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implants Fetal Death in Mice

Description

Data on the number of fetal deaths arising from dominant lethal testing in mice.

Usage

data(implants)

Format

A data frame containing the number of dead and survived implants from 523 mice.

Source

Zhou H and Lange K (2010). MM Algorithms for Some Discrete Multivariate Distributions. Jour-
nal of Computational and Graphical Statistics. 19 (3) 645-665. Supplementary material.

References

Haseman JK and Soares ER (1976). The Distribution of Fetal Death in Control Mice and Its Im-
plications on Statistical Tests for Dominant Lethal Effects, Mutation Research/Fundamental and
Molecular Mechanisms of Mutagenesis. 41, 277-288.

parties Political Parties

Description

Political parties of members of the U.S. House of Representatives, 2005.

Usage

data(votes)

Format

A vector of integers representing the political parties, with 0, 1, and 2 corresponding to Republicans,
Democrats, and Independents, respectively.
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Source

Diaconis PD, Goel S, and Holmes S (2008). Horseshoes in Multidimensional Scaling and Local
Kernel Methods. Annals of Applied Statistics. 2 (3) 777-807. Supplementary material.

psychfactors Psychiatric Test Correlations

Description

Intercorrelations of outcomes from a set of psychiatric tests for 148 children.

Usage

data(psychfactors)

Format

A 10-by-10 correlation matrix.

Source

Maxwell AE (1961). Recent Trends in Factor Analysis. Journal of the Royal Statistical Society.
Series A (General). 124 (1) 49-59.

rats Population Growth of Rats

Description

Longitudinal measurements of the weights of rats in control and treatment groups.

Usage

data(rats)

Format

A data frame containing weights from 60 rats divided into two groups, with each rat measured at 5
time points.

Source

Gelfand AE, Hills SE, Racine-Poon A, and Smith AFM (1990). Illustration of Bayesian inference
in normal data models using Gibbs sampling. Journal of the American Statistical Association. 85,
972-985.
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turbo Methods for objects of class "turbo"

Description

The turbo class represents results from parameter estimation in fixed-point mapping problems. The
turboem function outputs objects of class turbo.

Usage

## S3 method for class 'turbo'
print(x, ...)
## S3 method for class 'turbo'
pars(x, ...)
## S3 method for class 'turbo'
error(x, ...)
## S3 method for class 'turbo'
plot(x, which.methods = seq_along(x$method),
method.names = x$method[which.methods], xlim, ylim, ...)
## S3 method for class 'turbo'
grad(x, objfn=x$objfn, which.methods = seq_along(x$method),
method.names = x$method[which.methods], ...)

## S3 method for class 'turbo'
hessian(x, objfn=x$objfn, which.methods = seq_along(x$method),
method.names = x$method[which.methods], ...)

## S3 method for class 'turbo'
stderror(x, objfn=x$objfn, which.methods = seq_along(x$method),
method.names = x$method[which.methods], ...)

Arguments

x An object of class turbo, typically the output of a call to turboem.

which.methods A vector identifying for which subset of algorithms results are desired.

method.names A vector of unique identifiers for the algorithms for which results are being
provided.

xlim Optional range for the x-axis of the trace plot.

ylim Optional range for the y-axis of the trace plot.

objfn Objective function. Usually this is taken to be the appropriate component of a
turbo object.

... Additional arguments.

Value

print Shows a brief summary of the results from fitting the acceleration schemes.
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pars Prints the fixed-point values across acceleration schemes at termination of the
algorithms.

error Prints any error messages from running the acceleration schemes

plot Shows a trace plot of the objective function value over iterations. This method is
only available if the call to turboem had the argumentcontrol.run[["keep.objfval"]]=TRUE

grad Calculates the gradient of the objective function evaluated at the fixed-point
across acceleration schemes. Uses numerical methods from the package numDeriv.

hessian Calculates the Hessian of the objective function evaluated at the fixed-point
across acceleration schemes. Uses numerical methods from the package numDeriv.

stderror Provides estimates of the standard error of the fixed-point across acceleration
schemes.

