Package 'tswge'

April 17, 2025

Type Package

Title Time Series for Data Science

Version 2.2.0

Date 2025-4-17

Description Accompanies the texts Time Series for Data Science with R by Woodward, Sadler and Robertson & Applied Time Series Analysis with R, 2nd edition by Woodward, Gray, and Elliott. It is helpful for data analysis and for time series instruction.

Imports signal,PolynomF,MASS,waveslim,astsa,tidyverse,zoo,plotrix, dplyr, ggplot2, magrittr,nnfor,forecast

License GPL-2

NeedsCompilation no

LazyData TRUE

Repository CRAN

Date/Publication 2025-04-17 12:30:02 UTC

Author Wayne Woodward [aut], Bivin Sadler [cre]

Maintainer Bivin Sadler <bsadler@smu.edu>

Contents

ge-package	6
ar.wge	6
purg.wge	7
wge	8
.ar.wge	9
.wge	10
ne	11
)g	11
le.spec.wge	12
y	13
nns.wge	13
ccast.wge	14

bat	. 15
bitcoin	. 16
Bsales	. 16
bumps16	. 17
bumps256	. 17
butterworth.wge	. 18
cardiac	. 19
cement	. 19
chirp	. 20
co.wge	
dfw.2011	
dfw.mon	
dfw.yr	
doppler	
doppler2	
dow.annual	
dow.rate	
dow1000	
dow1985	
dowjones2014	. 27
eco.cd6	. 28
eco.corp.bond	. 28
eco.mort30	. 29
est.ar.wge	. 30
est.arma.wge	
est.farma.wge	
est.garma.wge	
est.glambda.wge	
expsmooth.wge	
factor.comp.wge	
factor.wge	. 37
fig1.10a	. 38
fig1.10b	. 38
6	. 39
fig1.10c	. 39
fig1.10d	
fig1.16a	. 40
fig1.21a	. 41
fig1.22a	. 42
fig1.5	. 42
fig10.11x	. 43
fig10.11y	. 44
fig10.1bond	. 44
fig10.1cd	. 45
fig10.1mort	. 46
fig10.3x1	. 46
fig10.3x2	. 47
fig11.12	. 48
fig11.4a	. 48

Contents

fig12.1a
fig12.1b
fig13.18a
fig13.2c
fig3.10d
fig3.16a
fig3.18a
fig3.24a
fig3.29a
fig4.8a
fig5.3c
fig6.11a
fig6.1nf
fig6.2nf
fig6.5nf
fig6.6nf
fig6.7nf
fig6.8nf
fig8.11a
fig8.4a
fig8.6a
fig8.8a
flu
fore.arima.wge
fore.arma.wge
fore.aruma.wge
fore.farma.wge
fore.garma.wge
fore.glambda.wge
fore.sigplusnoise.wge
freeze
freight
gegenb.wge
gen.arch.wge
gen.arima.wge
gen.arma.wge
gen.aruma.wge
gen.garch.wge
gen.garma.wge
gen.geg.wge
gen.glambda.wge
gen.sigplusnoise.wge
global.temp
global2020
hadley
hilbert.wge
is.glambda.wge
is.sample.wge
1 U

3

kalman.miss.wge	 	 			 	•	 	 	 			. 87
kalman.wge	 	 			 	•	 	 	 			. 88
kingkong	 	 			 		 	 	 			. 89
lavon	 	 			 		 	 	 			. 90
lavon15	 	 			 		 	 	 			. 90
linearchirp	 	 			 		 	 	 			. 91
ljung.wge	 	 			 		 	 	 			. 91
llynx	 	 			 		 	 	 			. 92
lynx	 	 			 		 	 	 			. 93
ma.pred.wge	 	 			 		 	 	 			. 94
ma.smooth.wge .	 	 			 		 	 	 			. 95
ma2.table7.1	 	 			 		 	 	 			. 96
macoef.geg.wge.	 	 			 		 	 	 			. 96
mass.mountain .												
MedDays												
mm.eq												
mult.wge												
NAICS												
nbumps256												
nile.min												
noctula												
NSA												
ozona												
pacfts.wge												
parzen.wge												
patemp												
period.wge												
pi.weights.wge												
plotts.dwt.wge												
plotts.mra.wge												
plotts.parzen.wge												
plotts.sample.wge												
plotts.true.wge												
plotts.wge												
prob10.4												
prob10.6x												
1												
prob10.6y												
prob10.7x												
prob10.7y												
prob11.5												
prob12.1c												
prob12.3a												
prob12.3b												
prob12.6c												
prob13.2												
prob8.1a												
prob8.1b												
prob8.1c	 	 			 		 	 	 			. 123

Contents

prob8.1d
prob9.6c1
prob9.6c2
prob9.6c3
prob9.6c4
psi.weights.wge
rate
roll.win.rmse.nn.wge
roll.win.rmse.wge
slr.wge
ss08
ss08.1850
starwort.ex
sunspot.classic
sunspot2.0
sunspot2.0.month
table10.1.noise
table10.1.signal
table7.1
tesla
trans.to.dual.wge
trans.to.original.wge
true.arma.aut.wge
true.arma.spec.wge
true.farma.aut.wge
true.garma.aut.wge
tx.unemp.adj
tx.unemp.unadj
unit.circle.wge
us.retail
uspop
wages
wbg.boot.wge
whale
wtcrude
wtcrude2020
wv.wge
yellowcab.precleaned

Index

tswge-package

Description

These functions and data sets accompany the book "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Author(s)

Wayne Woodward <waynew@smu.edu>

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(wages)
plotts.wge(wages)

aic.ar.wge

AR Model Identification for AR models

Description

AR model identification using either AIC, AICC, or BIC and MLE, Burg or YW

Usage

aic.ar.wge(x, p = 1:5, type = "aic",method='mle')

Arguments

Х	Realization to be analyzed
р	Range of p values to be considered
type	Type of model identification criterion: aic, aicc, or bic
method	Method used for estimation: MLE, Burg, or YW

Value

type	Criterion used: aic (default), aicc, or bic
method	Estimation method used: MLE, Burg, or YW
min_value	Value of the minimized criterion
р	AR order for selected model
phi	AR parameter estimates for selected model
vara	White noise variance estimate for selected model

aic.burg.wge

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

aic.burg.wge AR Model Identification using Burg Estimates

Description

AR model identification using either AIC, AICC, or BIC

Usage

aic.burg.wge(x, p = 1:5, type = "aic")

Arguments

х	Realization to be analyzed
р	Range of p values to be considered
type	Type of model identification criterion: aic, aicc, or bic

Value

type	Criterion used: aic (default), aicc, or bic
min_value	Value of the minimized criterion
р	AR order for selected model
phi	AR parameter estimates for selected model
vara	White noise variance estimate for selected model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

aic.wge

ARMA Model Identification

Description

ARMA model identification using either AIC, AICC, or BIC

Usage

aic.wge(x, p = 0:5, q = 0:2, type = "aic")

Arguments

х	Realization to be analyzed
р	Range of p values to be considered
q	Range of q values to be considered
type	Type of model identification criterion: aic, aicc, or bic

Value

type	Criterion used: aic (default), aicc, or bic
<pre>min_value</pre>	Value of the minimized criterion
р	AR order for selected model
phi	AR parameter estimates for selected model
q	MA order for selected model
theta	MA parameter estimates for selected model
vara	White noise variance estimate for selected model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

aic5.ar.wge

Description

You may select either AIC, AICC, or BIC to use model identification. You can also used ML, Burg, or Yule-Walker estimates. Given a range of values for p and q, the program returns the top 5 candidate models.

Usage

aic5.ar.wge(x, p = 0:5, type = "aic",method='mle')

Arguments

х	Realization to model
р	Range of AR orders to be considered
type	Either 'aic' (default), 'aicc', or 'bic'
method	Either 'MLE' (default), 'Burg', or 'YW'

Value

A list of p, selected criterion for the top 5 models. The identification type and estimation method are printed on the output.

Note

If some model order combinations give explosively nonstationary models, then the program may stop prematurely. You may need to adjust the range of p and q to avoid these models.

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

aic5.wge

Description

You may select either AIC, AICC, or BIC to use model identification. Given a range of values for p and q, the program returns the top 5 candidate models.

Usage

aic5.wge(x, p = 0:5, q = 0:2, type = "aic")

Arguments

х	Realization to model
р	Range of AR orders to be considered
q	Range of MA orders to be considered
type	Either 'aic' (default, 'aicc', or 'bic')

Value

A list of p,q, and selected criterion for the top 5 models

Note

If some model order combinations give explosively nonstationary models, then the program may stop prematurely. You may need to adjust the range of p and q to avoid these models.

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

airline

Description

Monthly international airline passengers (in 1000s) from January 1949-December 1960. Series G in Box, Jenkings, and Reinsel text

Usage

```
data("airline")
```

Format

```
The format is: num [1:144] 112 118 132 129 121 135 148 148 136 119 ...
```

Source

"Time Series Analysis: Forecasting and Control" by Box, Jenkins, and Reinsel

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(airline)

airlog

Natural log of airline data

Description

Natural log of monthly international airline passengers (in 1000s) from January 1949-December 1960. Series G in Box, Jenkings, and Reinsel text

Usage

data("airlog")

Format

The format is: num [1:144] 4.72 4.77 4.88 4.86 4.8 ...

Source

"Time Series Analysis: Forecasting and Control" by Box, Jenkins, and Reinsel

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(airlog)

ample.spec.wge Smoothed Periodogram using Parzen Window

Description

This function calculates and optionally plots the smoothed periodogram using the Parzen window. The truncation point may be chosen by the user

Usage

sample.spec.wge(x, dbcalc = "TRUE", plot = "TRUE")

Arguments

х	Vector containing the time series realization
dbcalc	If dbcalc=TRUE, the calculation is in the log (dB) scale. If FALSE, then non-log calculations are made
plot	If PLOT=TRUE then the smoothed spectral estimate is plotted. If FALSE then no plot is created

Value

freq	The frequencies at which the smoothed periodogram is calculated
pzgram	The smoothed periodogram using the Parzen window

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

sample.spec.wge(rnorm(100))

арру

Non-perforated appendicitis data shown in Figure 10.8 (solid line) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Annual non-perforated appendicitis rates for years 1970-2005

Usage

```
data("appy")
```

Format

The format is: num [1:36] 14.8 13.7 14.3 14.2 13 ...

Source

Alder, et al. (2010)Archives of Surgery 145, 63-71

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(appy)

artrans.wge

Perform Ar transformations

Description

Given a time series in the vector x, and AR coefs phi1 and phi2, for example, artrans.wge computes y(t)=x(t)-phi1X(t-1)-phi2x(t-2), for t=3, ..., n

Usage

artrans.wge(x,phi.tr, lag.max=25, plottr = "TRUE")

Arguments

х	Vector containing original realization
phi.tr	Coefficients of the transformation
lag.max	Max lag (k) for sample autocorrelations
plottr	If plottr=TRUE then plots of the data, transformed data, and sample autocorela-
	tions of original and transformed data

Value

Transformed data

Note

For a difference, use phi.tr=1

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott"

Examples

```
data(wtcrude)
difdata=artrans.wge(wtcrude,phi.tr=1,lag.max=30,plottr=TRUE)
```

backcast.wge Calculate backcast residuals

Description

This function takes either a fitted (or true) model for the realization x and calculates the residuals using the backcasting procedure

Usage

backcast.wge(x, phi = 0, theta = 0, n.back = 50)

Arguments

Х	realization
phi	AR coefficients
theta	MA coefficients
n.back	Backcast to X(-n.back)

Value

The n backcast residuals are returned

Author(s)

Wayne Woodward

bat

References

Chapter 7 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

bat

Bat echolocation signal shown in Figure 13.11a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Bat echolocation signal of a big brown bat

Usage

data("bat")

Format

The format is: num [1:381] -0.0049 -0.0083 0.0127 0.0068 -0.0259 0.0059 0.0386 -0.0405 -0.0269 0.0474 ...

Source

Al Feng, Beckman Center of the University of Illinois

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bat)

bitcoin

Description

This dataset contains the daily price of bitcoin from May 1, 2021 to April 30, 2021. The data was gathered from Yahoo Finance on April 30, 2020 and included missing values on October 9, 12 and 13 of 2020. Yahoo Finance has since filled in the correct values which can be compared with the imputed values described in the book.

Usage

data("bitcoin")

Format

The format is: num [1:461] 7200.174 6985.470 7344.884 ...

Source

Yahoo Finance

References

"Practical Time Series for Data Scientiests by Woodward, Sadler and Robertson"

Examples

data(bitcoin)

Bsales

Toy Data Set of Business Sales Data

Description

100 weeks of sales data with sales, TV advertising budget, Online advertising budget and the abount of a discount if any.

Usage

data("Bsales")

References

The Time Series Toolkit

bumps16

Examples

data(Bsales)

bumps16

16 point bumps signal

Description

Bumps signal from Donoho and Johnstone(1994) Biometrika 81,425-455

Usage

data("bumps16")

Format

The format is: num [1:16] 0.1 0.4 5.5 0.2 1.4 0.5 0.3 0.7 0.1 2.5 ...

