numeric(p))
Coefficient estimates of ordinary least squares (OLS).
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Details

If values are not provided, then they are set in the following way. Let d be the median distance
med_dist, let s2y be the variance of the response y_var, and let bj be the OLS coefficients of the
linear model. The computed values are given in the table below.

Parameter Lower bound Initial Value Upper Bound
Range d/1000 d/4 10d
Variance 0 s2y/(q + 1) 10s2y
Nugget 10−6 s2y/(q + 1) 10s2y
Mean j -Inf bj Inf

Value

A list with three entries: lower, init, and upper.

Author(s)

Jakob Dambon

logLik.SVC_mle Extact the Likelihood

Description

Method to extract the computed (penalized) log (profile) Likelihood from an SVC_mle object.

Usage

## S3 method for class 'SVC_mle'
logLik(object, ...)

Arguments

object SVC_mle object
... further arguments

Value

an object of class logLik with attributes

• "penalized", logical, if the likelihood (FALSE) or some penalized likelihood (TRUE) was op-
timized.

• "profileLik", logical, if the optimization was done using the profile likelihood (TRUE) or
not.

• "nobs", integer of number of observations
• "df", integer of how many parameters were estimated. Note: This includes only the covari-

ance parameters if the profile likelihood was used.
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Author(s)

Jakob Dambon

nlocs Extract Number of Unique Locations

Description

Function to extract the number of unique locations in the data set used in an MLE of the SVC_mle
object.

Usage

nlocs(object)

Arguments

object SVC_mle object

Value

integer with the number of unique locations

Author(s)

Jakob Dambon

nobs.SVC_mle Extract Number of Observations

Description

Method to extract the number of observations used in MLE for an SVC_mle object.

Usage

## S3 method for class 'SVC_mle'
nobs(object, ...)

Arguments

object SVC_mle object

... further arguments
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Value

an integer of number of observations

Author(s)

Jakob Dambon

plot.SVC_mle Plotting Residuals of SVC_mle model

Description

Method to plot the residuals from an SVC_mle object. For this, save.fitted has to be TRUE in
SVC_mle_control.

Usage

## S3 method for class 'SVC_mle'
plot(x, which = 1:2, ...)

Arguments

x (SVC_mle)

which (numeric)
A numeric vector and subset of 1:2 indicating which of the 2 plots should be
plotted.

... further arguments

Value

a maximum 2 plots

• Tukey-Anscombe plot, i.e. residuals vs. fitted

• QQ-plot

Author(s)

Jakob Dambon

See Also

legend SVC_mle
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Examples

#' ## ---- toy example ----
## sample data
# setting seed for reproducibility
set.seed(123)
m <- 7
# number of observations
n <- m*m
# number of SVC
p <- 3
# sample data
y <- rnorm(n)
X <- matrix(rnorm(n*p), ncol = p)
# locations on a regular m-by-m-grid
locs <- expand.grid(seq(0, 1, length.out = m),

seq(0, 1, length.out = m))

## preparing for maximum likelihood estimation (MLE)
# controls specific to MLE
control <- SVC_mle_control(

# initial values of optimization
init = rep(0.1, 2*p+1),
# using profile likelihood
profileLik = TRUE

)

# controls specific to optimization procedure, see help(optim)
opt.control <- list(

# number of iterations (set to one for demonstration sake)
maxit = 1,
# tracing information
trace = 6

)

## starting MLE
fit <- SVC_mle(y = y, X = X, locs = locs,

control = control,
optim.control = opt.control)

## output: convergence code equal to 1, since maxit was only 1
summary(fit)

## plot residuals
# only QQ-plot
plot(fit, which = 2)

# two plots next to each other
oldpar <- par(mfrow = c(1, 2))
plot(fit)
par(oldpar)
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predict.SVC_mle Prediction of SVCs (and response variable)

Description

Prediction of SVCs (and response variable)

Usage

## S3 method for class 'SVC_mle'
predict(
object,
newlocs = NULL,
newX = NULL,
newW = NULL,
newdata = NULL,
compute.y.var = FALSE,
...