See Also

turboem

Examples

###########################################################################
# Also see the vignette by typing:
# vignette("turboEM")
#
# EM algorithm for Poisson mixture estimation

fixptfn <- function(p,y) {
# The fixed point mapping giving a single E and M step of the EM algorithm
#
pnew <- rep(NA,3)
i <- 0:(length(y)-1)
zi <- p[1]*exp(-p[2])*p[2]^i / (p[1]*exp(-p[2])*p[2]^i + (1 - p[1])*exp(-p[3])*p[3]^i)
pnew[1] <- sum(y*zi)/sum(y)
pnew[2] <- sum(y*i*zi)/sum(y*zi)
pnew[3] <- sum(y*i*(1-zi))/sum(y*(1-zi))
p <- pnew
return(pnew)
}

objfn <- function(p,y) {
# Objective function whose local minimum is a fixed point
# negative log-likelihood of binary poisson mixture
i <- 0:(length(y)-1)
loglik <- y*log(p[1]*exp(-p[2])*p[2]^i/exp(lgamma(i+1)) +
(1 - p[1])*exp(-p[3])*p[3]^i/exp(lgamma(i+1)))
return ( -sum(loglik) )
}

# Real data from Hasselblad (JASA 1969)
poissmix.dat <- data.frame(death=0:9, freq=c(162,267,271,185,111,61,27,8,3,1))
y <- poissmix.dat$freq
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# Use a preset seed so the example is reproducable.
require("setRNG")
old.seed <- setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion",

seed=1))

p0 <- c(runif(1),runif(2,0,4)) # random starting value

# Basic EM algorithm, SQUAREM, and parabolic EM, with default settings
res1 <- turboem(par=p0, y=y, fixptfn=fixptfn, objfn=objfn, method=c("EM", "squarem", "pem"))

# Apply methods for class "turbo"
res1
pars(res1)
grad(res1)
hessian(res1)
stderror(res1)
error(res1)

# We get an error for Dynamic ECME (decme) if we do not specify the boundary function
res2 <- turboem(par=p0, y=y, fixptfn=fixptfn, objfn=objfn,

method=c("EM", "squarem", "pem", "decme"))
res2
error(res2)

# we can't plot the results, because we did not store the objective function value at each iteration
# Changing the options to store the objective function values, we can:
res1keep <- turboem(par=p0, y=y, fixptfn=fixptfn, objfn=objfn, method=c("EM", "squarem", "pem"),

control.run=list(keep.objfval=TRUE))
plot(res1keep, xlim=c(0.001, 0.02))

turboem A suite of acceleration schemes for fixed-point iterations

Description

Globally-convergent, partially monotone, acceleration schemes for accelerating the convergence
of any smooth, monotone, slowly-converging contraction mapping. It can be used to accelerate
the convergence of a wide variety of iterations including the expectation-maximization (EM) algo-
rithms and its variants, majorization-minimization (MM) algorithm, power method for dominant
eigenvalue-eigenvector, Google’s page-rank algorithm, and multi-dimensional scaling.

Usage

turboem(par, fixptfn, objfn, method = c("em","squarem","pem","decme","qn"),
boundary, pconstr = NULL, project = NULL, parallel = FALSE, ...,
control.method = replicate(length(method),list()), control.run = list())
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Arguments

par A vector of parameters denoting the initial guess for the fixed point.
fixptfn A vector function, F that denotes the fixed-point mapping. This function is the

most essential input in the package. It should accept a parameter vector as input
and should return a parameter vector of same length. This function defines the
fixed-point iteration: xk+1 = F (xk). In the case of EM algorithm, F defines a
single E and M step.

objfn This is a scalar function, L, that denotes a “merit” function which attains its local
minimum at the fixed-point of F . This function should accept a parameter vector
as input and should return a scalar value. In the EM algorithm, the merit function
L is the negative log-likelihood. In some problems, a natural merit function may
not exist. However, this argument is required for all of the algorithms *except*
Squarem (which defaults to Squarem-2 if objfn not provided) and EM.