Source

Donoho and Johnstone(1994) Biometrika 81,425-455

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bumps16)

bumps256

256 point bumps signal

Description

Bumps signal from Donoho and Johnstone(1994) Biometrika 81,425-455

Usage

```
data("bumps256")
```

Format

The format is: num [1:256] 0.00016 0.00017 0.000182 0.000195 0.000211 ...

Source

Donoho and Johnstone(1994) Biometrika 81,425-455

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bumps256)

butterworth.wge Perform Butterworth Filter

Description

The user can specify the order of the filter, and whether it is low pass ("low"), high pass ("high"), band stop ("stop"), or band pass ("pass") filter. Requires the CRAN package 'signal'.

Usage

butterworth.wge(x, order, type, cutoff,plot=TRUE)

Arguments

х	Realization to be filtered
order	Order of the Butterworth filter
type	Either "low", "high", "stop", or "pass" as dicsussed in Descriptions
cutoff	For "low" and "high": cutoff is a real number. For "stop" and "band": cutoff is a 2-component vector
plot	If plot=TRUE then plots of the original and filtered data are produced.

Value

The filtered data

Note

Requires CRAN package 'signal'

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

cardiac

Examples

```
data(wages)
    butterworth.wge(wages,order=4,type="low",cutoff=.05)
```

cardiac

Weekly Cardiac Mortality Data

Description

Weekly cardiac mortality, temperatures, and pollution measures for the years 1970-1978

Usage

data("cardiac")

Format

ts object consisting of weekly data

Source

Shumway and Stoffer, 1999)

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(cardiac)

cement

Cement data shown in Figure 3.30a in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Quarterly usage of metric tons (in thousands) of Portland cement used from the first quarter of 1973 through the fourth quarter of 1993 in Australia

Usage

data("cement")

Format

The format is: num [1:84] 1148 1305 1342 1452 1184 ...

Source

Australian Bureau of Statistics

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(cement)

chirp

Chirp data shown in Figure 12.2a in Applied Time Series Analysis with *R*, second edition by Woodward, Gray, and Elliott

Description

256 point linear chirp data

Usage

data("chirp")

Format

The format is: List of 2 \$ x : num [1:256] 1 1 0.98 0.95 0.91 0.86 0.8 0.72 0.63 0.53 ... \$ spec: num [1:256] 0.511 0.568 0.733 0.991 1.32 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(chirp)

co.wge

Description

Performs the Cochrane-Orcutt to test for a linear trend in a time series realization.)

Usage

co.wge(x,maxp=5)

Arguments

х	Realization
maxp	Maximum AR order allowed for AR model fit to residuals from least squares line

Value

Z	Residuals from the fitted line
b0hat	Estimated y-intercept of the fitted line using the CO method
b1hat	Estimated slope of the fitted line using the CO method
z.order	Order, p, fit to the residuals
z.phi	Coefficients of the AR model fit to the residuals
pvalue	P-value of the CO test for the significance of the slope
tco	Cochrane-Orcutt test statistic.

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

dfw.2011

Description

Monthly average temperatures at Dallas Ft. Worth (in Fahrenheit) from January 2011 through December 2020

Usage

```
data("dfw.2011")
```

Format

ts object consisting of monthly data from January 1900 trough December 2020

Source

https://www.weather.gov/fwd/dmotemp

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(dfw.2011)

dfw.mon

DFW Monthly Temperatures

Description

Monthly average temperatures at Dallas Ft. Worth (in Fahrenheit) from January 1900 through December 2020

Usage

data("dfw.mon")

Format

ts object consisting of monthly data from January 1900 through December 2020

dfw.yr

Source

https://www.weather.gov/fwd/dmotemp

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(dfw.mon)

dfw.yr

DFW Annual Temperatures

Description

Annual average temperatures at Dallas Ft. Worth (in Fahrenheit) from January 1900 through December 2020

Usage

data("dfw.yr")

Format

ts object consisting of annual data from 1900 through 2020

Source

https://www.weather.gov/fwd/dmotemp

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(dfw.yr)

doppler

Description

Generated Doppler data

Usage

data("doppler")

Format

The format is: num [1:2000] -0.00644 -0.01739 -0.02961 -0.04091 -0.04952

Source

Simulated

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(doppler)

doppler2	Doppler signal in Figure 13.10 in Applied Time Series Analysis with
	R, second edition by Woodward, Gray, and Elliott

Description

Doppler signal with two time-varying frequencies

Usage

data("doppler2")

Format

The format is: num [1:200] -0.372 1.246 -1.163 0.261 -0.698 ...

Source

Simulated data

dow.annual

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(doppler2)

dow.annual

DOW Annual Closing Averages

Description

DOW Annual closing averages from 1915 through 2020

Usage

data("dow.annual")

Format

ts object consisting of DOW Annual closing averages from 19155 through 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(dow.annual)

dow.rate

DOW Daily Rate of Return Data

Description

DOW daily rate of return data from October 1, 1928 to December 31, 2010

Usage

```
data("dow.rate")
```

Format

The format is: num [1:20656] 240 238 238 240 240 ...

Source

Public access

References

"Applied Statistics and Data Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(dow.rate)

dow1000

Dow Jones daily rate of return data for 1000 days

Description

Dow Jones daily rate of return for the 1000 trading days before December 31, 2010.

Usage

data("dow1000")

Format

The format is: num [1:1001] 240 238 238 240 240 ...

Source

Internet and shown in Figure 4.9, "Applied Time Series Analysis with R, 2nd edition", by Woodward, Gray and Elliott

Examples

data(dow1000)

dow1985

Description

Daily DOW Closing Prices 1985 through 2020

Usage

data("dow1985")

Format

ts object consisting of daily dow closing prices from 1985 through 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(dow1985)

dowjones2014 Dow Jones daily averages for 2014

Description

Daily Dow Jones averages for 2014

Usage

data("dowjones2014")

Format

The format is: num [1:252] 16441 16470 16425 16531 16463 ...

Source

Economic Data: Federal Reserve Bank of St. Louis. Website: https://research.stlouisfed.org/fred2/series/DJIA/downloaddata

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(dowjones2014)

eco.cd6

Description

6-month rates 1/1/1991 through 4/1/2010

Usage

data("eco.cd6")

Format

The format is: num [1:469] 7.25 7.53 7.64 7.64 7.59 7.44 7.39 7.26 7.25 7.19 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(eco.cd6)

eco.corp.bond Corporate bond rates

Description

Corporate bond rates 1/1/1991 through 4/1/2010

Usage

data("eco.corp.bond")

Format

The format is: num [1:469] 4.61 5.22 5.69 6.04 6.06 5.91 5.43 5.04 4.89 4.26 ...

Source

Internet

eco.mort30

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(eco.corp.bond)

eco.mort30

30 year mortgage rates

Description

30-year mortgage rates 1/1/1991 through 4/1/2010

Usage

data("eco.mort30")

Format

The format is: num [1:469] 7.31 7.43 7.53 7.6 7.7 7.69 7.63 7.55 7.48 7.44 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(eco.mort30)

est.ar.wge

Description

Estimate parameters of an AR(p) with p assumed known. Outputs residuals (backcast0 and white noise variance estimate.)

Usage

est.ar.wge(x, p = 2, factor = TRUE, method = "mle")

Arguments

х	Realization
р	AR order
factor	If TRUE (default) a factor table is printed for the estimated model
method	Either "mle" (default), "burg", or "yw"

Details

The 'type' arument is added for backwards compatabililty and if specified will replace the value specified in the 'method' argument.

Value

Estimation method used: MLE, Burg, or YW
Estimates of the AR parameters
Estimated residuals (using backcasting) based on estimated model
Estimated white noise variance (based on backcast residuals)
Sample mean of data in x
AIC for estimated model
AICC for estimated model
BIC for estimated model

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.1nf)
 est.ar.wge(fig6.1nf,p=1)

est.arma.wge

Description

This function calculates ML estimates, computes residuals (using backcasting), estimates white noise variance for a stationary ARMA model

Usage

est.arma.wge(x, p = 0, q = 0, factor = TRUE)

Arguments

x	The realization.
р	The autoregressive order
q	the moving average order
factor	Logical variable. factor=TRUE (default) plots a factor table for estimated AR- part of model

Details

This function uses arima from base SAS and is written similarly to itsmr function arma

Value

phi	ML estimates of autoregressive parameters
theta	ML estimates of moving average parameters
res	Residuals (calculated using backcasting)
avar	Estimate of white noise variance based on backcast residuals
se.phi	Standard errors of the AR parameter estimates
se.theta	Standard errors of the MA parameter estimates
aic	AIC for estimated model
aicc	AICC for estimated model
bic	BIC for estimated model

Note

Requires CRAN package 'itsmr'. The program is based on arima from base R and arma from 'itsmr'

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(fig6.2nf)
        est.arma.wge(fig6.2nf,p=2,q=1)
```

est.farma.wge Estimate the parameters of a FARMA model.

Description

This function uses the grid search algorithm discussed in Section 11.5 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

est.farma.wge(x, low.d, high.d, inc.d, p.max, nback = 500)

Arguments

Х	Realization to be analyzed
low.d	The lower limit for d in the grid search
high.d	The upper limit for d in the grid search
inc.d	The increment, e.g01, .001, etc. in the grid search
p.max	Maximum value of p allowed for the AR component of the model
nback	Number of backcasts to be used (see section 11.5 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Details

We assume q=0 and do not allow moving average terms in the model.

Value

d	Estimate of d
phi	Estimates of the pth order AR component of the model where p is some integer from 0 to p.max
vara	The estimnated white noise variance
aic	The aic value associated with the final model

Author(s)

Wayne Woodward

32

est.garma.wge

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott. See also Hosking (1984)

Examples

est.farma.wge(Nile,low.d=.1,high.d=.5,inc.d=.01,p.max=3)

est.garma.wge Estimate the parameters of a GARMA model.

Description

This function uses the grid search algorithm discussed in Section 11.5 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

est.garma.wge(x,low.u,low.lambda,high.u,high.lambda,inc.u,inc.lambda,p.max,nback=500)

Arguments

х	Realization to be analyzed
low.u	The lower limit for u in the grid search
low.lambda	The lower limit for lambda in the grid search
high.u	The upper limit for u in the grid search
high.lambda	The upper limit for lambda in the grid search
inc.u	The increment, e.g01, .001, etc. in the grid search on possible u values
inc.lambda	The increment, e.g01, .001, etc. in the grid search on possible lambda values
p.max	Maximum value of p allowed for the AR component of the model
nback	Number of backcasts to be used (see section 11.5 in Applied Time Series Anal- ysis with R, second edition by Woodward, Gray, and Elliott

Details

We assume q=0 and do not allow moving average terms in the model.

Value

u	Estimate of u
lambda	Estimate of lambda
phi	Estimates of the pth order AR component of the model where p is some integer from 0 to p.max
vara	The estimated white noise variance
aic	The aic value associated with the final model

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott. See also Hosking (1984), Gray, Zhang, and Woodward(1989), and Woodward, Cheng, and Gray(1998)

Examples

```
data(llynx)
est.garma.wge(llynx,low.u=.4,high.u=.9,low.lambda=.2,high.lambda=.4,inc.u=.01,inc.lambda=.1,p.max=1)
```

est.glambda.wge *Estimate the value of lambda and offset to produce a stationary dual.*

Description

This function uses the technique discussed in Section 13.3.3 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott to find the g(lambda) time transformation that most nearly transforms the data to a stationary dual.

Usage

```
est.glambda.wge(data, lambda.range = c(0, 1), offset.range = c(0, 100))
```

Arguments

data	Vector containing the TVF realization to be analyzed
lambda.range	Range of lambda values considered in the search
offset.range	Range of offset values considered in the search

Value

Q	A listing of lambda values within the range and offsets for each lambda that provided the best dual. Also a listing of the test statistic, Q, to be minimized
haad lambala	
best.lambda	See description of best.offset below
best.offset	best.lambda and best.offset are the lambda-offset pair that produced the most
	stationary dual according to the Q criterion

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott and Jiang, Gray, and Woodward(2006)

expsmooth.wge

Examples

```
data(ss08)
```

est.glambda.wge(ss08,lambda.range=c(-1,1),offset.range=c(0,100))

expsmooth.wge Exponential Smoothing

Description

Performs exponential smoothing on the data in vector x

Usage

```
expsmooth.wge(x,alpha=NULL,n.ahead=0,plot=TRUE)
```

Arguments

Х	Vector containing realization
alpha	Alpha value
n.ahead	Number of steps ahead to forecast
plot	If plot=TRUE then plots of the data along with forecasts

Value

alpha	alpha value used in the smoothing
u	forecasts

Author(s)

Wayne Woodward

References

"Time Series for Data Science" by Woodward, Sadler, and Robertson