)

Arguments

object (SVC_mle)
Model obtained from SVC_mle function call.

newlocs (NULL or matrix(n.new, 2))
If NULL, then function uses observed locations of model to estimate SVCs. Oth-
erwise, these are the new locations the SVCs are predicted for.

newX (NULL or matrix(n.new, q))
If provided (together with newW), the function also returns the predicted response
variable.

newW (NULL or matrix(n.new, p))
If provided (together with newX), the function also returns the predicted response
variable.

newdata (NULL or data.frame(n.new, p))
This argument can be used, when the SVC_mle function has been called with an
formula, see examples.

compute.y.var (logical(1))
If TRUE and the response is being estimated, the predictive variance of each
estimate will be computed.

... further arguments

Value

The function returns a data frame of n.new rows and with columns

• SVC_1, ..., SVC_p: the predicted SVC at locations newlocs.
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• y.pred, if newX and newW are provided

• y.var, if newX and newW are provided and compute.y.var is set to TRUE.

• loc_x, loc_y, the locations of the predictions

Author(s)

Jakob Dambon

References

Dambon, J. A., Sigrist, F., Furrer, R. (2021) Maximum likelihood estimation of spatially varying
coefficient models for large data with an application to real estate price prediction, Spatial Statistics
doi:10.1016/j.spasta.2020.100470

See Also

SVC_mle

Examples

## ---- toy example ----
## We use the sampled, i.e., one dimensional SVCs
str(SVCdata)
# sub-sample data to have feasible run time for example
set.seed(123)
id <- sample(length(SVCdata$locs), 50)

## SVC_mle call with matrix arguments
fit_mat <- with(SVCdata, SVC_mle(

y[id], X[id, ], locs[id],
control = SVC_mle_control(profileLik = TRUE, cov.name = "mat32")))

## SVC_mle call with formula
df <- with(SVCdata, data.frame(y = y[id], X = X[id, -1]))
fit_form <- SVC_mle(

y ~ X, data = df, locs = SVCdata$locs[id],
control = SVC_mle_control(profileLik = TRUE, cov.name = "mat32")

)

## prediction

# predicting SVCs
predict(fit_mat, newlocs = 1:2)
predict(fit_form, newlocs = 1:2)

# predicting SVCs and response providing new covariates
predict(

fit_mat,
newX = matrix(c(1, 1, 3, 4), ncol = 2),
newW = matrix(c(1, 1, 3, 4), ncol = 2),
newlocs = 1:2

https://doi.org/10.1016/j.spasta.2020.100470
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)
predict(fit_form, newdata = data.frame(X = 3:4), newlocs = 1:2)

print.summary.SVC_mle Printing Method for summary.SVC_mle

Description

Printing Method for summary.SVC_mle

Usage

## S3 method for class 'summary.SVC_mle'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x summary.SVC_mle

digits the number of significant digits to use when printing.
... further arguments

Value

The printed output of the summary in the console.

See Also

summary.SVC_mle SVC_mle

print.SVC_mle Print Method for SVC_mle

Description

Method to print an SVC_mle object.

Usage

## S3 method for class 'SVC_mle'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x SVC_mle object
digits (numeric) Number of digits to be plotted.
... further arguments
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Author(s)

Jakob Dambon

residuals.SVC_mle Extact Model Residuals

Description

Method to extract the residuals from an SVC_mle object. This is only possible if save.fitted was
set to TRUE.

Usage

## S3 method for class 'SVC_mle'
residuals(object, ...)

Arguments

object SVC_mle object

... further arguments

Value

(numeric(n)) Residuals of model

Author(s)

Jakob Dambon

sample_SVCdata Sample Function for GP-based SVC Model for Given Locations

Description

Samples SVC data at given locations. The SVCs parameters and the covariance function have to
be provided. The sampled model matrix can be provided or it is sampled. The SVCs are sampled
according to their given parametrization and at respective observation locations. The error vector
is sampled from a nugget effect. Finally, the response vector is computed. Please note that the
function is not optimized for sampling large data sets.
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Usage

sample_SVCdata(
df.pars,
nugget.sd,
locs,
cov.name = c("exp", "sph", "mat32", "mat52", "wend1", "wend2"),
X = NULL

)

Arguments

df.pars (data.frame(p, 3))
Contains the mean and covariance parameters of SVCs. The three columns must
have the names "mean", "var", and "scale".

nugget.sd (numeric(1))
Standard deviation of the nugget / error term.

locs (numeric(n) or matrix(n, d))
The numeric vector or matrix contains the observation locations and therefore
defines the number of observations to be n. For a vector, we assume locations
on the real line, i.e., d = 1.

cov.name (character(1))
Character defining the covariance function, c.f. SVC_mle_control.

