Package ‘unix’

October 4, 2024
Title POSIX System Utilities
Version 1.5.9

Description Bindings to system utilities found in most Unix systems such as
POSIX functions which are not part of the Standard C Library.

License MIT + file LICENSE
URL https://jeroen.r-universe.dev/unix

BugReports https://github.com/jeroen/unix/issues
OS_type unix

SystemRequirements POSIX.1-2001, AppArmor (optional)
RoxygenNote 7.3.1

Suggests testthat

Language en-US

Encoding UTF-8

NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>)
Maintainer Jeroen Ooms <jeroenooms@gmail .com>
Repository CRAN

Date/Publication 2024-10-04 09:10:05 UTC

Contents

chroot e e
eval_safe e
getuid e e
rlimit . . . e
sSys_config e e e e
userinfo L e e e

Index

https://jeroen.r-universe.dev/unix
https://github.com/jeroen/unix/issues
https://orcid.org/0000-0002-4035-0289

2 eval_safe

chroot Change Root Dir

Description
Changes the root directory of the calling process to that specified in path. This directory will be
used for pathnames beginning with /. Only a privileged process (i.e. sudo) may call chroot ().
Usage
chroot(path = getwd())

Arguments

path directory of the new root

Details

This call changes an ingredient in the pathname resolution process and does nothing else. In partic-
ular, it is not intended to be used for any kind of security purpose, neither to fully sandbox a process
nor to restrict filesystem system calls.

References

CHROOT(2)

eval_safe Safe Evaluation

Description

Evaluates an expression in a temporary fork and returns the value without any side effects on the
main R session. For eval_safe() the expression is wrapped in additional R code to handle errors
and graphics.

Usage

eval_safe(
expr,
tmp = tempfile(”"fork"),
std_out = stdout(),
std_err = stderr(),
timeout = 0,
priority = NULL,
uid = NULL,
gid = NULL,

https://man7.org/linux/man-pages/man2/chroot.2.html

eval_safe

rlimits = NULL,
profile = NULL,

device =

)

eval_fork(
expr,

pdf

tmp = tempfile(”"fork"),
stdout(),
stderr(),

std_out
std_err
timeout

Arguments
expr
tmp
std_out

std_err

timeout
priority
uid

gid
rlimits

profile

device

Details

0

expression to evaluate
the value of tempdir () inside the forked process

if and where to direct child process STDOUT. Must be one of TRUE, FALSE, file-
name, connection object or callback function. See section on Output Streams
below for details.

if and where to direct child process STDERR. Must be one of TRUE, FALSE, file-
name, connection object or callback function. See section on Qutput Streams
below for details. Non root user may only raise this value (decrease priority)

maximum time in seconds to allow for call to return

(integer) priority of the child process. High value is low priority.

evaluate as given user (uid or name). See setuid(), only for root.

evaluate as given group (gid or name). See setgid() only for root.

named vector/list with rlimit values, for example: c(cpu = 60, fsize = 1e6).

AppArmor profile, see RAppArmor: : aa_change_profile(). Requires the RAppArmor
package (Debian/Ubuntu only)

graphics device to use in the fork, see dev.new()

Some programs such as Java are not fork-safe and cannot be called from within a forked process if

they have already been loaded in the main process. On MacOS any software calling CoreFoundation
functionality might crash within the fork. This includes 1ibcurl which has been built on OSX

against native SecureTransport rather than OpenSSL for https connections. The same limitations

hold for e.g. parallel: :mcparallel().

Examples

works like regular eval:
eval_safe(rnorm(5))

Exceptions get propagated

4 getuid

test <- function() { doesnotexit() }
tryCatch(eval_safe(test()), error = function(e){
cat("oh no!"”, e$message, "\n")

b

Honor interrupt and timeout, even inside C evaluations
try(eval_safe(svd(matrix(rnorm(1e8), 1e4)), timeout = 2))

Capture output

outcon <- rawConnection(raw(@), "r+")
eval_safe(print(sessionInfo()), std_out = outcon)
cat(rawToChar (rawConnectionValue(outcon)))
close(outcon)

getuid Process Info

Description

Get or set attributes of the current process.

Usage

getuid()
getgid()
geteuid()
getegid()
getpid()
getppid()
getpgid()
getpriority()
setuid(uid)
seteuid(uid)
setgid(gid)
setegid(gid)

setpgid(pgid = 0)

getuid

setpriority(prio)

kill(pid, signal = SIGTERM)

Arguments

uid User ID from /etc/passwd.

gid Group ID from /etc/group.

pgid Process Group ID. Default @ sets pgid to the current pid.

prio Priority level

pid process ID (integer)

signal a signal number (integer), defaults to tools::SIGTERM.
Details

Acronyms stand for:

pid Process ID

ppid Parent-Process ID
pgid Process-Group ID
uid User ID

euid Effective User ID
gid Group ID

egid Effective Group ID

prio Priority level

An unprivileged (non-root) process cannot change it’s uid and only lower process priority (higher
value).