```
data(wtcrude2020)
expsmooth.wge(wtcrude2020)
```

factor.comp.wge

Description

This program finds the ML estimates of a specified order, then prints a factor table for the estimated model and prints and plots the additive components

Usage

factor.comp.wge(x, aic = FALSE, p, ncomp)

Arguments

of an

Value

ncomp	The number of additive components
x.comp	Matrix (i,j) where i designates the component and j denotes time, i.e. (i,j) denotes the ith component at time j

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Elliott, and Gray

```
data(ss08)
factor.comp.wge(ss08,p=9,ncomp=4)
```
factor.wge

Description

This program produces a factor table that reduces a kth order factor into its first and irreducible second order factors as described in Section 3.2.11 of "Applied Time Series Analysis" by Woodward, Gray, and Elliott

Usage

factor.wge(phi=0, theta=0)

Arguments

phi	Vector containing the coefficients of the kth order AR factor which is to be factored
theta	Vector containing the coefficients of the kth order MA factor which is to be factored

Value

The only output is the factor table, written by default to the console

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis, 2nd edition" by Woodward, Gray, and Elliott

Examples

factor.wge(phi=c(-.3,.44,.29,-.378,-.648))

fig1.10a

Description

This is the sum of the three signals in fig1.10b, fig1.10c, and fig1.10d

Usage

data("fig1.10a")

Format

The format is: num [1:1000] 0.0217 -0.1528 -0.3141 -0.4613 -0.5934 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig1.10a)

fig1.10b	Simulated data shown in Figure 1.10b in Applied Time Series Analysis
	with R, second edition by Woodward, Gray, and Elliott

Description

Low frequency component of Figure 1.10a

Usage

data("fig1.10b")

Format

The format is: num [1:1000] 1 1 0.999 0.998 0.997 ...

Source

Simulated data

fig1.10c

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig1.10b)

fig1.10cSimulated data in Figure 1.10c in Applied Time Series Analysis with
R, second edition by Woodward, Gray, and Elliott

Description

Middle frequencies component in Figure 1.10a

Usage

data("fig1.10c")

Format

The format is: num [1:1000] 0.73 0.646 0.56 0.471 0.381 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig1.10c)

fig1.10d

Description

High frequency component of Figure 1.10a

Usage

data("fig1.10d")

Format

The format is: num [1:1000] -1.71 -1.8 -1.87 -1.93 -1.97 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig1.10d)

fig1.16a	Simulated data for Figure 1.16a in Applied Time Series Analysis with
	R, second edition by Woodward, Gray, and Elliott

Description

Data containing two dominant frequencies

Usage

data("fig1.16a")

Format

The format is: num [1:250] -0.89 -3.209 0.929 -0.763 -1.972 ...

Source

Simulated data

fig1.21a

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig1.16a)

fig1.21a

Simulated shown in Figure 1.21a of Woodward, Gray, and Elliott text

Description

Simulated shown in Figure 1.21a of Woodward, Gray, and Elliott text. It illustrates the fact that frequency information is displayed better in the spectrum than the autocorrelations.

Usage

data("fig1.21a")

Format

The format is: num [1:250] -0.89 -3.209 0.929 -0.763 -1.972 ...

Source

Simulated by the authors of the Woodward, Gray, and Elliott text

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig1.21a)

fig1.22a

Description

Realization of length n=250 of white noise data, Figure 1.22a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig1.22a")

Format

The format is: num [1:250] 0.302 -0.691 -0.477 0.814 -0.267 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig1.22a)

fig1.5	Simulated data shown in Figure 1.5 in Applied Time Series Analysis
	with R, second edition by Woodward, Gray, and Elliott

Description

Simulated data from an ergodic AR(1) process

Usage

data("fig1.5")

Format

The format is: num [1:100] 0.739 -0.39 0.15 -0.627 0.262 ...

Source

Simulated data

fig10.11x

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig1.5)

fig10.11xSimulated data shown in Figure 10.11 (solid line) in Applied Time
Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated unobservable AR(1) data in Example 10.11

Usage

data("fig10.11x")

Format

The format is: num [1:75] -0.2497 -0.0812 -0.6463 -1.7653 -2.719 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig10.11x)

fig10.11y

Description

Simulated observed AR(1) plus noise data in Example 10.11

Usage

```
data("fig10.11y")
```

Format

The format is: num [1:75] -0.74 0.045 -0.775 -2.944 -2.278 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig10.11y)

fig10.1bond	Data for Figure 10.1b in Applied Time Series Analysis with R, second
	edition by Woodward, Gray, and Elliott

Description

Moody's seasoned Aaa corporate bond rate, January 1, 1991-April1, 2010

Usage

data("fig10.1bond")

Format

The format is: num [1:232] 7.17 6.51 6.5 6.16 6.03 6.26 6.25 5.79 5.6 5.32 ...

Source

Internet

fig10.1cd

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig10.1bond)

fig10.1cdData shown in Figure 10.1a in Applied Time Series Analysis with R,
second edition by Woodward, Gray, and Elliott

Description

6 month CD rate for January 1, 1991 - April 1, 2010

Usage

data("fig10.1cd")

Format

The format is: num [1:232] 9.04 8.83 8.93 8.86 8.86 9.01 9 8.75 8.61 8.55 ...

Source

Internet

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig10.1cd)

fig10.1mort

Description

30 year conventional mortgage rates: January 1, 1991-April1, 2010

Usage

data("fig10.1mort")

Format

The format is: num [1:232] 9.64 9.37 9.5 9.49 9.47 9.62 9.58 9.24 9.01 8.86 ...

Source

Internet

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig10.1mort)

fig10.3x1

Variable X1 for the bivariate realization shown in Figure 10.3"

Description

Variable X1 for the bivariate Var1) realization in Figure 10.3 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig10.3x1")

Format

The format is: num [1:75] -0.0757 -0.2728 -0.8089 -2.4747 -5.9256 ...

Source

Simulated Var(1) data

fig10.3x2

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig10.3x1)

fig10.3x2

Variable X2 for the bivariate realization shown in Figure 10.3"

Description

Variable X2 for the bivariate Var1) realization in Figure 10.3 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig10.3x2")

Format

The format is: num [1:75] 0.646 -1.313 -0.191 -2.61 -4.925 ...

Source

Simulated Var(1) data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig10.3x2)

fig11.12

Description

Simulated GATMA(1,0) data

Usage

data("fig11.12")

Format

The format is: num [1:500] 2.18 -1.17 -3.13 -1.32 1.69 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig11.12)

fig11.4a	Data shown in Figure 11.4a in Applied Time Series Analysis with R,
	second edition by Woodward, Gray, and Elliott

Description

Simulated FARMA(2,0) data

Usage

data("fig11.4a")

Format

The format is: num [1:100] 1.361 -0.369 0.881 2.362 0.236 ...

Source

simulated data

fig12.1a

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig11.4a)

fig12.1a	Simulated data with two frequencies shown in Figure 12.1a in Applied
	Time Series Analysis with R, second edition by Woodward, Gray, and
	Elliott

Description

Simulated two-frequency data in which the two frequencies are separated in time

Usage

```
data("fig12.1a")
```

Format

The format is: num [1:200] -1.22 -6.06 -9.66 -10.14 -8.58 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig12.1a)

fig12.1b

Simulated data with two frequencies shown in Figure 12.1b in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated two-frequency AR(4) data

Usage

```
data("fig12.1b")
```

Format

The format is: num [1:256] 10.081 10.835 0.532 -5.495 1.294 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig12.1b)

fig13.18a	Simulated data shown in Figure 3.18a in Applied Time Series Analysis
	with R, second edition by Woodward, Gray, and Elliott

Description

Simulated AR(4) data

Usage

data("fig13.18a")

Format

The format is: num [1:400] 1.251 1.0019 -0.0317 -1.0167 -1.4222 ...

fig13.2c

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig13.18a)

fig13.2c	TVF data shown in Figure 13.2c in Applied Time Series Analysis with
	R, second edition by Woodward, Gray, and Elliott

Description

Realization from an Euler(2) model

Usage

data("fig13.2c")

Format

The format is: num [1:200] -13.14 -11.03 22.06 -8.92 -16.67 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig13.2c)

fig3.10d

Description

AR(2) Realization (1-.95)²X(t)=a(t) plotted in Figure 3.10d in "Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig3.10d")

Format

The format is: num [1:100] 15.3 16.3 18.6 21.2 22.8 ...

Details

This realization is also used in Chapter 7 of text above for testing estimation techniques

Source

Simulated realization

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig3.10d)

fig3.16a	Figure 3.16a in "Applied Time Series Analysis with R, 2nd edition" by
	Woodward, Gray, and Elliott

Description

Realization from the AR(3) model in Figure 3.16a

Usage

data("fig3.16a")

Format

The format is: num [1:200] -0.0686 0.4304 0.4786 0.9899 3.4047 ...

fig3.18a

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig3.16a)

fig3.18a	Figure 3.18a in "Applied Time Series Analysis with R, 2nd edition" by
	Woodward, Gray, and Elliott

Description

Realization from the AR(3) model in Figure 3.18a

Usage

data("fig3.18a")

Format

The format is: num [1:200] -0.573 -0.837 -1.16 1.078 -0.561 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig3.18a)

fig3.24a

Description

ARMA(2,1) realization of length n=200 phi(1)=1.6,phi(2)=-.9,theta(1)=.8 (using Box-Jenkins-Reinsel notation)

Usage

data("fig3.24a")

Format

The format is: num [1:200] 0.685 -1.234 -0.714 0.796 -0.96 ...

Source

Simulated data

References

Fig3.24a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig3.24a)

fig3.29aSimulated data shown in Figure 3.29a in Applied Time Series Analysis
with R, second edition by Woodward, Gray, and Elliott

Description

Simulated data from stationary seasonal model

Usage

data("fig3.29a")

Format

The format is: num [1:20] -7.23 -6.99 -6.9 -6.26 -3.79 ...

Source

Simulated data

fig4.8a

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig3.29a)

fig4.8a

Gaussian White Noise

Description

Gaussian White Noise, n=1000 shown in Figure 4.8a in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig4.8a")

Format

The format is: num [1:1000] -0.585 0.177 0.284 -0.271 0.126 ...

Source

Simulated data

References

Plotted in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig4.8a)

fig5.3c

Description

Realization of length 200 from the AR(3) model (1-.995B)(1-1.2B+.8B^2)X(t)=a(t)

Usage

data("fig5.3c")

Format

The format is: num [1:200] -0.503 -0.811 -0.188 1.34 2.982 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig5.3c)

fig6.11a Cyclical Data

Description

First 50 points of data in Figure 6.11a, Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

data("fig6.11a")

Format

The format is: num [1:50] -0.682 0.15 2.262 3.079 4.122 ...

Source

Simulated

fig6.1nf

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig6.11a)

fig6.1nf

Data in Figure 6.1 without the forecasts

Description

Realization from the AR(1) model (1-.8B)(X(t)-25)=a(t) in Figure 6.2 and also shown in Table 6.1 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig6.1nf")

Format

The format is: num [1:80] 25.1 27.1 27.3 25.7 23.9 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.1nf)

fig6.2nf

Description

Realization from the ARMA(2,1) model $(1-1.2B+.6B^2)(X(t)-50)=(1-.5B)a(t)$ in Figure 6.2 and also shown in Table 6.1 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig6.2nf")

Format

The format is: num [1:25] 49.5 51.1 50 49.7 50.4 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.2nf)

fig6.5nf

Data in Figure 6.5 without the forecasts

Description

Realization from the ARIMA(0,1,0) model for realization in Figure 6.5 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig6.5nf")

Format

The format is: num [1:50] 105 104 103 102 102 ...

fig6.6nf

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.5nf)

fig6.6nf

Data in Figure 6.6 without the forecasts

Description

Realization from the ARIMA(1,1,0) model (1-.8B)(1-B)X(t)=a(t) for realization in Figure 6.6 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig6.6nf")

Format

The format is: num [1:50] 139 138 138 140 141 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.6nf)

fig6.7nf

Description

Realization from the ARIMA(0,2,0) model for realization in Figure 6.7 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("fig6.7nf")

Format

The format is: num [1:50] -582 -579 -578 -578 -579 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.7nf)

fig6.8nf

Simulated seasonal data with s=12

Description

Simulated seasonal data designed for showing seasonal forecasts

Usage

data("fig6.8nf")

Format

The format is: num [1:48] 5.8 13.66 9.83 7.33 6.96 ...

Source

Simulated Data

fig8.11a

References

"Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig6.8nf)

fig8.11aData for Figure 8.11a in Applied Time Series Analysis with R, second
edition by Woodward, Gray, and Elliott

Description

Realization of length n=200 from the model (1-B)(1-1.79B+1.75B^2-1.61B^3+.765B^4)X(t)=a(t)

Usage

data("fig8.11a")

Format

The format is: num [1:200] 83.2 80.9 78.9 80.4 85.4 ...

Source

Simulated data

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig8.11a)

fig8.4a

Description

Realization of length n=200 from the model (1-.8B)(1-1.6B+.995B^2)X(t)=a(t)

Usage

data("fig8.4a")

Format

The format is: num [1:200] 13.45 -5.52 -19 -21.26 -13.63 ...

Source

simulated data

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig8.4a)

fig8.6a	Data for Figure 8.6a in Applied time series Analysis with R, second
	edition by Woodward, Gray, and Elliott

Description

The realization of length n=200 is from the model $(1-B)^2(1-1.2B+.6B^2)X(t)=a(t)$

Usage

data("fig8.6a")

Format

The format is: num [1:200] 354 368 383 399 417 ...

Source

Simulated data

fig8.8a

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig8.6a)

fig8.8aData for Figure 8.8a in Applied time series Analysis with R, second
edition by Woodward, Gray, and Elliott

Description

Realization of length n=200 from the model $(1-B^{12})(1-1.25B+.9B^{2})(X(t)-50)=a(t)$

Usage

data("fig8.8a")

Format

The format is: num [1:200] 48.9 42.9 49.3 57.3 55.5 ...

Source

Simulated data

References

Applied time series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig8.8a)

Description

Annual influenza rate for years 1970-2005

Usage

data("flu")

Format

The format is: num [1:36] 9.75 5.82 10.99 10.41 8.42 ...

Source

Alder, et al. (2010)Archives of Surgery 145, 63-71

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(flu)

fore.arima.wge Function for forecasting from known model which may have (1-B)^d and/or seasonal factors

Description

This function calculates forecasts from a known model that may have stationary ARMA components as well as (1-B)[^]dand/or seasonal factors

Usage

fore.arima.wge(x,phi=0,theta=0,d=0,s=0,n.ahead=5,lastn=FALSE,plot=TRUE,alpha=.05,limits)

fore.arima.wge

Arguments

x	Realization to be forecast from
phi	Vector containing stationary AR parameters
theta	Vector containing MA parameters
d	Order of difference
S	Seasonal order
n.ahead	Number of steps ahead to forecast
lastn	Logical, lastn=TRUE plots forecasts for the last n.ahead values in the realization
plot	Logical, plot=TRUE plots forecasts
alpha	Significance level for prediction limits
limits	Logical, limits=TRUE plots prediction limits

Value

f	Vector of forecasts
11	Lower limits
ul	Upper limits
resid	Residuals
wnv	White noise variance estimate
xbar	Sample mean of data in x
se	Se for each forecast
psi	Psi weights
ptot	Total order of all AR components, phi, d, and s
phtot	Coefficients after multiplying all stationary and nonstationary coponents on the AR side of the equation

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(airline)
    x=log(airline)
    phi12=c(-.36,-.05,-.14,-.11,.04,.09,-.02,.02,.17,.03,-.1,-.38)
    s=12
    d=1
    fore.arima.wge(x,phi=phi12,d=1,s=12,n.ahead=12,limits=FALSE)
```