X (NULL or matrix(n, p))
If NULL, the covariates are sampled, where the first column contains only ones
to model an intercept and further columns are sampled from a standard normal.
If it is provided as a matrix, then the dimensions must match the number of
locations in locs (n) and the number of SVCs defined by the number of rows in
df.pars (p).

Details

The parameters of the model can be chosen such that we obtain data from a not full model, i.e., not
all covariates are associated with a fixed and a random effect. Using var = 0 for instance yields a
constant beta coefficient for respective covariate. Note that in that case the scale value is neglected.

Value

list
Returns a list with the response y, model matrix X, a matrix beta containing the sampled SVC
at given locations, a vector eps containing the error, and a matrix locs containing the original
locations. The true_pars contains the data frame of covariance parameters that were used to
sample the GP-based SVCs. The nugget variance has been added to the original argument of the
function with its respective variance, but NA for "mean" and "scale".

Examples

set.seed(123)
# SVC parameters
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(df.pars <- data.frame(
var = c(2, 1),
scale = c(3, 1),
mean = c(1, 2)))

# nugget standard deviation
tau <- 0.5

# sample locations
s <- sort(runif(500, min = 0, max = 10))
SVCdata <- sample_SVCdata(

df.pars = df.pars, nugget.sd = tau, locs = s, cov.name = "mat32"
)

summary.SVC_mle Summary Method for SVC_mle

Description

Method to construct a summary.SVC_mle object out of a SVC_mle object.

Usage

## S3 method for class 'SVC_mle'
summary(object, ...)

Arguments

object SVC_mle object

... further arguments

Value

object of class summary.SVC_mle with summarized values of the MLE.

Author(s)

Jakob Dambon

See Also

SVC_mle
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SVCdata Sampled SVC Data

Description

A list object that contains sampled data of 500 observations. The data has been sampled using the
RandomFields package (Schlather et al., 2015). It is given in the list object SVCdata which contains
the following.

Usage

SVCdata

Format

A list with the following entries:

y (numeric) Response

X (numeric) Covariates; first columns contains ones to model an intercept, the second column
contains standard-normal sampled data.

beta (numeric) The sampled Gaussian processes, which are usually unobserved. It uses a Matern
covariance function and the true parameters are given in the entry ‘true_pars‘.

eps (numeric) Error (or Nugget effect), i.e., drawn from a zero-mean normal distribution with 0.5
standard deviation.

locs (numeric) Locations sampled from a uniform distribution on the interval 0 to 10.

true_pars (data.frame) True parameters of the GP-based SVC model with Gaussian process
mean, variance, and range. Additionally, the smoothness (nu) is given.

References

Schlather, M., Malinowski, A., Menck, P. J., Oesting, M., Strokorb, K. (2015) Analysis, simulation
and prediction of multivariate random fields with package RandomFields, Journal of Statistical
Software, doi:10.18637/jss.v063.i08

SVC_mle MLE of SVC model

Description

Conducts a maximum likelihood estimation (MLE) for a Gaussian process-based spatially varying
coefficient model as described in Dambon et al. (2021) doi:10.1016/j.spasta.2020.100470.

https://doi.org/10.18637/jss.v063.i08
https://doi.org/10.1016/j.spasta.2020.100470
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Usage

SVC_mle(...)

## Default S3 method:
SVC_mle(y, X, locs, W = NULL, control = NULL, optim.control = list(), ...)

## S3 method for class 'formula'
SVC_mle(
formula,
data,
RE_formula = NULL,
locs,
control = NULL,
optim.control = list(),
...

)

Arguments

... further arguments

y (numeric(n))
Response vector.

X (matrix(n, p))
Design matrix. Intercept has to be added manually.

locs (matrix(n, d))
Locations in a d-dimensional space. May contain multiple observations at single
location.

W (NULL or matrix(n, q))
If NULL, the same matrix as provided in X is used. This fits a full SVC model, i.e.,
each covariate effect is modeled with a mean and an SVC. In this case we have
p = q. If optional matrix W is provided, SVCs are only modeled for covariates
within matrix W.

control (list)
Control paramaters given by SVC_mle_control.

optim.control (list)
Control arguments for optimization function, see Details in optim.

formula Formula describing the fixed effects in SVC model. The response, i.e. LHS of
the formula, is not allowed to have functions such as sqrt() or log().

data data frame containing the observations

RE_formula Formula describing the random effects in SVC model. Only RHS is considered.
If NULL, the same RHS of argument formula for fixed effects is used.