References

GETUID(2) GETPID(2) GETPGID(2) GETPRIORITY(2)

Examples

Current User:
getuid()

Current UserGroup:
getgid()

Current UserGroup:
geteuid()

Current UserGroup:
getegid()

Process ID
getpid()

parent PID:

https://man7.org/linux/man-pages/man2/getuid.2.html
https://man7.org/linux/man-pages/man2/getpid.2.html
https://man7.org/linux/man-pages/man2/getpgid.2.html
https://man7.org/linux/man-pages/man2/getpriority.2.html

6 rlimit
getppid()
Process group id:
getpgid()
Detach process group
setpgid(0)
getpgid()
Process priority:
getpriority()
Decrease priority
setpriority(getpriority() + 1)
rlimit Resource Limits
Description
Get and set process resource limits. Each function returns the current limits, and can optionally
update the limit by passing argument values. The rlimit_all() function is a convenience wrapper
which prints all current hard and soft limits.
Usage
rlimit_all()
rlimit_as(cur = NULL, max = NULL)
rlimit_core(cur = NULL, max NULL)
rlimit_cpu(cur = NULL, max = NULL)
rlimit_data(cur = NULL, max = NULL)
rlimit_fsize(cur = NULL, max = NULL)
rlimit_memlock(cur = NULL, max = NULL)
rlimit_nofile(cur = NULL, max = NULL)
rlimit_nproc(cur = NULL, max = NULL)
rlimit_stack(cur = NULL, max = NULL)
Arguments
cur set the current (soft) limit for this resource. See details.

max set the max (hard) limit for this resource. See details.

rlimit

Details

Each resource has an associated soft and hard limit. The soft limit is the value that the kernel
enforces for the corresponding resource. The hard limit acts as a ceiling for the soft limit: an
unprivileged process may set only its soft limit to a value in the range from O up to the hard limit,
and (irreversibly) lower its hard limit.

Definitons from the Linux manual page are as follows:

RLIMIT_AS : the maximum size of the process’s virtual memory (address space) in bytes.
RLIMIT_CORE : the maximum size of a core file that the process may dump.

RLIMIT_CPU: alimit in seconds on the amount of CPU time (not elapsed time) that the process
may consume. When the process reaches the soft limit, it is sent a SIGXCPU signal.

RLIMIT_DATA : the maximum size of the process’s data segment (initialized data, uninitialized
data, and heap).

RLIMIT_FSIZE : the maximum size of files that the process may create. Attempts to extend a
file beyond this limit result in delivery of a SIGXFSZ signal.

RLIMIT_MEMLOCK : the maximum number of bytes of memory that may be locked into RAM.

RLIMIT_NOFILE : a value one greater than the maximum file descriptor number that can be
opened by this process.

RLIMIT_NPROC : the maximum number of processes that can be created for the real user ID
of the calling process. Upon encountering this limit, fork fails with the error EAGAIN. Not
enforced for root user.

RLIMIT_STACK : the maximum size of the process stack, in bytes.

Note that the support for enforcing limits very widely by system. In particular RLIMIT_AS has a
different meaning depending on how memory allocation is managed by the operating system (and
doesn’t work at all on MacOS).

References

GETRLIMIT(2)

Examples

Print all limits
rlimit_all()

Get one limit
rlimit_as()

Not run:

Set a soft limit
lim <- rlimit_as(1e9)
print(lim)

Reset the limit to max
rlimit_as(cur = lim$max)

https://man7.org/linux/man-pages/man2/setrlimit.2.html
https://man7.org/linux/man-pages/man2/setrlimit.2.html

Set a hard limit (irreversible)
rlimit_as(max = 1e10)

End(Not run)

userinfo

sys_config Package config

Description

Shows which features are enabled in the package configuration.

Usage
sys_config()

aa_config()

Examples

sys_config()

userinfo User / Group Info

Description

Lookup a user or group info via user uid/name or group gid/name.

Usage

user_info(uid = getuid())
group_info(gid = getgid())

Arguments

uid user ID (integer) or name (string)
gid group ID (integer) or name (string)

References

GETPWNAM(3) GETGRNAM(3)

Examples

Get info current user
user_info()
group_info()

https://man7.org/linux/man-pages/man3/getpwnam.3.html
https://man7.org/linux/man-pages/man3/getgrnam.3.html

Index

aa_config (sys_config), 8
chroot, 2
dev.new(), 3

eval_fork (eval_safe), 2
eval_safe, 2
eval_safe(), 2

getegid (getuid), 4
geteuid (getuid), 4
getgid (getuid), 4
getpgid (getuid), 4
getpid (getuid), 4
getppid (getuid), 4
getpriority (getuid), 4
getuid, 4

group_info (userinfo), 8

kill (getuid), 4

rlimit, 6

rlimit_all (rlimit), 6
rlimit_as (rlimit), 6
rlimit_core (rlimit), 6
rlimit_cpu(rlimit), 6
rlimit_data (rlimit), 6
rlimit_fsize (rlimit), 6
rlimit_memlock (rlimit), 6
rlimit_nofile (rlimit), 6
rlimit_nproc (rlimit), 6
rlimit_stack (rlimit), 6

setegid (getuid), 4
seteuid (getuid), 4
setgid (getuid), 4
setgid(), 3

setpgid (getuid), 4
setpriority (getuid), 4
setuid (getuid), 4

setuid(), 3
sys_config, 8

tempdir(), 3
tools: :SIGTERM, 5

user_info (userinfo), 8
userinfo, 8

	chroot
	eval_safe
	getuid
	rlimit
	sys_config
	userinfo
	Index