fore.arma.wge

Description

Forecasts and associated plots for an ARMA model

Usage

fore.arma.wge(x,phi=0,theta=0,n.ahead=5,lastn=FALSE,plot=TRUE,alpha=.05,limits=TRUE)

Arguments

x	Realization
phi	AR vector
theta	MA vector
n.ahead	Number of steps ahead
lastn	Logical variable, TRUE means plot forecast for last n.ahead values of realization
plot	Logical variable, TRUE means plot forecasts
alpha	Significance level for prediction limits
limits	Logical variable, TRUE means plot limits

Value

f	Vector of forecasts
11	Lower limits
ul	Upper limits
resid	Residuals
wnv	White noise variance estimate
xbar	Sample mean of data in x
se	Se for each forecast
psi	psi weights
rmse	RMSE is output if lastn=TRUE
mad	MAD is output if lastn=TRUE

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

fore.aruma.wge

Examples

data(fig6.1nf)
fore.arma.wge(fig6.1nf,phi=.8,n.ahead=20)

fore.aruma.wge	Function for forecasting from known model which may have (1-B)^d,
	seasonal, and/or other nonstationary factors

Description

This function calculates forecasts from a known model that may have stationary ARMA components as well as (1-B)^Ad, seasonal, and/or other nonstationary factors

Usage

fore.aruma.wge(x,phi=0,theta=0,d=0,s=0,lambda=0,n.ahead=5, lastn=FALSE,plot=TRUE,alpha=.05,limits=TRUE)

Arguments

х	Realization to be forecast from
phi	Vector containing stationary AR parameters
theta	Vector containing MA parameters
d	Order of difference
S	Seasonal order
lambda	Vector containing coefficients of nonstationary factors not covered by the differ- ence or the seasonal factors
n.ahead	Number of steps ahead to forecast
lastn	Logical, lastn=TRUE plots forecasts for the last n.ahead values in the realization
plot	Logical, plot=TRUE plots forecasts
alpha	Alpha for prediction limits
limits	Logical, limits=TRUE plots prediction limits

Value

f	Vector of forecasts
11	Lower limits
ul	Upper limits
resid	Residuals
wn∨	White noise variance estimate
xbar	Sample mean of data in x
se	Se for each forecast

fore.farma.wge

psi	Psi weights
ptot.fore	Total order of all AR components, phi, d, s, and lambda
phtot.fore	Coefficients after multiplying all stationary and nonstationary coponents on the AR side of the equation

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(airline)
    x=log(airline)
    phi12=c(-.36,-.05,-.14,-.11,.04,.09,-.02,.02,.17,.03,-.1,-.38)
    s=12
    d=1
    fore.aruma.wge(x,phi=phi12,d=1,s=12,n.ahead=12,limits=FALSE)
```

fore.farma.wge Forecast using a FARMA model

Description

Find forecasts using a specified FARMA model

Usage

```
fore.farma.wge(x, d, phi, theta = 0, n.ahead = 10, lastn = TRUE, plot = TRUE)
```

Arguments

х	Realization to be analyzed
d	Parameter d in FARMA model
phi	Coefficients of the AR component of the FARMA model
theta	Coefficients of the MA component of the FARMA model
n.ahead	Number of values to forecast
lastn	If lastn=TRUE then the last n.ahead values are forecast. Otherwise, if lastn=FALSE the next n.ahead values are forecast
plot	If plot=TRUE then plots of the data and forecasts are plotted

Details

Forecasts for an AR model fit to the data are also calculated and optionally plotted

Value

ar.fit.order	Order of the AR model fit to the data
ar.fore	Forecasts based on the AR model
farma.fore	Forecasts based on the FARMA model

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

fore.farma.wge(Nile, d=.37, phi=0, theta = 0, n.ahead = 30, lastn = TRUE, plot = TRUE)

rorecust using a GARMA mode	fore.garma.wge	Forecast using a GARMA model	
-----------------------------	----------------	------------------------------	--

Description

Find forecasts using a specified GARMA model

Usage

fore.garma.wge(x,u,lambda,phi,theta=0,n.ahead=10,lastn=TRUE,plot=TRUE)

Arguments

х	Realization to be analyzed
u	Parameter u in GARMA model
lambda	Parameter lambda in GARMA model
phi	Coefficients of the AR component of the GARMA model
theta	Coefficients of the MA component of the GARMA model
n.ahead	Number of values to forecast
lastn	If lastn=TRUE then the last n.ahead values are forecast. Otherwise, if lastn=FALSE the next n.ahead values are forecast
plot	If plot=TRUE then plots of the data and forecasts are plotted

Details

Forecasts for an AR model fit to the data are also calculated and optionally plotted

Value

ar.fit.order	Order of the AR model fit to the data
ar.fore	Forecasts based on the AR model
garma.fore	Forecasts based on the GARMA model

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(llynx)
fore.garma.wge(llynx,u=.796,lambda=.4,phi=.51,theta=0,n.ahead=30,lastn=TRUE,plot=TRUE)
```

fore.glambda.wge Forecast using a G(lambda) model

Description

Find forecasts using a specified G(lambda) model

Usage

fore.glambda.wge(data.orig,lambda=0,offset=60,phi=0,h=0,n.ahead=10,lastn=TRUE,plot=TRUE)

Arguments

data.orig	Time series data in the original time scale
lambda	The value of lambda under the Box-Cox time transformation with parameter lambda.
offset	Offset (or shift) value in the G(lambda) model.
phi	Coefficients of the AR component of the AR model fit to the dual data
h	Value of h which will be calculated to produce the desired number of forecasts in the original time scale
n.ahead	Number of values to forecast
lastn	If lastn=TRUE then the last n.ahead values are forecast. Otherwise, if lastn=FALSE the next n.ahead values are forecast
plot	If plot=TRUE then plots of the data and forecasts are plotted

Details

Forecasts for an AR model fit to the data in the original time scale are also calculated and optionally plotted

Value

f.ar	Forecasts using AR model fit to data in original time
f.glam	Forecasts using AR model fit to the dual and then reinterpolated

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig13.2c)
fore.glambda.wge(fig13.2c,lambda=-.4,offset=63,phi=c(0.93,-0.32,-0.15,-0.15,-0.17),n.ahead=30)
```

fore.sigplusnoise.wge Forecasting signal plus noise models

Description

Forecast models of the form line plus AR noise or cosine plus AR noise with known frequency

Usage

```
fore.sigplusnoise.wge(x,linear=TRUE,method="mle",freq=0,max.p=5,
n.ahead=10,lastn=FALSE,plot=TRUE,alpha=.05,limits=TRUE)
```

Arguments

х	The variable containing the realization to be analyzed
linear	If TRUE then the program forecasts a line plus noise model. If FALSE the model is cosine plus noise
method	Estimation method
freq	Frequency of the cosine term. freq is ignored when using line plus noise
max.p	Max value of p for the ARp model fit to the noise
n.ahead	The number of steps ahead to forecast
lastn	If TRUE then the function forecasts the last n.ahead values of the realization. If FALSE the the forecasts are for n.ahead steps beyond the end of the realization
plot	If TRUE then the forecasts and realization are plotted
alpha	Significance level
limits	If TRUE the forecast limits calculated and plotted

Value

f	The n.ahead forecasts
11	The lower limits for the forecasts. zeros are returned if limits were not requested
ul	The upper limits for the forecasts. zeros are returned if limits were not requested
res	Residuals
wn∨	The estimated white noise variance based on the residuals
se	se is the estimated standard error of the k step ahead forecast. zeros are returned if limits were not requested
xi	xi is the kth psi weight associated with the fitted AR model and used to calculate the se above. Note that psi0 is1. zeros are returned if limits were not requested

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(llynx)
llynx.for=fore.sigplusnoise.wge(llynx,linear=FALSE,freq=.1,max.p=5,n.ahead=20)
```

freeze

Minimum temperature data

Description

Each data value represents the minimum temperature over 10-day period at a location in South America

Usage

```
data("freeze")
```

Format

The format is: num [1:500] 8.2 12.3 9.2 8.4 10 8.8 6.8 4.8 5.2 1.7 ...

Source

Unknown

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott
freight

Examples

data(freeze)

freight

Freight data

Description

9 years of monthly freight shipment data

Usage

```
data("freight")
```

Format

The format is: num [1:120] 1299 1148 1345 1363 1374 ...

