Package ‘unglue’

October 12, 2022
Title Extract Matched Substrings Using a Pattern
Version 0.1.0

Description Use syntax inspired by the package 'glue’ to extract matched substrings in a more intu-
itive and compact way than by using standard regular expressions.

Depends R (>=3.1.0)
License GPL-3
Encoding UTF-8
LazyData true

Suggests glue, testthat (>= 2.1.0), rlang, covr, knitr, rmarkdown,
magrittr

RoxygenNote 7.1.0

NeedsCompilation no

Author Antoine Fabri [aut, cre]

Maintainer Antoine Fabri <antoine.fabri@gmail.com>
Repository CRAN

Date/Publication 2020-06-11 05:50:03 UTC

R topics documented:

unglueo
unglue_detect L. e e e
unglue_regex e e
unglue_sub

Index

2 unglue

unglue unglue

Description

The functions unglue_data(), unglue(), unglue_vec() and unglue_unnest() extract matched
substrings using a syntax inspired from glue: : glue (). Simple cases don’t require regex knowledge
at all.

Usage

unglue(x, patterns, open = "{", close = "}", convert = FALSE, multiple = NULL)

unglue_data(
X’
patterns,

n

open = "{",
close = "}",

convert = FALSE,
multiple = NULL,

na = NA_character_

)

unglue_vec(
X)
patterns,
var = 1,
open = "{",
close = "}",

convert = FALSE,
multiple = NULL,
na = NA_character_

)

unglue_unnest(
data,
col,
patterns,
open = "{",
close = "}",
remove = TRUE,
convert = FALSE,
multiple = NULL,
na = NA_character_

unglue 3

Arguments

X a character vector to unglue.

patterns a character vector or a list of character vectors, if a list, items will be pasted
using an empty separator ("").

open The opening delimiter.

close The closing delimiter.

convert If TRUE, will convert columns of output using utils::type.convert() with
parameter as.is = TRUE, alternatively, can be a converting function, such as
readr: :type_convert. Formula notation is supported if the package rlang is
installed, so things like convert = ~type_convert(., numerals = "warn.loss")
are possible.

multiple The aggregation function to use if several subpatterns are named the same, by
default no function is used and subpatterns named the same will match the same
value. If a function is provided it will be fed the conflicting values as separate
arguments. Formula notation is supported if the package rlang is installed.

na string to use when there is no match

var for unglue_vec(), the numeric index or the name of the subpattern to extract
from

data a data frame.

col column containing the character vector to extract values from.

remove whether to remove the column col once extraction is performed

Details

Depending on the task you might want:
* unglue_data() to return a data frame from a character vector, just as glue: :glue_data()
does in reverse
* unglue() to return a list of data frames containing the matches
* unglue_vec() to extract one value by element of x, chosen by index or by name.
e unglue_unnest() to extract value from a column of a data frame to new columns
To build the relevant regex pattern special characters will be escaped in the input pattern and the sub-

patterns will be replaced with (.*?) if in standard "{foo}" form. An alternate regular expression
can be provided after = so that "{foo=\\d}" will be translated into " (\\d)".

Sometimes we might want to use regex to match a part of the text that won’t be extracted, in these
cases we just need to omit the name as in "{=\\d}".

unglue_unnest()’s name is a tribute to tidyr::unnest() because unglue_unnest(data, col,
patterns) returns a similar output as dplyr: :mutate(data, unglued = unglue(col, patterns))
%>% tidyr: :unnest() (without requiring any extra package). Itis also very close to tidyr: :extract()
and efforts were made to make the syntax consistent with the latter.

4 unglue_detect

Value

For unglue()a list of one row data frames, for unglue_data a data frame, for unglue_unnest the
data frame input with additional columns built from extracted values, for unglue_vec an atomic
vector.