method Specifies which algorithm(s) will be applied. Must be a vector containing one
or more of c("em", "squarem", "pem", "decme", "qn").

boundary Argument required for Dynamic ECME (decme) only. Function to define the
subspaces over which the line search is conducted.

pconstr Optional function for defining boundary constraints on parameter values. Func-
tion maps a vector of parameter values to TRUE if constraints are satisfied. Note
that this argument is only used for the Squarem (squarem), Parabolic EM (pem),
and quasi-Newton (qn) algorithms, and it has no effect on the other algorithms.

project Optional function for defining a projection that maps an out-of-bound parameter
value into the constrained parameter space. Requires the pconstr argument to
be specified in order for the project to be applied.

parallel Logical indicating whether the acceleration schemes will be run in parallel. Note
that the parallel implementation is based on the foreach package, which de-
pends on a parallel backend being registered prior to running turboem(). See
*Details* of foreach

.

control.method If method = c(method1, method2, ...), then control.method = list(list1,
list2, ...) where list1 is the list of control parameters for method1, list2
is the list of control parameters for method2, and so on. If length(method)
== 1, then control.method is the list of control parameters for the acceleration
scheme. See *Details*.

control.run List of control parameters for convergence and stopping the algorithms. See
*Details*.

... Arguments passed to fixptfn and objfn.

Details

The function turboem is a general-purpose algorithm for accelerating the convergence of any
slowly-convergent (smooth) fixed-point iteration.

The component lists of the control.method are used to specify any changes to default values
of algorithm control parameters. Full names of control list elements must be specified, other-
wise, user specifications are ignored. Default control parameters for method="squarem" are K=1,



8 turboem

square=TRUE, version=3, step.min0=1, step.max0=1, mstep=4, kr=1, objfn.inc=1. Default
control parameters for method="pem" are l=10, h=0.1, a=1.5, and version="geometric". De-
fault control parameters for method="decme" are version="v2" and tol_op=0.01. Default control
parameters for method="qn" are qn=5.

Default values of control.run are: convtype = "parameter", tol = 1.0e-07, stoptype = "maxiter",
maxiter = 1500, maxtime = 60, convfn.user = NULL, stopfn.user = NULL, trace = FALSE, keep.objfval
= FALSE, keep.paramval = FALSE.

There are two ways the algorithm will terminate. Either the algorithm will terminate if conver-
gence has been achieved, or the algorithm will terminate if convergence has not been achieved
within a pre-specified maximum number of iterations or maximum running time. The arguments
convtype, tol, and convfn.user control the convergence criterion. The arguments stoptype,
maxiter, maxtime, and stopfn.user control the alternative stopping criterion.

Two types of convergence criteria have been implemented, with an option for the user to define
his/her own convergence criterion. If convtype = "parameter", then the default convergence cri-
terion is to terminate if sqrt(crossprod(new - old)) < tol, where new denotes the current value
of the fixed point and old denotes the previous fixed-point value. If convtype = "objfn", then
the default convergence criterion is to terminate if abs(new - old) < tol, where new denotes the
current value of the objective function and old denotes the previous value of the objective function.
If the user desires alternate convergence criteria, convfn.user may be specified as a function with
inputs new and old that maps to a logical taking the value TRUE if convergence is achieved and the
value FALSE if convergence is not achieved.

Two types of alternative stopping criteria have been implemented, with the option for the user to
define his/her own stopping criterion. If stoptype = "maxiter", then the algorithm will termi-
nate if convergence has not been achieved within maxiter iterations of the acceleration scheme.
If stoptype = "maxtime", then the algorithm will terminate if convergence has not been achieved
within maxtime seconds of running the acceleration scheme. Note: the running time of the accel-
eration scheme is calculated once every iteration. If the user desires different alternate stopping
criteria than those implemented, stopfn.user may be specified as a function with no inputs that
maps to a logical taking the value TRUE which leads to the algorithm being terminated or the value
FALSE which leads to the algorithm proceeding as usual.