Source

Unknown

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(freight)

gegenb.wge

Calculates Gegenbauer polynomials

Description

Calculates Gegenbauer polynomials of order n with parameters u and lambda - see (11.9) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

gegenb.wge(u, d, n)

Arguments

u	Parameter u in (11.9) Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
d	Parameter lambda in (11.9) Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
n	Order of Gegenbauer polynomial in (11.9)

Details

This function is called by gen.garma.wge

Value

The coefficients of the nth order Gegenbauer polynomial

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

gegenb.wge(u=.8,d=.3,n=6)

gen.arch.wge

Generate a realization from an ARCH(q0) model

Description

Generates a realization of length n from the GARCH(q0) model (4.23) in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

```
gen.arch.wge(n, alpha0, alpha, plot = TRUE,sn=0)
```

Arguments

n	Length of realization to be generated
alpha0	The constant alpha0 in model (4.23)
alpha	A vector of length q0 containing alpha1 through alphaq0
plot	If plot=TRUE (default) the generated realization is plotted
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

gen.arima.wge

Value

returns the generated realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

gen.arch.wge(n=200,alpha0=.1,alpha=c(.36,.27,.18,.09))

gen.arima.wge Function to generate an ARIMA (or ARMA) realization

Description

This function calls arima.sim but with more simple parameter structure for stationary ARIMA (or ARMA) models

Usage

```
gen.arima.wge(n, phi=0, theta=0, d=0,s=0,mu=0,vara=1,plot=TRUE,sn=0)
```

Arguments

n	Length of realization to be generated
phi	Vector of AR coefficients
theta	Vector of MA coefficients
d	Order of the difference
S	Seasonal order
vara	White noise variance, default=1
mu	Theoretical mean of data in x, default=0
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Value

This function simply generates and (optionally plots) an ARIMA (or ARMA) realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
gen.arima.wge(n=100, phi=c(1.6,-.9), theta=.8, d=1, vara=1, plot=TRUE)
```

gen.arma.wge Function to generate an ARMA realization

Description

This function calls arima.sim but with more simple parameter structure for stationary ARMA models

Usage

gen.arma.wge(n, phi=0, theta=0, mu=0,vara = 1,plot = TRUE,sn=0)

Arguments

n	Length of realization to be generated
phi	Vector of AR coefficients
theta	Vector of MA coefficients
vara	White noise variance, default=1
mu	Theoretical mean, default=0
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Value

This function simply generates and (optionally plots) an ARMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

gen.aruma.wge

Examples

gen.arma.wge(n=100, phi=c(1.6,-.9), theta=.8, mu=50,vara=1, plot=TRUE)

gen.aruma.wge Function to generate an ARUMA (or ARMA or ARIMA) realization

Description

This function calls arima.sim but an a similar manner to gen.ns.arma.wge and gen.ns.arima.wge but allows for generation of realizations from ARUMA models (see Chapter 5 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

gen.aruma.wge(n,phi=0,theta=0,d=0,s=0,lambda=0,vara=1,plot=TRUE,sn=0)

Arguments

n	Length of realization to be generated
phi	Vector of AR coefficients
theta	Vector of MA coefficients
d	Order of the difference
S	Order of seasonal operator
lambda	Vector of nonstaionary coefficients not associated with d or s (see Def. 5.1(b) in Woodward, Gray, and Elliott text)
vara	White noise variance, default=1
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Value

This function generates and (optionally plots) an ARMA or ARIMA or ARUMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

gen.aruma.wge(n=100,phi=.7,theta=0, d=1, s=4,lambda=c(1.8,-1),vara=1, plot=TRUE)

gen.garch.wge

Description

Generates a realization of length n from the GARCH(p0,q0) model (4.26) in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

gen.garch.wge(n,alpha0,alpha,beta,plot=TRUE,sn=0)

Arguments

n	Length of realization to be generated
alpha0	The constant alpha0 in model (4.23)
alpha	A vector of length q0 containing alpha1 through alphaq0
beta	A vector of length p0 containing beta1 through betap0
plot	If plot=TRUE (default) the generated realization is plotted
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Value

returns the generated realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

gen.garch.wge(n=200,alpha0=.1,alpha=.45,beta=.45)

gen.garma.wge

Description

This function calls gen.geg.wge and arima.sim

Usage

gen.garma.wge(n,u,lambda,phi = 0,theta=0,trun=300000,burn_in=600,vara=1,plot=TRUE,sn=0)

Arguments

n	the realization length to be generated
u	Parameter u in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
lambda	Parameter lambda in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
phi	vector of AR parameters of ARMA part of GARMA model
theta	vector of MA parameters of ARMA part of GARMA model using signs as given ijn the Woodward, Grayu, and Elliott text
trun	the truncation point of the infinite GLP form
burn_in	is the burning-in period for the simulation
vara	White noise variance, default=1
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Value

This function generates and (optionally plots) an GARMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

gen.garma.wge(n=100, u=.8,lambda=.4,phi=.9)

gen.geg.wge

Description

This function calls macoef.wge

Usage

gen.geg.wge(n, u, lambda, trun = 300000, vara=1 ,sn = 0)

Arguments

n	the realization length to be generated
u	Parameter u in the Gegenbauer model given in (11.12) of Woodward, Gray, and Elliott text
lambda	Parameter lambda in the Gegenbauer model given in (11.12) of Woodward, Gray, and Elliott text
trun	the truncation point of the infinite GLP form
vara	White noise variance, default=1
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Details

This function is called by gen.garma.wge and does not have a burn-in time. Thus, we recommend using est.garma.wge for generating realizations from a Gegenbauer model.

Value

This function generates a Gegenbauer realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

gen.geg.wge(n=100, u=.8,lambda=.4)

gen.glambda.wge

Description

This function generates a g(lambda) TVF realization as discussed in Chapter 13 of Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

```
gen.glambda.wge(n, lambda, phi =0, offset = 20, vara = 1, plot = TRUE, sn = 0)
```

Arguments

n	Length of realization to be generated
lambda	The lambda involved in the g(lambda) time transformation - see Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
phi	Vector of AR coefficients
vara	White noise variance, default=1
offset	The offset parameter in a g(lambda) process. See section 13.2 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott
plot	Logical: TRUE=plot, FALSE=no plot
sn	determines the seed used in the simulation. sn=0 produces new/random realiza- tion each time. sn=positive integer produces same realization each time

Value

This function simply generates and (optionally plots) an ARMA realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
gen.glambda.wge(n=500, lambda=0.5,phi=c(1.9,-.99), vara=1, plot=TRUE,sn=0)
```

gen.sigplusnoise.wge Generate data from a signal-plus-noise model

Description

Generate a realization from the model x(t) = coef[1]*cos(2*pi*freq[1]*t+psi[1]) + coef[2]*cos(2*pi*freq[2]*t+psi[2]) + a(t) +

Usage

gen.sigplusnoise.wge(n,b0,b1=0,coef,freq,psi,phi=0,vara=1,plot=TRUE,sn=0)

Arguments

n	length of realization to be generated
b0	y intercept of the linear component
b1	slope of the linear component
coef	a 2-component vector specifying the coefficients (if only one cosine term is desired define coef[2]=0)
freq	a 2-component vector specifying the frequency components (0 to .5)
psi	a 2-component vector specifying the phase shift (0 to 2pi)
phi	a vector of coefficients of the coefficients of the AR noise
vara	vara is the variance of the noise. NOTE: a(t) is a vector of N(0,WNV) noise generated within the function (default=1)
plot	if TRUE then plot the data generated (default=TRUE)
sn	determines the seed used in the simulation (default=0 indicating new realization each time). sn=positve integer, then the same realization is generated each time

Value

realization generated

Author(s)

х

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

x=gen.sigplusnoise.wge(n=100,coef=c(3,1),freq=c(.1,.4),psi=c(0,0),vara=2)

global.temp

Description

Annual temperature anomalies from the average for the years 1850-2009

Usage

```
data("global.temp")
```

Format

The format is: List of 2 \$ year : num [1:160] 1850 1851 1852 1853 1854 ... \$ annual: num [1:160] -0.447 -0.292 -0.294 -0.337 -0.307 -0.321 -0.406 -0.503 -0.513 -0.349 ...

Source

Climatic Research Unit at East Anglia, England, in conjunction with the Met Office Hadley Centre

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(global.temp)

global2020

Global Temperature Data: 1880-2009

Description

Annual temperature anomalies from the average for the years 1850-2009

Usage

data("global.temp")

Format

The format is: ts file containing annual temperatures from 1880 through 2020

Source

ncdc.noaa.gov

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(global2020)

hadley

Global temperature data

Description

Global temperature data for 1850-2009. The data are temperature anomalies, i.e. departures from the average for 1850-2009

Usage

data("hadley")

Format

The format is: num [1:160] -0.447 -0.292 -0.294 -0.337 -0.307 -0.321 -0.406 -0.503 -0.513 -0.349 ...

Source

Met Office Hadley Centre

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(hadley)

hilbert.wge

Function to calculate the Hilbert transformation of a given real valued signal(even length)

Description

Function is used with the tswge function wv.wge

Usage

hilbert.wge(input)

Arguments

input realization to be analyzed

Value

ans Hilbert transformation of the input

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(airline)
hilbert.wge(airline)
```

is.glambda.wge Instantaneous spectrum

Description

Calculates instantaneous spectrum (in dB) based on a G(lambda) time transformation

Usage

is.glambda.wge(n, phi = 0, sigma2 = 1, lambda, offset)

Arguments

n	Length of realization.
phi	Coefficients of AR model fit to dual data.
sigma2	White noise variance
lambda	Lambda in the G(lambda) time transformnation used
offset	Offset in the G(lambda) time transformnation used

Value

Simply a plot of the realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

is.glambda.wge(n=200,phi=c(.93,-.32,-.15,-.15,-.17),lambda=-.4,offset=63)

is.sample.wge Sample instantaneous spectrum based on periodogram

Description

Calculates sample instantaneous spectrum (in dB) based on a G(lambda) time transformation

Usage

is.sample.wge(data, lambda, offset)

Arguments

data	Realization to be analyzed.
lambda	Lambda in the G(lambda) time transformation used
offset	Offset in the G(lambda) time transformation used

Value

Simply a plot of the realization

Author(s)

Wayne Woodward

kalman.miss.wge

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
data(ss08)
is.sample.wge(data=ss08,lambda=-.4,offset=63)
```

kalman.miss.wge Kalman filter for simple signal plus noise model with missing data

Description

Kalman function to predict, filter, and smooth in the presence of missing data; see Section 10.64 in Applied Time Series Analysis with R

Usage

kalman.miss.wge(y,start, gam0, F, gamV, Gtmiss, gamW)

Arguments

У	the univariate data set to be analyzed
start	the scalar version of $X(0)$ in item (c) following the state equation (10.47) of the text
gam0	the scalar version of Gamma(0) discussed in item (c) following the state equation
F	scalar version of the matrix F in the state equation
gamV	the value Gamma(v) specified in item (b) following the state equation
Gtmiss	specifies which items that are missing
gamW	the variance of the (univariate) white noise denoted by Gamma(w) in item (c) following (10.48)

Value

pfs	a table giving results such as those in Table 10.1 in Woodward, Gray, and Elliott
	book

Note

Calls Ksmooth1 in CRAN package 'astsa'

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(table10.1.signal)
data(table10.1.noise)
spn=table10.1.signal+table10.1.noise
n=75
Gtmiss=array(1,dim=c(1,1,n))
Gtmiss[1,1,2]=0
Gtmiss[1,1,5]=0
kalman.miss.wge(y=spn,start=0,gam0=1,F=.9,gamV=1,Gtmiss,gamW=.75)
```

```
kalman.wge
```

Kalman filter for simple signal plus noise model

Description

Kalman filter program to predict, filter, and smooth related to the material in Section 10.6 4 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

kalman.wge(y, start, gam0, F, gamV, G, gamW)

Arguments

У	the univariate data set to be analyzed
start	the scalar version of Xo in item (c) following the state equation (10.47) of the text
gam0	the scalar version of Gamma(0) discussed in item (c) following the state equation
F	scalar version of the matrix F in the state equation
gamV	the value Gamma(v) specified in item (b) following the state equation
G	the scalar observation matrix specified in the observation equation as G(t)
gamW	the variance of the (univariate) white noise denoted by Gamma(w) in item (c) following (10.48)

Value

pfs	a table giving results such as those in Table 10.1 in Woodward, Gray, and Elliott
	book

Note

Requires CRAN package 'astsa'

88

kingkong

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(table10.1.signal)
data(table10.1.noise)
spn=table10.1.signal+table10.1.noise
kalman.wge(y=spn,start=0,gam0=1,F=.9,gamV=1,G=1,gamW=.75)
```

kingkong

King Kong Eats Grass

Description

Digitized record taken at 8,000 Hz of voltage readings obtained from the acoustical energy generated by Wayne Woodward speaking the words "King Kong eats grass" while a fan was blowing in the background

Usage

data("kingkong")

Format

The format is: num [1:15418] -0.001831 -0.000916 -0.003357 -0.002716 -0.000977 ...

Source

See description above

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(kingkong)

lavon

Description

Data given in feet above sea level. Quarterly data, 1982-2009

Usage

```
data("lavon")
```

Format

The format is: num [1:112] 495 492 500 491 492 ...

Source

http://lavon.uslakes.info/levelcal.asp

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(lavon)

lavon15

Lavon Lake Levels to September 30, 2015

Description

Feet above sea level for Lavon Lake, quarterly data through September 2015. An extension of data lavon

Usage

data("lavon15")

Format

The format is: num [1:135] 495 492 500 491 492 ...

Source

Lake Data internet

linearchirp

Examples

data(lavon15)

linearchirp Linear chirp data.

Description

256 point linear chirp data, the first 150 points of which are shown in Figure 3.16(a) Time Series Analysis for Data Science: Analysis and Forecasting by Woodward, Sadler, and Robertson

Usage

```
data("linearchirp")
```

Format

The format is: List of 2 \$ x : num [1:256] 1 1 0.98 0.95 0.91 0.86 0.8 0.72 0.63 0.53 ... \$ spec: num [1:256] 0.511 0.568 0.733 0.991 1.32 ...