Details

The GP-based SVC model is defined with some abuse of notation as:
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y(s) = Xµ+Wη(s) + ϵ(s)

where:

• y is the response (vector of length n)

• X is the data matrix for the fixed effects covariates. The dimensions are n times p. This leads
to p fixed effects.

• µ is the vector containing the fixed effects

• W is the data matrix for the SVCs modeled by GPs. The dimensions are n times q. This lead
to q SVCs in the model.

• η are the SVCs represented by a GP.

• ϵ is the nugget effect

The MLE is an numeric optimization that runs optim or (if parallelized) optimParallel.

You can call the function in two ways. Either, you define the model matrices yourself and provide
them using the arguments X and W. As usual, the individual columns correspond to the fixed and
random effects, i.e., the Gaussian processes, respectively. The second way is to call the function
with formulas, like you would in lm. From the data.frame provided in argument data, the respec-
tive model matrices as described above are implicitly built. Using simple arguments formula and
RE_formula with data column names, we can decide which covariate is modeled with a fixed or
random effect (SVC).

Note that similar to model matrix call from above, if the RE_formula is not provided, we use the
one as in argument formula. Further, note that the intercept is implicitly constructed in the model
matrix if not prohibited.

Value

Object of class SVC_mle if control$extract_fun = FALSE, meaning that a MLE has been con-
ducted. Otherwise, if control$extract_fun = TRUE, the function returns a list with two entries:

• obj_fun: the objective function used in the optimization

• args: the arguments to evaluate the objective function.

For further details, see description of SVC_mle_control.

Author(s)

Jakob Dambon

References

Dambon, J. A., Sigrist, F., Furrer, R. (2021) Maximum likelihood estimation of spatially varying
coefficient models for large data with an application to real estate price prediction, Spatial Statistics
doi:10.1016/j.spasta.2020.100470

See Also

predict.SVC_mle

https://doi.org/10.1016/j.spasta.2020.100470
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Examples

## ---- toy example ----
## We use the sampled, i.e., one dimensional SVCs
str(SVCdata)
# sub-sample data to have feasible run time for example
set.seed(123)
id <- sample(length(SVCdata$locs), 50)

## SVC_mle call with matrix arguments
fit <- with(SVCdata, SVC_mle(

y[id], X[id, ], locs[id],
control = SVC_mle_control(profileLik = TRUE, cov.name = "mat32")))

## SVC_mle call with formula
df <- with(SVCdata, data.frame(y = y[id], X = X[id, -1]))
fit <- SVC_mle(

y ~ X, data = df, locs = SVCdata$locs[id],
control = SVC_mle_control(profileLik = TRUE, cov.name = "mat32")

)
class(fit)

summary(fit)

## ---- real data example ----
require(sp)
## get data set
data("meuse", package = "sp")

# construct data matrix and response, scale locations
y <- log(meuse$cadmium)
X <- model.matrix(~1+dist+lime+elev, data = meuse)
locs <- as.matrix(meuse[, 1:2])/1000

## starting MLE
# the next call takes a couple of seconds
fit <- SVC_mle(

y = y, X = X, locs = locs,
# has 4 fixed effects, but only 3 random effects (SVC)
# elev is missing in SVC
W = X[, 1:3],
control = SVC_mle_control(
# inital values for 3 SVC
# 7 = (3 * 2 covariance parameters + nugget)
init = c(rep(c(0.4, 0.2), 3), 0.2),
profileLik = TRUE

)
)

## summary and residual output
summary(fit)
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plot(fit)

## predict
# new locations
newlocs <- expand.grid(

x = seq(min(locs[, 1]), max(locs[, 1]), length.out = 30),
y = seq(min(locs[, 2]), max(locs[, 2]), length.out = 30))

# predict SVC for new locations
SVC <- predict(fit, newlocs = as.matrix(newlocs))
# visualization
sp.SVC <- SVC
coordinates(sp.SVC) <- ~loc_1+loc_2
spplot(sp.SVC, colorkey = TRUE)

SVC_mle_control Set Parameters for SVC_mle

Description

Function to set up control parameters for SVC_mle. In the following, we assume the GP-based SVC
model to have q GPs which model the SVCs and p fixed effects.

Usage

SVC_mle_control(...)