convtype A character string equal to "parameter" or "objfn". "parameter" indicates that the
convergence criterion is a function of the current and previous value of the fixed point. objfn
indicates that the convergence criterion is a function of the current and previous value of the
objective function.

tol A small, positive scalar that determines when convergence is achieved. See details above for
convergence criteria currently implemented. Default is 1.e-07.

stoptype A character string equal to "maxiter" or "maxtime" that determines an alternative stop-
ping rule for the algorithm. See details above for stopping rules currently implemented. De-
fault is "maxiter".

maxiter If stoptype = "maxiter", specifies the number of iterations after which the algorithm
will be terminated if convergence has not been achieved. Default is 1500.

maxtime If stoptype = "maxtime", specifies the running time (in seconds) after which the algo-
rithm will be terminated if convergence has not been achieved. Default is 60.

convfn.user Optional, user-specified function for determining whether convergence has been
achieved. Function should take as inputs new and old, where new is the current value (of
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the fixed point if convtype = "parameter" and of the objective function value if convtype
= "objfn") and old is the previous value. Function should map to a logical taking the value
TRUE if convergence is achieved (and hence the algorithm is terminated) and the value FALSE
if convergence is not achieved. Default is NULL.

stopfn.user Optional, user-specified function for determining whether to terminate the algorithm
if convergence has not been achieved. See details above for how to specify. Default is NULL.

trace A logical variable denoting whether some of the intermediate results of iterations should be
displayed to the user. Default is FALSE.

keep.objfval A logical variable denoting whether the objective function value at each iteration
should be stored. Default is FALSE.

keep.paramval A logical variable denoting whether the parameter estimates at each iteration
should be stored. Default is FALSE.

Value

turboem returns an object of class turbo. An object of class turbo is a list containing at least the
following components:

fail Vector of logical values whose jth element indicates whether algorithm j failed
(produced an error)

value.objfn Vector of the value of the objective function L at termination for each algorithm.

itr Vector of the number of iterations completed for each algorithm.

fpeval Vector of the number of fixed-point evaluations completed for each algorithm.

objfeval Vector of the number of objective function evaluations completed for each algo-
rithm.

convergence Vector of logical values whose jth element indicates whether algorithm j satis-
fied the convergence criterion before termination

runtime Matrix whose jth row contains the “user”, “system”, and “elapsed” time for
running the jth algorithm.

errors Vector whose jth element is either NA or contains the error message from run-
ning the jth algorithm

pars Matrix whose jth row contains the fixed-point parameter values at termination
for the jth algorithm.

trace.objfval If control.run[["keep.objfval"]]=TRUE, contains a list whose jth compo-
nent is a vector of objective function values across iterations for the jth algo-
rithm.

trace.paramval If control.run[["keep.paramval"]]=TRUE, contains a list whose jth compo-
nent is a matrix of parameter estimates across iterations for the jth algorithm.

References

R Varadhan and C Roland (2008). Simple and globally convergent numerical schemes for acceler-
ating the convergence of any EM algorithm. Scandinavian Journal of Statistics, 35:335-353.

A Berlinet and C Roland (2009). Parabolic acceleration of the EM algorithm. Stat Comput. 19 (1)
35-47.
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Y He and C Liu (2010) The Dynamic ECME Algorithm. Technical Report. arXiv:1004.0524v1.

H Zhou, DH Alexander, and KL Lange (2011). A quasi-Newton acceleration for high-dimensional
optimization algorithms. Stat Comput. 21 (2) 261-273.