Source

Simulated data

References

Time Series Analysis for Data Science: Analysis and Forecasting by Woodward, Sadler, and Robertson

Examples

data(linearchirp)

ljung.wge

Ljung-Box Test

Description

Performs Ljung-Box Test for white noise

Usage

ljung.wge(x, K = 24, p = 0, q = 0)

Arguments

х	Realization to assess for white noise
К	Maximum lag for sample autocorrelations to be used in test
р	If x is a realization of residuals from an ARMA(p,q) fit then p=AR order. Otherwise, p=0
q	If x is a realization of residuals from an ARMA(p,q) fit then q=MA order. Otherwise, q=0

Value

test	Name of test for output: Ljung-Box Test
К	Maximum lag : same as input value
chi.square	Value of chi-square statistic
df	Degrees of freedom = K-p-q
pvalue	pvalue for testing null hypothesis of white noise

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(fig1.22a)
ljung.wge(fig1.22a, K=24,p=0,q=0)

llynx

Log (base 10) of lynx data

Description

The log (base 10) of the annual number of lynx trapped in the Mackenzie River district of the North-West Canada (dataset lynx in this package)

Usage

data("llynx")

Format

The format is: Time-Series [1:114] from 1821 to 1934: 2.43 2.51 2.77 2.94 3.17 ...

lynx

Source

Tong (1977). Journal of the Royal Statistical Society A, 432-436.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(llynx)

lynx

Lynx data

Description

The lynx data are the annual number of lynx trapped in the Mackenzie River district of Canada

Usage

data("lynx")

Format

The format is: Time-Series [1:114] from 1821 to 1934: 269 321 585 871 1475 ...

Source

Tong (1977). Journal of the Royal Statistical Society A, 432-436.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(lynx)

ma.pred.wge

Description

Given a time series in the vector x and order (either an odd or even integer) ma.pred.wge computes a predictive moving average giving 1-step ahead predictions through x(n+1). Optionally, you can specify k-step ahead forecasts beyond the end of the data.

Usage

ma.pred.wge(x,order=3,n.ahead=1,plot=TRUE)

Arguments

х	Vector containing original realization
order	Order (odd or even integer) of moving average predictor (default=3)
n.ahead	Number of steps ahead to forecast beyond the end of the data (default=1)
plot	If plot=TRUE then plots of the data and moving average predictors are plotted

Value

Х	Original data
pred	Data file showing 1-step ahead predictors up to x(k.ahead)
order	Order (odd or even integer) of the moving average predictor

Author(s)

Wayne Woodward

References

"Practical Time Series Analysis with R" by Woodward, Sadler, and Robertson"

Examples

```
data(wtcrude)
sm=ma.pred.wge(x=wtcrude,order=5,n.ahead=10)
```

ma.smooth.wge

Description

Given a time series in the vector x and order (either an odd or even integer) ma.smooth.wge computes a centered moving average smoother and optionally plots the data and smoothed data

Usage

ma.smooth.wge(x,order=3,plot=TRUE)

Arguments

х	Vector containing original realization
order	Order (odd or even integer) of moving average smoother
plot	If plot=TRUE then plots of the data and smoothed data are plotted

Value

х	Original data
smooth	Data after application of centered average filter.l
order	Order (odd or even integer) of the smoother

Author(s)

Wayne Woodward

References

"Practical Time Series Analysis with R" by Woodward, Sadler, and Robertson"

Examples

```
data(wtcrude)
sm=ma.smooth.wge(x=wtcrude,order=5)
```

ma2.table7.1

Description

This realization is used to obtain the innovations estimates shown in Table 7.1

Usage

```
data("ma2.table7.1")
```

Format

The format is: num [1:400] 1.299 1.831 -0.162 -0.648 1.243 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(ma2.table7.1)

macoef.geg.wge	Calculate coefficients of the general linear process form of a Gegen-
	bauer process

Description

Calculate coefficients of the general linear process form of a Gegenbauer process based on formula (8), page 6 of Ferrara and Guegan(2001).

Usage

macoef.geg.wge(u, lambda, trun = 300000)

Arguments

u	The value of u in the Gegenbauer model
lambda	The value of lambda in the Gegenbauer model
trun	The truncation point of the infinite GLP form

mass.mountain

Details

This function is called by gen.geg.wge

Value

A vector of length trun containing the GLP coefficients

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott and Ferrara and Guegan(2001)

Examples

mageg=macoef.geg.wge(u=.8,lambda=.3)

mass.mountain

Massachusettts Mountain Earthquake Data

Description

Lg wave from from an earthquake known as Massachusetts Mountain Earthquake(5 August 1971), which was recorded at the Mina Nevada station

Usage

data("mass.mountain")

Format

The format is: num [1:454] -0.03655 -0.01774 0.00218 0.01193 0.00915 ...

Source

Gupta, Chan, and Wagner (2005). Regional sources discrimination of small events based on the use of Lg wavetrain, Bulletin of the Seismological Society of America 95, 341-346.

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(mass.mountain)

MedDays

Description

Median days a house stayed on the market between July 2016 and April 2020

Usage

data("MedDays")

Format

ts object consisting of monthly data from July 2016 through April 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(MedDays)

mm.eq	Massachusetts Mountain Earthquake data shown in Figure 13.13a in
	Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Lg wave for Massachusetts Mountain Earthquake

Usage

data("mm.eq")

Format

The format is: num [1:454] -0.03655 -0.01774 0.00218 0.01193 0.00915 ...

Source

Gupta, et al. (2005) Bulletin of the Seismological Society of America 95, 341-346.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

mult.wge

Examples

data(mm.eq)

```
mult.wge Multiply Factors
```

Description

The function multiplies the AR (or MA) factors of a model to produce the model in unfactored form. Requires the CRAN package 'PolynomF'.

Usage

```
mult.wge(fac1 = 0, fac2 = 0, fac3 = 0, fac4 = 0, fac5 = 0, fac6 = 0)
```

Arguments

First factor to be multiplied
Second factor to be multiplied
Third factor to be multiplied (you may use a maximum of 6 factors)
Fourth factor to be multiplied (you may use a maximum of 6 factors)
Fifth factor to be multiplied (you may use a maximum of 6 factors)
Sixth factor to be multiplied (you may use a maximum of 6 factors)

Value

char.poly	The characteristics polynomial of the full model
model.coef	Model coefficients of the full model using notation in "Applied Time Series
	Analysis, 2nd edition" by Woodward, Gray, and Elliott

Note

Requires CRAN package 'PolynomF'

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
fac1=c(1.6,-.9)
fac2=.8
mult.wge(fac1,fac2)
```

NAICS

Description

Monthly sales for the North American Industry Classification System (NAICS) code 44X72: Retail Trade and Food Services: 1992-2019

Usage

data("NAICS")

Format

ts object consisting of monthly data from January 1992- December 2019

Source

https://www.weather.gov/fwd/dmotemp

References

"Kaggle" and "US Census Bureau" websites

Examples

data(NAICS)

nbumps256

256 noisy bumps signal

Description

Noisy bumps signal shown in Figure 12.11(a) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Usage

data("nbumps256")

Format

The format is: num [1:256] -0.234 0.123 0.303 0.134 -0.513 ...

Source

Donoho and Johnstone(1994) Biometrika 81,425-455

nile.min

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(nbumps256)

nile.min

Annual minimal water levels of Nile river

Description

Water levels for 622 through 1284 measured at Roda gauge near Cairo (Tousson, 1925)

Usage

data("nile.min")

Format

The format is: Time-Series [1:663] from 622 to 1284: 1157 1088 1169 1169 984 ...

Source

Tousson, O. (1925) M\'emoire sur l'Histoire du Nil, Volume 18 in M\'emoires a l'Institut d'Egypte, pp. 366-404.

References

Beran, J. (1994) Statistics for Long-Memory Processes, Chapman Hall: Englewood, NJ.

Examples

data(nile.min)

noctula

Description

Echolocation signal for the Nyctalus noctula hunting bat

Usage

```
data("noctula")
```

Format

The format is: num [1:96] -18 16 -5 -17 21 -6 -17 20 -6 -16 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

NSA

Monthly Total Vehicle Sales

Description

Monthly Total Vehicle Sales (TOTALNSA) in the United States from January 1976 - December 2019

Usage

data("NSA")

Format

ts object consisting of monthly data from January 1976- December 2019

Source

https://www.weather.gov/fwd/dmotemp

References

"Kaggle" and "US Census Bureau" websites

ozona

Examples

data(NSA)

ozona

Daily Number of Chicken-Fried Steaks Sold

Description

Daily number of chicken-fried steaks sold at Ozona Bar and Grill during June and July 2019

Usage

data("ozona")

Format

ts object consisting of number of chicken fried steaks sold daily during June and July, 2019

Source

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(ozona)

pacfts.wge

Compute partial autocorrelations

Description

Compute partial autocorrelations using either YW (default and the classical method), Burg, or ML estimates.)

Usage

```
pacfts.wge(x,lag.max=5, plot=TRUE,na.action,limits=FALSE,method ='yw')
```

Arguments

х	Realization
lag.max	Max lag
plot	Logical variable
na.action	Not used
limits	Logical variable
method	Either "mle" (default), "burg", or "yw"

Value

method	Estimation method used: MLE, Burg, or YW
pacf	PACF estimates using estimation method specified

Author(s)

Wayne Woodward

References

"Time Series for Data Science: Analysis and Forecasting with R" by Woodward, Sadler, and Gray

Examples

parzen.wge Smoothed Periodogram using Parzen Window	odogram using Parzen Window	parzen.wge
---	-----------------------------	------------

Description

This function calculates and optionally plots the smoothed periodogram using the Parzen window. The truncation point may be chosen by the user

Usage

```
parzen.wge(x, dbcalc = "TRUE", trunc = 0, plot = "TRUE")
```

Arguments

х	Vector containing the time series realization
dbcalc	If dbcalc=TRUE, the calculation is in the log (dB) scale. If FALSE, then non-log calculations are made
trunc	if M=0 (default) then the function uses the truncation point 2*sqrt(n). If M>0, then the function uses the given value of M as the truncation point
plot	If PLOT=TRUE then the smoothed spectral estimate is plotted. If FALSE then no plot is created

104

patemp

Value

freq	The frequencies at which the smoothed periodogram is calculated
pzgram	The smoothed periodogram using the Parzen window

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

parzen.wge(rnorm(100))

patemp

Pennsylvania average monthly temperatures

Description

Pennsylvania average monthly temperatures

Usage

```
data("patemp")
```

Format

The format is: num [1:180] 38.1 38.3 44.5 52.3 59.2 70.6 73.9 71.3 63.9 57.3 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and elliott

Examples

data(patemp)

period.wge

Description

Given a realization contained in a vector, this function calculates and optionally plots the periodogram in either log or non-log scale

Usage

```
period.wge(x, dbcalc = "TRUE", plot = "TRUE")
```

Arguments

x	The vector containing the time series realization
dbcalc	if dbcalc=TRUE (default) then the periodogram is calculated in log scale (in dB). If dbcalc is FALSE then the non-log periodogram is calculated
plot	if plot=TRUE (default) the periodogram is plotted. If plot=FALSE no plot is created

Value

freq	Frequencies at which the periodogram is calculated
pgram	Periodogram values evaluated at the frequencies in freq

Author(s)

Wayne Woodward

References

"Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

period.wge(rnorm(100))

pi.weights.wge

Description

Given the coefficients of the AR and MA parts of an ARMA model, this function calculates the pi weights

Usage

pi.weights.wge(phi = 0, theta = 0, lag.max =5)

Arguments

phi	Vector of AR coefficients (as in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott (uses Box and Jenkins notation))
theta	Vector of MA coefficients (as in ATSA and Box Jenkins texts)
lag.max	The function will calculates psi weights $pi(1)$, $pi(2)$,, $pi(lag.max)$. Note that $psi(0)=1$.

Value

A vector containing pi(1), ..., pi(lag.max)

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

pi.weights.wge(phi=c(1.2,-.6), theta=.5, lag.max=5)

plotts.dwt.wge

Description

Plots DWT obtained using functiond dwt from waveslim

Usage

plotts.dwt.wge(x, n.levels, type='S8')

Arguments

х	Realization (must be of length 2 ^k for some integer k between 2 and 14
n.levels	Maximum order of discrete wavelet transforms to be calculated. n.levels must be less than or equal to k where $n=2^k$
type	Discrete wavelet to use: options include 'haar', 'S8','D4','D6',D8'

Details

The wavelsim dwt function names these :'haar', 'la8','d4','d6',and 'd8' respectively and the conversion is done transparently within the R code. This is done transparently within the R code.

Value

The output is a plot of the DWT.

Note

Requires CRAN package 'waveslim'

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bumps256)

plotts.dwt.wge(bumps256,n.levels=4,type='S8')
Description

Plots MAR ;plot associated with a multiresolution analysis using function mra from waveslim

Usage

plotts.mra.wge(x, n.levels, type='S8')

Arguments

х	Realization (must be of length 2 ^k for some integer k between 2 and 14
n.levels	Maximum order of discrete wavelet transforms to be calculated. n.levels must be less than or equal to k where $n=2^k$
type	Discrete wavelet to use: options include 'haar', 'S8','D4','D6',D8'

Details

The wavelsim mra function names these :'haar', 'la8','d4','d6',and 'd8' respectively and the conversion is done transparently within the R code. This is done transparently within the R code.

Value

The output is a plot of the MRA.

Note

Requires CRAN package 'waveslim'

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(bumps256)

plotts.mra.wge(bumps256,n.levels=4,type='S8')

plotts.parzen.wge

Calculate and plot the periodogram and Parzen window estimates with differing trunctaion points

Description

Given a time series contained in the vector x, plotsp.parzen.wge calculates and plots the periodogram and Parzen window estimates at the default truncation point M=2*sqrt(n) and up to 2 additional user specified trunctaion points.

Usage