Examples

using an awample from ?glue::glue

if(require(magrittr) && require(glue)) {
glued_data <- mtcars %>% glue_data("{rownames(.)} has {hp} hp")
unglue_data(glued_data, "{rownames(.)} has {hp} hp")

3

facts <- c("Antarctica is the largest desert in the world!",

"The largest country in Europe is Russia!”,

"The smallest country in Europe is Vatican!"”,

"Disneyland is the most visited place in Europe! Disneyland is in Paris!”,
"The largest island in the world is Green Land!")

facts_df <- data.frame(id = 1:5, facts)

patterns <- c("The {adjective} {place_type} in {bigger_place} is {place}!”,
"{place} is the {adjective} {place_type=[* 1+3} in {bigger_place}!{=.*}")
unglue_data(facts, patterns)

sentences <- c("666 is [a number]”, "foo is [a word]”,

"42 is [the answer]”, "Area 51 is [unmatched]")
patterns <- c("{number=\\d+} is [{what}]", "{word=\\D+} is [{what}]")
unglue_data(sentences, patterns)

unglue_unnest(facts_df, facts, patterns)
unglue_unnest(facts_df, facts, patterns, remove = FALSE)

unglue_detect Detect if strings are matched by a set of unglue patterns

Description

Returns a logical indicating whether input strings were matched by one or more patterns

Usage

unglue_detect(
X7
patterns,
open = "{",
close = "}",
convert = FALSE,

multiple = NULL

unglue_regex 5

Arguments
X a character vector to unglue.
patterns a character vector or a list of character vectors, if a list, items will be pasted
using an empty separator ("").
open The opening delimiter.
close The closing delimiter.
convert If TRUE, will convert columns of output using utils::type.convert() with
parameter as.is = TRUE, alternatively, can be a converting function, such as
readr: : type_convert. Formula notation is supported if the package rlang is
installed, so things like convert = ~type_convert(., numerals = "warn.loss")
are possible.
multiple The aggregation function to use if several subpatterns are named the same, by
default no function is used and subpatterns named the same will match the same
value. If a function is provided it will be fed the conflicting values as separate
arguments. Formula notation is supported if the package rlang is installed.
Value

a vector of logical.

Examples

sentences <- c("666 is [a number]”, "foo is [a word]”,

"42 is [the answer]”, "Area 51 is [unmatched]")
patterns <- c("{number=\\d+} is [{what}]", "{word=\\D+} is [{what}]1")
unglue_detect(sentences, patterns)

unglue_regex Converts unglue pattern to regular regex pattern

Description

Transforms a vector of patterns given in the unglue format to a vector of proper regex (PCRE)
patterns (so they can for instance be used with functions from other packages).

Usage

unglue_regex(
patterns,

open = "{",
close = "}",

use_multiple = FALSE,
named_capture = FALSE,

attributes = FALSE

6 unglue_sub

Arguments
patterns a character vector or a list of character vectors, if a list, items will be pasted
using an empty separator ("").
open The opening delimiter.
close The closing delimiter.

use_multiple whether we should consider that duplicate labels can match different substrings.
named_capture whether to incorporate the names of the groups in the output regex

attributes whether to give group attributes to the output

Value

a character vector.

Examples

patterns <- c("{number=\\d+} is [{what}]", "{word=\\D+} is [{what}]")
unglue_regex(patterns)

unglue_sub unglue_sub

Description

substitute substrings using strings or replacement functions

Usage
unglue_sub(x, patterns, repl, open = "{", close = "}")
Arguments
X character vector
patterns a character vector or a list of character vectors, if a list, items will be pasted
using an empty separator ("").
repl function to apply on matched substrings, formula (if package rlang is installed),
substring, or named list of such.
open The opening delimiter.

close The closing delimiter.

unglue_sub

Examples

unglue_sub(

c("a and b", "foo or bar"),
c("{x} and {y}", "{x} or {z}"),
XXX

unglue_sub(

c("a and b", "foo or bar"),
c("{x} and {y}", "{x} or {z}"),
toupper)

unglue_sub(
c("a and b", "foo or BAR"),
c("{x} and {y}", "{x} or {z}"),
list(x= "XXX", y = toupper, z = tolower))

Index

unglue, 2

unglue_data (unglue), 2
unglue_detect, 4
unglue_regex, 5
unglue_sub, 6
unglue_unnest (unglue), 2
unglue_vec (unglue), 2

	unglue
	unglue_detect
	unglue_regex
	unglue_sub
	Index