## Default S3 method:
SVC_mle_control(
cov.name = c("exp", "sph", "mat32", "mat52", "wend1", "wend2"),
tapering = NULL,
parallel = NULL,
init = NULL,
lower = NULL,
upper = NULL,
save.fitted = TRUE,
profileLik = FALSE,
mean.est = c("GLS", "OLS"),
pc.prior = NULL,
extract_fun = FALSE,
hessian = TRUE,
dist = list(method = "euclidean"),
parscale = TRUE,
...

)

## S3 method for class 'SVC_mle'
SVC_mle_control(object, ...)
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Arguments

... Further Arguments yet to be implemented

cov.name (character(1))
Name of the covariance function of the GPs. Currently, the following are imple-
mented: "exp" for the exponential, "sph" for spherical, "mat32" and "mat52"
for Matern class covariance functions with smoothness 3/2 or 5/2, as well as
"wend1" and "wend2" for Wendland class covariance functions with kappa 1 or
2.

tapering (NULL or numeric(1))
If NULL, no tapering is applied. If a scalar is given, covariance tapering with
this taper range is applied, for all Gaussian processes modeling the SVC. Only
defined for Matern class covariance functions, i.e., set cov.name either to "exp",
"mat32", or "mat52".

parallel (NULL or list)
If NULL, no parallelization is applied. If cluster has been established, define
arguments for parallelization with a list, see documentation of optimParallel.
See Examples.

init (NULL or numeric(2q+1+p*as.numeric(profileLik)))
Initial values for optimization procedure. If NULL is given, an initial vector is
calculated (see Details). Otherwise, the vector is assumed to consist of q-times
(alternating) range and variance, the nugget variance and if profileLik = TRUE
p mean effects.

lower (NULL or numeric(2q+1+p*as.numeric(profileLik)))
Lower bound for init in optim. Default NULL calculates the lower bounds (see
Details).

upper (NULL or numeric(2q+1+p*as.numeric(profileLik)))
Upper bound for init in optim. Default NULL calculates the upper bounds (see
Details).

save.fitted (logical(1))
If TRUE, calculates the fitted values and residuals after MLE and stores them.
This is necessary to call residuals and fitted methods afterwards.

profileLik (logical(1))
If TRUE, MLE is done over profile Likelihood of covariance parameters.

mean.est (character(1))
If profileLik = TRUE, the means have to be estimated seperately for each step.
"GLS" uses the generalized least square estimate while "OLS" uses the ordinary
least squares estimate.

pc.prior (NULL or numeric(4))
If numeric vector is given, penalized complexity priors are applied. The order is
ρ0, αρ, σ0, ασ to give some prior believes for the range and the standard devia-
tion of GPs, such that P (ρ < ρ0) = αρ, P (σ > σ0) = ασ . This regulates the
optimization process. Currently, only supported for GPs with of Matérn class
covariance functions. Based on the idea by Fulgstad et al. (2018) doi:10.1080/
01621459.2017.1415907.

https://doi.org/10.1080/01621459.2017.1415907
https://doi.org/10.1080/01621459.2017.1415907
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extract_fun (logical(1))
If TRUE, the function call of SVC_mle stops before the MLE and gives back the
objective function of the MLE as well as all used arguments. If FALSE, regular
MLE is conducted.

hessian (logical(1))
If TRUE, Hessian matrix is computed, see optim. This required to give the stan-
dard errors for covariance parameters and to do a Wald test on the variances, see
summary.SVC_mle.

dist (list)
List containing the arguments of dist or nearest.dist. This controls the method
of how the distances and therefore dependency structures are calculated. The
default gives Euclidean distances in a d-dimensional space. Further editable
arguments are p, miles, R, see respective help files of dist or nearest.dist.

parscale (logical(1))
Triggers parameter scaling within the optimization in optim. If TRUE, the op-
tional parameter scaling in optim.control in function SVC_mle is overwritten
by the initial value used in the numeric optimization. The initial value is ei-
ther computed from the data or provided by the user, see init argument above
or Details below. Note that we check whether the initial values are unequal to
zero. If they are zero, the corresponding scaling factor is 0.001. If FALSE, the
parscale argument in optim.control is let unchanged.

object (SVC_mle)
The function then extracts the control settings from the function call used to
compute in the given SVC_mle object.

Details

If not provided, the initial values as well as the lower and upper bounds are calculated given the
provided data. In particular, we require the median distance between observations, the variance of
the response and, the ordinary least square (OLS) estimates, see init_bounds_optim.

