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Introduction

The package vMF simulates von Mises-Fisher distribution (M). Unlike the package movMF (Hornik and
Grün, 2014), which simulates and estimates mixtures of M, vFM performs fast sampling as its source code
is written in C++. vFM also computes the density and the normalization constant of M.

The von Mises-Fisher distribution is used to model coordinates on a hypersphere of dimension p ≥ 2. Roughly
speaking, it is the equivalent of the normal distribution on a hypersphere. As the normal distribution, M
is characterized by two parameters. The location (or mean directional) parameter µ around which draws
will be concentrated and the intensity parameter η which measures the intensity of concentration of the
draws around µ. The higher η, the more the draws are concentrated around µ. Compared to the normal
distribution, µ is similar to the mean parameter of the normal distribution and 1/η is similar to the standard
deviation.

There are several definitions of the density function of M. In this package, the density is normalized by the
uniform distribution without loss of generality. This is also the case in Mardia and Jupp (2009) and Hornik
and Grün (2013).

Let z ∼ M (η, µ). The density of z is given by

fp(z|η, µ) = Cp(η)eηz
′
µ,
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is the normalization constant and I.(.) the Bessel function of the first
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The normalization with respect to the uniform distribution implies Cp(0) = 1.

Simulation from von Mises Fisher distribution

The following algorithm provides a rejection sampling scheme for drawing a sample from M with mean
directional parameter µ = (0, ..., 0, 1) and concentration (intensity) parameter η ≥ 0 (see Section 2.1 in
Hornik and Grün, 2014).

• Step 1. Calculate b using * Step 1. Calculate b using

b =
p − 1

2η +
√

2η2 + (p − 1)2
.

Let x0 = (1 − b)/(1 + b) and c = ηx0 + (p − 1) log
(

1 − x2
0

)

.

• Step 2. Generate Z ∼ Beta((p − 1)/2, (p − 1)/2) and U ∼ Unif([0, 1]) and calculate
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W =
1 − (1 + b)Z

1 − (1 − b)Z
.

• Step 3. If

ηW + (p − 1) log(1 − x0W ) − c < log(U),

go to step 2.

• Step 4. Generate a uniform (d − 1)-dimensional unit vector V and return

X =
(

√

1 − W 2V
′, W

)′

The uniform (d − 1)-dimensional unit vector V can be generated by simulating d − 1 independent standard
normal random variables and normalizing them so as ∥V∥2 = 1. To get sampling from M with arbitrary
mean direction parameter µ, X is multiplied from the left with a matrix where the first d − 1 columns consist
of unitary basis vectors of the subspace orthogonal to µ and the last column is equal to µ.

Comparison of vMF and movMF

In this section, I compare vMF and movMF.

library(rbenchmark)

fcompare <- function(n) {

benchmark("vMF" = rvMF(n,c(1,0,0)), "movMF" = rmovMF(1,c(1,0,0)))

}

fcompare(1)

#> test replications elapsed relative user.self sys.self user.child sys.child

#> 2 movMF 100 0.018 9 0.017 0 0 0

#> 1 vMF 100 0.002 1 0.001 0 0 0

fcompare(10)

#> test replications elapsed relative user.self sys.self user.child sys.child

#> 2 movMF 100 0.017 17 0.017 0 0 0

#> 1 vMF 100 0.001 1 0.002 0 0 0

fcompare(100)

#> test replications elapsed relative user.self sys.self user.child sys.child

#> 2 movMF 100 0.017 3.4 0.017 0 0 0

#> 1 vMF 100 0.005 1.0 0.005 0 0 0

vMF performs over movMF. The performance of vMF is much better when only few simulations are
performed. When the sample is too large, the two package require approximately the same running time.

out <- unlist(lapply(1:200, function(x) fcompare(x)$elapsed[1]/fcompare(x)$elapsed[2]))

library(ggplot2)

ggplot(data = data.frame(n = 1:200, time = out), aes(x = n, y = time)) +

geom_point(col = "blue") + geom_hline(yintercept = 1, col = 2)
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Many papers use simulations from the von-Mises Fisher distribution in a Markov Chain Monte Carlo (MCMC)
process. A single draw is performed at each iteration of the MCMC. This is for example the case in Boucher
and Houndetoungan (2022), Breza et al. (2020), McCormick and Zheng (2015). In such a simulation context,
using vMF would take much less time than movMF. For example, I consider the process (zt)t∈N

which
follows a random walk of the von-Mises Fisher distribution. The first variable, z0, is randowmly set on
a 4-dimensional hypersphere and zt ∼ M (1, zt−1) ∀ t > 0. Simulating this process has about the same
complexity as using von-Mises Fisher drawings in an MCMC.

set.seed(123)

P <- 4

initial <- rmovMF(1, rep(0, P))

# Fonction based on vMF to simulate theta

SamplevMF <- function(n) {

output <- matrix(0, n + 1, P)

output[1, ] <- initial

for (i in 1:n) {

output[i + 1,] <- rvMF(1, output[i,])

}

return(output)

}

# Fonction based on movMF to simulate theta

SamplemovMF <-function(n){

output <- matrix(0, n + 1, P)

output[1, ] <- initial

for (i in 1:n) {

output[i + 1,] <- rmovMF(1, output[i,])

}

return(output)

}

benchmark("vMF" = SamplevMF(1000), "movMF" = SamplemovMF(1000))
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#> test replications elapsed relative user.self sys.self user.child sys.child

#> 2 movMF 100 35.605 51.902 35.260 0.032 0 0

#> 1 vMF 100 0.686 1.000 0.643 0.044 0 0

The comparison of the running times vMF is less time-consuming
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