See Also

foreach

Examples

###########################################################################
# Also see the vignette by typing:
# vignette("turboEM")
#
# EM algorithm for Poisson mixture estimation

fixptfn <- function(p,y) {
# The fixed point mapping giving a single E and M step of the EM algorithm
#
pnew <- rep(NA,3)
i <- 0:(length(y)-1)
zi <- p[1]*exp(-p[2])*p[2]^i / (p[1]*exp(-p[2])*p[2]^i + (1 - p[1])*exp(-p[3])*p[3]^i)
pnew[1] <- sum(y*zi)/sum(y)
pnew[2] <- sum(y*i*zi)/sum(y*zi)
pnew[3] <- sum(y*i*(1-zi))/sum(y*(1-zi))
p <- pnew
return(pnew)
}

objfn <- function(p,y) {
# Objective function whose local minimum is a fixed point
# negative log-likelihood of binary poisson mixture
i <- 0:(length(y)-1)
loglik <- y*log(p[1]*exp(-p[2])*p[2]^i/exp(lgamma(i+1)) +
(1 - p[1])*exp(-p[3])*p[3]^i/exp(lgamma(i+1)))
return ( -sum(loglik) )
}

# Real data from Hasselblad (JASA 1969)
poissmix.dat <- data.frame(death = 0:9,
freq = c(162,267,271,185,111,61,27,8,3,1))
y <- poissmix.dat$freq

# Use a preset seed so the example is reproducable.
require("setRNG")
old.seed <- setRNG(list(kind = "Mersenne-Twister", normal.kind = "Inversion",

seed = 54321))

p0 <- c(runif(1),runif(2,0,4)) # random starting value

# Basic EM algorithm, SQUAREM, and parabolic EM, with default settings
res1 <- turboem(par = p0, y = y, fixptfn = fixptfn, objfn = objfn,
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method = c("EM", "squarem", "pem"))

# To apply the dynamic ECME (decme) acceleration scheme,
# we need to include a boundary function
boundary <- function(par, dr) {
lower <- c(0, 0, 0)
upper <- c(1, 10000, 10000)
low1 <- max(pmin((lower-par)/dr, (upper-par)/dr))
upp1 <- min(pmax((lower-par)/dr, (upper-par)/dr))
return(c(low1, upp1))
}
res2 <- turboem(par = p0, y = y, fixptfn = fixptfn, objfn = objfn,
boundary = boundary, method = c("EM", "squarem", "pem", "decme"))

# change some of the algorithm-specific default specifications (control.method),
# as well as the global control parameters (control.run)
res3 <- turboem(par = p0, y = y, fixptfn = fixptfn, objfn = objfn,

boundary = boundary, method = c("em", "squarem", "squarem", "decme", "qn", "qn"),
control.method = list(list(), list(K = 2), list(K = 3),
list(version = "v3"), list(qn = 1), list(qn = 2)),
control.run = list(tol = 1e-12, stoptype = "maxtime", maxtime = 1))

# Only the standard EM algorithm and SQUAREM *do not* require
# providing the objective function.
res4 <- turboem(par = p0, y = y, fixptfn = fixptfn,
method = c("em", "squarem", "squarem"),
control.method = list(list(), list(K = 1), list(K = 2)))
# If no objective function is provided, the "squarem" method defaults to Squarem-2
# Or, if control parameter K > 1, it defaults to Cyclem-2.
# Compare Squarem with and without objective function provided:
res5 <- turboem(par = p0, y = y, fixptfn = fixptfn, method = "squarem")
res5
res6 <- turboem(par = p0, y = y, fixptfn = fixptfn, objfn = objfn, method = "squarem")
res6

turboSim Conduct benchmark studies of EM accelerator

Description

The turboSim function conducts benchmark studies to compare performance of multiple acceler-
ation schemes over a large number of repetitions. The turboSim function outputs objects of class
turbosim.