The argument extract_fun is useful, when one wants to modify the objective function. Further,
when trying to parallelize the optimization, it is useful to check whether a single evaluation of
the objective function takes longer than 0.05 seconds to evaluate, cf. Gerber and Furrer (2019)
doi:10.32614/RJ2019030. Platform specific issues can be sorted out by the user by setting up their
own optimization.

Value

A list with which SVC_mle can be controlled.

Author(s)

Jakob Dambon

See Also

SVC_mle

https://doi.org/10.32614/RJ-2019-030
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Examples

control <- SVC_mle_control(init = rep(0.3, 10))
# or
control <- SVC_mle_control()
control$init <- rep(0.3, 10)

# Code for setting up parallel computing
require(parallel)
# exchange number of nodes (1) for detectCores()-1 or appropriate number
cl <- makeCluster(1, setup_strategy = "sequential")
clusterEvalQ(

cl = cl,
{
library(spam)
library(varycoef)

})
# use this list for parallel argument in SVC_mle_control
parallel.control <- list(cl = cl, forward = TRUE, loginfo = TRUE)
# SVC_mle goes here ...
# DO NOT FORGET TO STOP THE CLUSTER!
stopCluster(cl); rm(cl)

SVC_selection SVC Model Selection

Description

This function implements the variable selection for Gaussian process-based SVC models using a
penalized maximum likelihood estimation (PMLE, Dambon et al., 2021, <arXiv:2101.01932>). It
jointly selects the fixed and random effects of GP-based SVC models.

Usage

SVC_selection(obj.fun, mle.par, control = NULL, ...)

Arguments

obj.fun (SVC_obj_fun)
Function of class SVC_obj_fun. This is the output of SVC_mle with the SVC_mle_control
parameter extract_fun set to TRUE. This objective function comprises of the
whole SVC model on which the selection should be applied.

mle.par (numeric(2*q+1))
Numeric vector with estimated covariance parameters of unpenalized MLE.

control (list or NULL)
List of control parameters for variable selection. Output of SVC_selection_control.
If NULL is given, the default values of SVC_selection_control are used.

... Further arguments.
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Value

Returns an object of class SVC_selection. It contains parameter estimates under PMLE and the
optimization as well as choice of the shrinkage parameters.

Author(s)

Jakob Dambon

References

Dambon, J. A., Sigrist, F., Furrer, R. (2021). Joint Variable Selection of both Fixed and Random
Effects for Gaussian Process-based Spatially Varying Coefficient Models, ArXiv Preprint https:
//arxiv.org/abs/2101.01932

SVC_selection_control SVC Selection Parameters

Description

Function to set up control parameters for SVC_selection. The underlying Gaussian Process-based
SVC model is defined in SVC_mle. SVC_selection then jointly selects fixed and random effects
of the GP-based SVC model using a penalized maximum likelihood estimation (PMLE). In this
function, one can set the parameters for the PMLE and its optimization procedures (Dambon et al.,
2022).

Usage

SVC_selection_control(
IC.type = c("BIC", "cAIC_BW", "cAIC_VB"),
method = c("grid", "MBO"),
r.lambda = c(1e-10, 10),
n.lambda = 10L,
n.init = 10L,
n.iter = 10L,
CD.conv = list(N = 20L, delta = 1e-06, logLik = TRUE),
hessian = FALSE,
adaptive = FALSE,
parallel = NULL,
optim.args = list()

)

Arguments

IC.type (character(1))
Select Information Criterion.

https://arxiv.org/abs/2101.01932
https://arxiv.org/abs/2101.01932
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method (character(1))
Select optimization method for lambdas, i.e., shrinkage parameters. Either model-
based optimization (MBO, Bischl et al., 2017 <arXiv:1703.03373>) or over grid.

r.lambda (numeric(2))
Range of lambdas, i.e., shrinkage parameters.

n.lambda (numeric(1))
If grid method is selected, number of lambdas per side of grid.

n.init (numeric(1))
If MBO method is selected, number of initial values for surrogate model.

n.iter (numeric(1))
If MBO method is selected, number of iteration steps of surrogate models.