```
plotts.parzen.wge(x, m2=c(0,0))
```

Arguments

х	The vector containing the time series realization
m2	A 2-component vector specifying up to 2 additional truncation points

Details

m2=c(10,24) indicates that in addition to the default truncation point, the smoothed spectral estimator is to be calculated using truncation points 10 and 24, m2=c(0,0) indicates that no additional truncation points are to be used, and m2=c(10,0) indicates the use of one additional truncation point (10)

Value

freq	Frequencies at which the periodogram and parzen widow estimates are calculated
db	Periodogram (in dB) calculated at the frequencies in freq
dbz	Parzen window estimate (in dB) calculated at the frequencies in freq using truncation point $2*$ sqrt(n)
dbz1	Parzen window estimate (in dB) calculated at the frequencies in freq using trun- cation point m2[1]
dbz2	Parzen window estimate (in dB) calculated at the frequencies in freq using trun- cation point m2[2]

Author(s)

Wayne Woodward

References

"Applied Time series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

plotts.sample.wge

Examples

```
data(ss08)
  m2=c(10,50)
  plotts.parzen.wge(ss08,m2)
```

plotts.sample.wge	Plot Data, Sample Autocorrelations,	Periodogram,	and Parzen Spec-
	tral Estimate		

Description

For a given realization, this function plots the data, and calculates and plots the sample autocorrelations, periodogram, and Parzen window spectral estimator in a $2x^2$ array of plots.

Usage

```
plotts.sample.wge(x, lag.max = 25, trunc = 0, arlimits=FALSE,speclimits=c(0,0),
periodogram=FALSE)
```

Arguments

x	A vector containing the realization
lag.max	The maximum lag at which to calculate the sample autocorrelations
trunc	The truncation point M for the Parzen spectral estimator. If $M=0$ theN $M=2$ sqrt(n). If $M>0$ then M is the value entered
arlimits	Logical variable. TRUE plots 95 percent limit lines on sample autocorrelation plots
periodogram	Logical variable. TRUE plots periodogram, default=FALSE
speclimits	User supplied limits for Parzen spectral density and periodogram, default=function decides limits

Value

xbar	The sample mean of the realization
autplt	A vector containing sample autocorrelations from 0, 1,, aut.lag
freq	A vector containing the frequencies at which the periodogram and window esti- mate are calculated
db	Periodogram (in dB) calculated at the frequecies in freq
freq	Parzen spectral estimate (in dB) calculated at the frequecies in freq

Author(s)

Wayne Woodward

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(wages)
plotts.sample.wge(wages,trunc=0)

plotts.true.wge Plot of generated data, true autocorrelations and true spectral density for ARMA model

Description

For a given ARMA model, this function plots a realization, the true autocorrelations, and the true spectral density. This plot is typical of many plots in Applied Time Series Analysis by Woodward, Gray, and Elliott. For example, see Figure 1.21 and Figure 3.23.

Usage

plotts.true.wge(n=100, phi=0, theta=0, lag.max=25, mu=0,vara = 1,sn=0,plot.data=TRUE)

Arguments

n	Length of time series realization to be generated. Default is 100
phi	Vector containing AR parameters
theta	Vector containing MA parameters
lag.max	Maximum lag for calculating and plotting autocorrelations
mu	True mean
vara	White noise variance: default=1
sn	determines the seed used in the simulation of plotted realization. sn=0 produces new/random realization each time. sn=positive integer produces same realization each time
plot.data	Logical variable: If TRUE a simulated realization is plotted

Value

data	Realization of length n that is generated from the ARMA model
aut1	True autocorrelations from the ARMA model for lags 0 to lag.max
acv	True autocovariances from the ARMA model for lags 0 to lag.max
spec	Spectral density (in dB) for the ARMA model calculated at frequencies f=0, .002, .004,, .5

plotts.wge

Note

gvar=g[1], i.e. autocovariance at lag 0

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
plotts.true.wge(n=100, phi=c(1.6,-.9), theta=.8, lag.max=25, vara = 1)
```

plotts.wge

Plot a time series realization

Description

Given a realization contained in a vector, this function plots it as a time series realization

Usage

```
plotts.wge(x,style = 0, xlab = "Time", ylab = "",main="",col='black',text_size=12,
lwd=0.75,cex=0.5,cex.lab=0.75,cex.axis=0.75,xlim=NULL,ylim=NULL)
```

Arguments

Х	The vector containing the time series realization to be plotted
style	If style is 0 then a simple plot of the realization is rendered. If style is 1 then a ggplot is rendered.
xlab	A string that represents the x-axis label.
ylab	A string that represents the y-axis label.
main	A string that represents the main title.
col	Color of plot.
text_size	Text size.
lwd	Line width.
lwd cex	Line width. See R documentation.
cex	See R documentation.
cex cex.lab	See R documentation. See R documentation.

Value

Simply a plot of the realization

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(sunspot2.0);plotts.wge(sunspot2.0)

prob10.4	Data matrix for Problem 10.4 in "Applied Time Series Analysis with
	R, 2nd edition" by Woodward, Gray, and Elliott

Description

Matrix containing a bivariate VAR data set

Usage

data("prob10.4")

Format

The format is: num [1:100, 1:2] 0 0.7184 -0.3448 -2.1638 -0.0342 ... - attr(*, "dimnames")=List of 2 ...\$: NULL ...\$: chr [1:2] "X1" "X2"

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob10.4)

prob10.6x

Description

This realization is the unobservable data associated with the observed data in prob10.6y

Usage

```
data("prob10.6x")
```

Format

The format is: num [1:9] 2.61 0.69 0.64 0.37 -0.79 -1.63 -1.14 -1.2 -3.13

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob10.6x)

prob10.6y Simulated observed data for Problem 10.6 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Kalman filter example data

Usage

data("prob10.6y")

Format

The format is: num [1:9] 3.28 -0.05 0.64 0.31 -0.9 -2.4 -1.83 -1.93 -3.52

Source

Simulated data

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob10.6y)

prob10.7x Data for Problem 10.7 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

This realization is the same unobservable data as in prob10.6x

Usage

data("prob10.7x")

Format

The format is: num [1:9] 2.61 0.69 0.64 0.37 -0.79 -1.63 -1.14 -1.2 -3.13

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob10.7x)

prob10.7y

Description

Kalman filter example data

Usage

data("prob10.7y")

Format

The format is: num [1:9] 3.28 -0.05 0.64 0.31 -0.9 -2.4 -1.83 -1.93 -3.52

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob10.7y)

prob11.5	Data for Problem 11.5 in Applied Time Series Analysis with R, second
	edition by Woodward, Gray, and Elliott

Description

Simulated fractional long memory data

Usage

data("prob11.5")

Format

The format is: num [1:10] 4.2 - 2.5 8.4 14.6 7 9.6 19.8 4.8 6.5 8.3

Source

Simulated data

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob11.5)

prob12.1c Data for Problem 12.1c and 12.3c in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Data from a problem set in the wavelet chapter

Usage

data("prob12.1c")

Format

The format is: num [1:200] 9.49 8.01 3.43 -1.85 -4.99 -7.21 -5.61 -2.34 2.16 3.88 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob12.1c)

prob12.3a

Description

Data from a problem set in the wavelet chapter

Usage

```
data("prob12.3a")
```

Format

The format is: num [1:512] -3.09 8.43 -9.74 8.44 -3.46 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob12.3a)

prob12.3b Data for Problem 12.3b in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Data from a problem set in the wavelet chapter

Usage

data("prob12.3b")

Format

The format is: num [1:256] 1 1 1 1 1 ...

Source

Simulated data

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob12.3b)

prob12.6c

Data set for Problem 12.6(C) in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Simulated TVF data set

Usage

data("prob12.6c")

Format

The format is: num [1:512] -0.482 -0.569 -0.656 -0.743 -0.83 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob12.6c)

prob13.2

Description

Simulated data from cosine-plus-noise model

Usage

```
data("prob13.2")
```

Format

The format is: num [1:256] 1.524 5.886 5.939 4.319 0.573 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(prob13.2)

prob8.1a	Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd
	edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

data("prob8.1a")

Format

The format is: num [1:200] 2.19 0.48 0.06 3.86 3.6 -3.38 6.23 1.95 1.4 -5.35 ...

Source

Simulated data

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob8.1a)

prob8.1b Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

data("prob8.1b")

Format

The format is: num [1:200] 1.54 -0.13 1.93 0.29 -0.13 -0.23 1.27 1.01 -0.65 1.68 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob8.1b)

prob8.1c

Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

data("prob8.1c")

Format

The format is: num [1:200] 0.33 -0.53 -2.36 2.48 -0.36 -2.02 1.87 -0.73 0.41 2.41 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob8.1c)

prob8.1d	Data for Problem 8.1 in "Applied Time Series Analysis with R, 2nd
	edition" by Woodward, Gray, and Elliott

Description

See title above

Usage

data("prob8.1d")

Format

The format is: num [1:200] -0.07 -1.74 -1.37 -0.52 0.14 0.07 -1.5 1.88 -0.03 -1.81 ...

Source

Simulated data

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob8.1d)

prob9.6c1

Data set 1 for Problem 6.1c

Description

Data set 1 for Problem 6.1c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

data("prob9.6c1")

Format

The format is: num [1:100] -0.2924 0.0206 0.6595 0.3819 0.0269 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob9.6c1)

prob9.6c2

Description

Data set 2 for Problem 6.1c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

```
data("prob9.6c2")
```

Format

The format is: num [1:100] -0.925 -2.679 -2.378 -3.03 -2.157 ...

Source

Simulated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott.

Examples

data(prob9.6c2)

prob9.6c3

Data set 3 for Problem 6.1c

Description

Data set 3 for Problem 6.1c in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

data("prob9.6c3")

Format

The format is: num [1:100] -2.79 -3.32 -3.51 -5.13 -3.51 ...

Source

Simulated data

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob9.6c3)

prob9.6c4

Data set 4 for Problem 6.1c

Description

Data set 4 for Problem 6.1c in "Applied Time Series and Data Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. It is either from line plus noise or random walk with drift.

Usage

data("prob9.6c4")

Format

The format is: num [1:100] -0.0599 -0.0214 0.6589 -0.151 0.4043 ...

Source

Simulated data

References

"Applied Time Series and Data Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(prob9.6c4)

psi.weights.wge Calculate psi weights for an ARMA model

Description

Given the coefficients of the AR and MA parts of an ARMA model, this function calculates the psi weights

Usage

psi.weights.wge(phi = 0, theta = 0, lag.max = 5)

Arguments

phi	Vector of AR coefficients (as in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott (uses Box and Jenkins notation))
theta	Vector of MA coefficients (as in ATSA and Box Jenkins texts)
lag.max	The function will calculates psi weights $psi(1)$, $psi(2)$,, $psi(lag.max)$. Note that $psi(0)=1$.

Value

A vector containing psi(1), ..., psi(lag.max)

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
psi.weights.wge(phi=c(1.2,-.6), theta=.5, lag.max=5)
```

rate

Description

Daily DOW rate of return from 1971 through 2020

Usage

data("rate")

Format

ts object consisting of daily dow rate of return from 1971 through 2020

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(rate)

roll.win.rmse.nn.wge Function to Calculate the Rolling Window RMSE

Description

This function creates as many "windows" as is possible with the data and calculates an RMSE for each window. The resulting "rolling window RMSE" is the average of the individual RMSEs from each window.

Usage

```
roll.win.rmse.nn.wge(series, horizon = 1, fit_model)
```

Arguments

series	The data
horizon	The number of observations ahead to be forecasted.
fit_model	The mlp object (model) to be evaluated. This model will have been fit before the call to this function.

roll.win.rmse.wge

Value

rwRMSE	The average of the individual RMSEs of each window
numwindows	The number of windows
horizon	The number of observations ahead to be forecasted.

Author(s)

Bivin Sadler

References

"The Time Series Tool Kit"

roll.win.rmse.wge Function to Calculate the Rolling Window RMSE

Description

This function creates as many "windows" as is possible with the data and calculates an RMSE for each window. The resulting "rolling window RMSE" is the average of the individual RMSEs from each window.

Usage

```
roll.win.rmse.wge(series, horizon = 2, s = 0, d = 0, phi = 0, theta = 0)
```

Arguments

series	The data
horizon	The number of observations ahead to be forecasted.
S	Order of the seasonal difference, default=1
d	Order of the difference
phi	Vector of AR coefficients
theta	Vector of MA coefficients

Value

rwRMSE	The average of the individual RMSEs of each window
numwindows	The number of windows
horizon	The number of observations ahead to be forecasted.
S	Order of the seasonal difference, default=1
d	Order of the difference
phis	Vector of AR coefficients
thetas	Vector of MA coefficients
RMSEs	Vector of RMSEs one for each windwow

slr.wge

Author(s)

Bivin Sadler

References

"The Time Series Tool Kit"

slr.wge

Simple Linear Regression

Description

Uses Base R routine lm to simplify call for SLR where independent variable is automatocally t=1:n

Usage

slr.wge(x)

Arguments

Х

The TVF data set

Value

res	Residuals
b0hat	Estimate b0 in model y=b0+b1*t+Z
b1hat	Estimate b1
pvalue	pvalue for test:slope=0
tstatistic	tstatistic associated with test:slope=0

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
x=gen.arma.wge(n=100,phi=.96,sn=10)
y=slr.wge(x)
```

ss08

Description

Annual average sunspot numbers for the years 1749-2008

Usage

data("ss08")

Format

The format is: num [1:260] 80.9 83.4 47.7 47.8 30.7 ...