Usage

turboSim(parmat, fixptfn, objfn, method = c("em","squarem","pem","decme","qn"),
boundary, pconstr = NULL, project = NULL, parallel = FALSE, method.names,
keep.pars = FALSE, ..., control.method = replicate(length(method),list()),
control.run = list())
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Arguments

parmat A matrix of starting parameter values, where each row corresponds to a single
benchmark study repetition.

fixptfn A vector function, F that denotes the fixed-point mapping. This function is the
most essential input in the package. It should accept a parameter vector as input
and should return a parameter vector of same length. This function defines the
fixed-point iteration: xk+1 = F (xk). In the case of EM algorithm, F defines a
single E and M step.

objfn This is a scalar function, L, that denotes a “merit” function which attains its local
minimum at the fixed-point of F . This function should accept a parameter vector
as input and should return a scalar value. In the EM algorithm, the merit function
L is the negative log-likelihood. In some problems, a natural merit function may
not exist. However, this argument is required for all of the algorithms *except*
Squarem (which defaults to Squarem-2 if objfn not provided) and EM.

method Specifies which algorithm(s) will be applied. Must be a vector containing one
or more of c("em", "squarem", "pem", "decme", "qn").

boundary Argument required for Dynamic ECME (decme) only. Function to define the
subspaces over which the line search is conducted.

pconstr Optional function for defining boundary constraints on parameter values. Func-
tion maps a vector of parameter values to TRUE if constraints are satisfied. Note
that this argument is only used for the Squarem (squarem), Parabolic EM (pem),
and quasi-Newton (qn) algorithms, and it has no effect on the other algorithms.

project Optional function for defining a projection that maps an out-of-bound parameter
value into the constrained parameter space. Requires the pconstr argument to
be specified in order for the project to be applied.

parallel Logical indicating whether the repetitions of the benchmark study will be run in
parallel. Note that the parallel implementation is based on the foreach pack-
age, which depends on a parallel backend being registered prior to running
turboSim(). See *Details* of foreach.

method.names Vector of unique names that identify the algorithms being compared.

keep.pars Logical indicating whether the parameter values at termination should be kept.
Defaults to FALSE.

control.method If method = c(method1, method2, ...), then control.method = list(list1,
list2, ...) where list1 is the list of control parameters for method1, list2
is the list of control parameters for method2, and so on. If length(method)
== 1, then control.method is the list of control parameters for the acceleration
scheme. See *Details* of turboem.

control.run List of control parameters for convergence and stopping the algorithms. See
*Details* of turboem.

... Arguments passed to fixptfn and objfn.

Value

turboSim returns an object of class turbosim.
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See Also

turbosim, turboem

Examples

###########################################################################
# Examples provided in the vignette, which can be seen by typing
# vignette("turboEM")

turbosim Methods for objects of class "turbosim"

Description

The turbosim class represents results from benchmark studies of algorithms to acceleration param-
eter estimation in fixed-point mapping problems.

Usage

## S3 method for class 'turbosim'
print(x, ...)
## S3 method for class 'turbosim'
summary(object, which.methods = seq_along(object$method),
method.names = object$method.names[which.methods], eps = 0.1, sol = NULL, ...)
## S3 method for class 'turbosim'
boxplot(x, which.methods = seq_along(x$method),
method.names = x$method.names[which.methods],
whichfail = (x$fail | !x$conv)[,which.methods], xunit="sec", log=FALSE, ...)
## S3 method for class 'turbosim'
dataprof(x, which.methods = seq_along(x$method),
method.names = x$method.names[which.methods],
whichfail = (x$fail | !x$conv)[,which.methods], col, lty, nout = 50, xlim, ...)
## S3 method for class 'turbosim'
pairs(x, which.methods=seq_along(x$method),
method.names = x$method.names[which.methods],
whichfail = (x$fail | !x$conv)[,which.methods], ...)

Arguments

object An object of class turbosim, the structure of which is described in *Details*.

x An object of class turbosim, the structure of which is described in *Details*.

which.methods A vector identifying for which subset of algorithms results are desired.

method.names A vector of unique identifiers for the algorithms for which results are being
provided.
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eps Used to define a tolerance between the objective function value attained by a
particular acceleration scheme and the best achievable objective function value
(either across schemes or as defined by the user). See *Details*.

sol Optional argument defining the best achievable objective function value for a
given fixed-point mapping problem. Defaults to NULL. See *Details*.

xunit Units for running time to be used in the boxplots. Argument takes the value
"sec" or "min."

log Logical indicating whether the log of the running time will be plotted. Defaults
to FALSE.