CD.conv (list(3))
List containing the convergence conditions, i.e., first entry is the maximum num-
ber of iterations, second value is the relative change necessary to stop iteration,
third is logical to toggle if relative change in log likelihood (TRUE) or rather the
parameters themselves (FALSE) is the criteria for convergence.

hessian (logical(1))
If TRUE, Hessian will be computed for final model.

adaptive (logical(1))
If TRUE, adaptive LASSO is executed, i.e., the shrinkage parameter is defined as
λj := λ/|θj |.

parallel (list)
List with arguments for parallelization, see documentation of optimParallel.

optim.args (list)
List of further arguments of optimParallel, such as the lower bounds.

Value

A list of control parameters for SVC selection.

Author(s)

Jakob Dambon

References

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M. (2017). mlrMBO: A Modu-
lar Framework for Model-Based Optimization of Expensive Black-Box Functions, ArXiv preprint
https://arxiv.org/abs/1703.03373

Dambon, J. A., Sigrist, F., Furrer, R. (2022). Joint Variable Selection of both Fixed and Random
Effects for Gaussian Process-based Spatially Varying Coefficient Models, International Journal of
Geographical Information Science doi:10.1080/13658816.2022.2097684

https://arxiv.org/abs/1703.03373
https://doi.org/10.1080/13658816.2022.2097684
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Examples

# Initializing parameters and switching logLik to FALSE
selection_control <- SVC_selection_control(

CD.conv = list(N = 20L, delta = 1e-06, logLik = FALSE)
)
# or
selection_control <- SVC_selection_control()
selection_control$CD.conv$logLik <- FALSE

varycoef varycoef: Modeling Spatially Varying Coefficients

Description

This package offers functions to estimate and predict Gaussian process-based spatially varying co-
efficient (SVC) models. Briefly described, one generalizes a linear regression equation such that
the coefficients are no longer constant, but have the possibility to vary spatially. This is enabled by
modeling the coefficients using Gaussian processes with (currently) either an exponential or spher-
ical covariance function. The advantages of such SVC models are that they are usually quite easy
to interpret, yet they offer a very high level of flexibility.

Estimation and Prediction

The ensemble of the function SVC_mle and the method predict estimates the defined SVC model
and gives predictions of the SVC as well as the response for some pre-defined locations. This con-
cept should be rather familiar as it is the same for the classical regression (lm) or local polynomial
regression (loess), to name a couple. As the name suggests, we are using a maximum likelihood
estimation (MLE) approach in order to estimate the model. The predictor is obtained by the em-
pirical best linear unbiased predictor. to give location-specific predictions. A detailed tutorial with
examples is given in a vignette; call vignette("example", package = "varycoef"). We also re-
fer to the original article Dambon et al. (2021) which lays the methodological foundation of this
package.

With the before mentioned SVC_mle function one gets an object of class SVC_mle. And like the
method predict for predictions, there are several more methods in order to diagnose the model,
see methods(class = "SVC_mle").

Variable Selection

As of version 0.3.0 of varycoef, a joint variable selection of both fixed and random effect of
the Gaussian process-based SVC model is implemented. It uses a penalized maximum likelihood
estimation (PMLE) which is implemented via a gradient descent. The estimation of the shrinkage
parameter is available using a model-based optimization (MBO). Here, we use the framework by
Bischl et al. (2017). The methodological foundation of the PMLE is described in Dambon et al.
(2022).
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Author(s)

Jakob Dambon

References

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M. (2017). mlrMBO: A Modu-
lar Framework for Model-Based Optimization of Expensive Black-Box Functions, ArXiv preprint
https://arxiv.org/abs/1703.03373

Dambon, J. A., Sigrist, F., Furrer, R. (2021). Maximum likelihood estimation of spatially varying
coefficient models for large data with an application to real estate price prediction, Spatial Statistics
41 100470 doi:10.1016/j.spasta.2020.100470

Dambon, J. A., Sigrist, F., Furrer, R. (2022). Joint Variable Selection of both Fixed and Random
Effects for Gaussian Process-based Spatially Varying Coefficient Models, International Journal of
Geographical Information Science doi:10.1080/13658816.2022.2097684

See Also

Useful links:

• https://github.com/jakobdambon/varycoef

• Report bugs at https://github.com/jakobdambon/varycoef/issues

Examples

vignette("manual", package = "varycoef")
methods(class = "SVC_mle")

https://arxiv.org/abs/1703.03373
https://doi.org/10.1016/j.spasta.2020.100470
https://doi.org/10.1080/13658816.2022.2097684
https://github.com/jakobdambon/varycoef
https://github.com/jakobdambon/varycoef/issues
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