whichfail A matrix of logical values where the (i,j)-entry indicates whether algorithm j
of simulation iteration i failed (however the user wishes to define a failure for
visualization purposes). If argument is not provided by user, then by default a
failure is defined to be the event where the algorithm produces an error *or*
does not converge.

col Optional argument: A vector where each component defines the color for the
line corresponding to each algorithm being compared.

lty Optional argument: A vector where each component defines the line-type for
the line corresponding to each algorithm being compared.

nout Number of values at which the empirical distribution function is estimated.
Should be less than the number of simulation iterations.

xlim Optional argument: Defines the x-axis limits for the data profile. Defaults to the
full range of the running times over all algorithms being plotted.

... Additional arguments.

Details

An object of class turbosim is typically the product of the function turboSim. It is a list containing
at least the following components:

method.names Vector of unique identifiers for the algorithms being compared

fail Matrix whose (i,j)-element is a logical (TRUE/FALSE) for whether the jth algorithm at the
ith benchmark study repetition failed (produced an error).

convergence Matrix whose (i,j)-element is a logical (TRUE/FALSE) for whether the jth algo-
rithm at the ith benchmark study repetition satisfied the convergence criterion before termina-
tion.

value.objfn Matrix whose (i,j)-element is the value of the objective function of the jth algorithm
at the ith benchmark study repetition.

runtime Matrix whose (i,j)-element is the running time of the jth algorithm at the ith benchmark
study repetition.

itr Matrix whose (i,j)-element is the number of completed iterations of the jth algorithm at the
ith benchmark study repetition.

fpeval Matrix whose (i,j)-element is the number of fixed-point function evaluations of the jth
algorithm at the ith benchmark study repetition.
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objfeval Matrix whose (i,j)-element is the number of objective function evaluations of the jth
algorithm at the ith benchmark study repetition.

errors Matrix whose (i,j)-element contains the error message produced by the jth algorithm at
the ith benchmark study repetition (if there was an error).

This list usually will also contain the components fixptfn, objfn, method, pconstr, project,
control.method, and control.run, which were provided as arguments for turboSim.

The summary function shows a table of the number of failures across acceleration schemes. There
are three types of failures. The first occurs when the algorithm produces an error message. The
second is if the algorithm does not converge before the alternative stopping rule is achieved (e.g.
the maximum number of iterations or maximum pre-specified runtime is reached). The third is
if the algorithm claims convergence but the value of the objective function is "far" from the best
achievable value. To assess this third type of failure, we determine whether the objective function
value achieved by the algorithm is close (within eps) to the smallest value achieved across all
algorithms at that simulation iteration. Alternatively, if the user knows a priori the true objective
function value, he/she may specify the argument sol, in which case, the third type of failure occurs
when the objective function value achieved by the algorithm is within eps of sol.

Further details for each of the methods are provided in the vignette, which can be seen by typing
vignette("turboEM").

Value

summary Summarizes the number of failures by type across simulation iterations for each
acceleration scheme.

boxplot Shows box plots of algorithm running times for each acceleration scheme.

dataprof Plots the data profile, or the estimated distribution function of the time until
convergence for each acceleration scheme.

pairs Scatterplot matrix showing pairwise comparison of the running times for each
pair of acceleration schemes.

See Also

turboem, turbo

Examples

###########################################################################
# Examples provided in the vignette, which can be seen by typing
# vignette("turboEM")
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votes Roll Call Votes

Description

Roll call votes from the U.S. House of Representatives, 2005.

Usage

data(votes)

Format

A 401-by-669 matrix whose (i,j)-entry corresponds to the vote of the ith representative on the jth
roll call. Possible votes are "yea", "nay", or "not voting", which are represented by 1/2, -1/2, and 0,
respectively.

Source

Diaconis PD, Goel S, and Holmes S (2008). Horseshoes in Multidimensional Scaling and Local
Kernel Methods. Annals of Applied Statistics. 2 (3) 777-807. Supplementary material.
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