Source

Internet-open source

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(ss08)

ss08.1850	Sunspot data from 1850 through 2008 for matching with global tem-
	perature data (hadley)

Description

Sunspot data from 1850 through 2008 for matching with global temperature data (hadley) for purposes of testing for association in Example 10.5 of "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Usage

data("ss08.1850")

Format

The format is: num [1:160] 66.6 64.5 54.1 39 20.6 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(ss08.1850)

starwort.ex	Starwort Explosion data shown in Figure 13.13a in Applied Time Se-
	ries Analysis with R, second edition by Woodward, Gray, and Elliott

Description

Lg wave for Starwort explosion data

Usage

data("starwort.ex")

Format

The format is: num [1:420] 43245 48408 47565 7372 -62277 ...

Source

Gupta, et al. (2005) Bulletin of the Seismological Society of America 95, 341-346.

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(starwort.ex)

sunspot.classic Classic Sunspot Data: 1749-1924

Description

The classic 176 point sunspot data from 1749-1924 that has been widely modeled

Usage

```
data("sunspot.classic")
```

Format

The format is: num [1:176] 80.9 83.4 47.7 47.8 30.7 12.2 9.6 10.2 32.4 47.6 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(sunspot.classic)

sunspot2.0

Annual Sunspot2.0 Numbers

Description

Annual sunspot2.0 numbers from 1700 through 2020

Usage

data("sunspot2.0")

Format

ts object consisting of annual data from 1700 through 2020

Source

https://www.sidc.oma.be/silso

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(sunspot2.0)

sunspot2.0.month Monthly Sunspot2.0 Numbers

Description

Monthly sunspot2.0 numbers from January 1749 through December 2020

Usage

```
data("sunspot2.0.month")
```

Format

ts object consisting of monthly data from January 1749 through December 2020

Source

https://www.sidc.oma.be/silso

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(sunspot2.0.month)

table10.1.noiseNoise related to data set, the first 5 points of which are shown in Table10.1 in Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Description

The data in Table 10.1 are of the form Y(t)=X(t)+n(t). This data set contains the values for n(t).

Usage

```
data("table10.1.noise")
```

Format

The format is: num [1:75] -0.49 0.126 -0.129 -1.179 0.441 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(table10.1.noise)

table10.1.signal	Underlying, unobservable signal $(X(t))$, the first 5 points of which are
	shown in Table 10.1 in Applied Time Series Analysis with R, second
	edition by Woodward, Gray, and Elliott

Description

The X(t) data is unobservable, and is a realization from an AR(1) model

Usage

```
data("table10.1.signal")
```

Format

The format is: num [1:75] -0.2497 -0.0812 -0.6463 -1.7653 -2.719 ...

Source

Simulated data

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(table10.1.signal)

table7.1

MA(2) data for Table 7.1

Description

MA(2) data for Table 7.1 in "Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott. Uses function ia in package itsmr to show steps in the innovations algorithm for estimating the MA parameters and white noise variance

Usage

data("table7.1")

Format

The format is: num [1:400] 0.4481 0.5497 -1.6586 -3.1653 -0.0314 ...

Source

Generated data

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

data(table7.1)

tesla

Description

Teslas daily stock prices from January 1, 2020 through April 30, 2021

Usage

data("tesla")

Format

ts object consisting of daily adjusted close price for TSLA from January 1, 2020 through April 30, 2021

Source

https://finance.yahoo.com

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(tesla)

trans.to.dual.wge Transforms TVF data set to a dual data set

Description

Using the specified values for lambda and offset, this function transforms a TVF data set to a dual data set based on a Glambda time transformation.

Usage

```
trans.to.dual.wge(x, lambda, offset = 60, h = 0, plot = TRUE)
```

Arguments

х	The TVF data set
lambda	The value of lambda in the Glambda time transformation
offset	The value of offset in the Glambda time transformation
h	Scaling variable, initialized at zero, which assures that the dual data set has the same number of points as the original TVF data set
plot	Logical: TRUE=plot, FALSE=no plot

Value

intX	See intY description
intY	The input realization x is of length n, and the values of x are available at the time points $t= 1$ to n. The values intY are n interpolated values of the original time series at the values of intX in the original time scale. The dual data set is obtained by associating the n values of intY with $t = 1$ to n respectively
h	The output value of the scaling parameter that assures that the dual realization and the original realization are of the same length

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(fig13.2c)

y=trans.to.dual.wge(x=fig13.2c,lambda=-.4,offset=63)

trans.to.original.wge *Transforms dual data set back to original time scale*

Description

Using the specified values for lambda and offset, this function transforms a dual data set, based on a Glambda time transformation, back to the original time scale

Usage

trans.to.original.wge(xd, lambda, offset, h, plot = TRUE)

Arguments

xd	The dual data set
lambda	The value of lambda in the Glambda time transformation
offset	The value of offset in the Glambda time transformation
h	Scaling variable obtained as output from transform.to.dual.wge that assures that the dual data set has the same number of points as the origuinal TVF data set
plot	Logical: TRUE=plot, FALSE=no plot

Value

Returns the y values to be plotted at time points t=1 to n that approximate the original TVF data set

true.arma.aut.wge

Author(s)

Wayne Woodward

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

```
data(fig13.2c)
yd=trans.to.dual.wge(fig13.2c,lambda=-.4,offset=63)
yo=trans.to.original.wge(yd$intY,lambda=-.4,offset=63,h=yd$h)
```

true.arma.aut.wge True ARMA autocorrelations

Description

R function to calculate the autocovariances and autocorrelations and optionally plot the true autocorrelations of a stationary ARMA model

Usage

true.arma.aut.wge(phi = 0, theta = 0, lag.max = 25, vara = 1,plot=TRUE)

Arguments

phi	Vector containing AR coefficients
theta	Vector containing MA coefficients
lag.max	Maximum lag at which to calculate the true autocorrelations
vara	White noise variance of the ARMA model
plot	Logical: TRUE=plot, FALSE=no plot

Value

acf	Vector of length max.lag+1 containing true autocorrelations at lags 0, 1,,
	lag.max
acv	Vector of length max.lag+1 containing true autocovariances at lags 0, 1,, lag.max

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

true.arma.aut.wge(phi=c(1.6,-.9),theta=-.8,lag.max=15,vara=1)

true.arma.spec.wge True ARMA Spectral Density

Description

R function to calculate and optionally plot the spectral density of a stationary ARMA model

Usage

true.arma.spec.wge(phi=0,theta=0, vara=1,plot=TRUE)

Arguments

phi	Vector containing AR coefficients
theta	Vector containing MA coefficients
vara	White noise variance of the ARMA model
plot	Logical: TRUE=plot, FALSE=no plot

Value

f	Frequencies at which true spectral density is evaluated: 0, 1/500, 2/500,, .5
spec	True spectral density calculated at the frequencies in f

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

true.arma.spec.wge(phi=c(1.6,-.9), theta=.7)

Description

Calculate the autocovariances and autocorrelations and optionally plot the true autocorrlations of a FARMA model

Usage

```
true.farma.aut.wge(d,phi=0,theta=0,lag.max=50,trunc=1000,vara=1,plot=TRUE)
```

Arguments

d	Fractional difference parameter
phi	vector of AR parameters of ARMA part of FARMA model
theta	vector of MA parameters of ARMA part of FARMA model using signs as given in the Woodward, Gray, and Elliott text
lag.max	Maximum lag at which the autocorrelations and autocovariances will be calculated
trunc	Number of terms used in sum
vara	White noise variance
plot	Logical: TRUE=plot, FALSE=no plot

Details

For fractional model use phi=theta=0

Value

acf	Vector of length max.lag+1 containing true autocorrelations at lags 0, 1,,
	lag.max
асv	Vector of length max.lag+1 containing true autocovariances at lags 0, 1,, lag.max

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, second editon" by Woodward, Gray, and Elliott

Examples

y=true.farma.aut.wge(d=.4,phi=c(0,-.8))

true.garma.aut.wge True GARMA autocorrelations

Description

Calculate the autocovariances and autocorrelations and optionally plot the true autocorrelations of a 1-factor based on formula(11.25) of "Applied Time Series Analysis with R, second editon" Woodward, Gray, and Elliott

Usage

true.garma.aut.wge(u,lambda,phi=0,theta=0,lag.max=50,vara=1,plot=TRUE)

Arguments

u	Parameter u in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
lambda	Parameter lambda in the GARMA model given in (11.16) of Woodward, Gray, and Elliott text
phi	vector of AR parameters of ARMA part of GARMA model
theta	vector of MA parameters of ARMA part of GARMA model using signs as given in the Woodward, Gray, and Elliott text
lag.max	Maximum lag at which the autocorrelations and autocovariances will be calculated
vara	White noise variance
plot	Logical: TRUE=plot, FALSE=no plot

Details

For Gegenbauer model use phi=theta=0

Value

acf	Vector of length max.lag+1 containing true autocorrelations at lags 0, 1,, lag.max
acv	Vector of length max.lag+1 containing true autocovariances at lags 0, 1,, lag.max

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, second editon" by Woodward, Gray, and Elliott

tx.unemp.adj

Examples

y=true.garma.aut.wge(u=.8,lambda=.4,phi=.8)

tx.unemp.adj Texas Seasonally Adjusted Unnemployment Rates

Description

Monthly seasonally adjusted unemployment rate in Texas for the years 2000-2019

Usage

data("tx.unemp.adj")

Format

ts object consisting of monthly seasonally adjusted unemployment rate from January 2000 through December 2019

Source

https://twc.texas.gov

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(tx.unemp.adj)

tx.unemp.unadj Texas Unadjusted Unnemployment Rates

Description

Monthly unemployment rate in Texas for the years 2000-2019

Usage

```
data("tx.unemp.unadj")
```

Format

ts object consisting of monthly unadjusted unemployment rate from January 2000 through December 2019

Source

https://twc.texas.gov

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(tx.unemp.unadj)

unit.circle.wge Plot the roots of the characteristic equation on the complex plain.

Description

This function plots the roots of the characteristic equation on the complex plain and super imposes the Unit Circle to show if a root is inside, outside or on the Unit Circle. The modulus and absolule reciprical are also displayed.

Usage

unit.circle.wge(real = 0, imaginary = 0)

Arguments

real	the real part of the root
imaginary	the imaginary part of the root

Value

returns a plot of the root with respect to the unit circle

Author(s)

Bivin Sadler

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

```
unit.circle.wge(real = .9, imaginary = .95)
```
us.retail

Description

Quarterly US retail sales (in \$millions) from the fourth quarter of 1999 through the second quarter of 2021

Usage

data("us.retail")

Format

ts object consisting of quarterly US retail sales (in \$millions) from the fourth quarter of 1999 through the second quarter of 2021

Source

https://www.fred.stlouis.org

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(us.retail)

uspop

US population

Description

US estimated annual population from 1900 through 2020.

Usage

data("uspop")

Format

ts object consisting of annual data from 1700 through 2020

Source

Internet

References

"Time Series for Data Science: Analysis and Forecasting" by Woodward, Sadler, and Robertson

wages

Daily wages in Pounds from 1260 to 1944 for England

Description

This data set contains the average English daily wages in pounds for each year from 1260 to 1944, inclusive.

Usage

data("wages")

Format

The format is: num [1:735] 4.41 4.63 4.38 4.52 4.42 4.64 4.44 5.15 5.23 4.42 ...

Source

Data Market Time Series Data Library (citing: Makridakis, Wheelwright and Hyndman (1998))

Examples

data(wages)

wbg.boot.wge Woodward-Bottone-Gray test for trend

Description

Performs the Woodward-Bottone-Gray (WBG) bootstrap-based test for a linear trend in a time series realization.)

Usage

wbg.boot.wge(x,nb=399,alpha=.05,pvalue=TRUE,sn=0)

Arguments

х	Realization
nb	The number of Bootstrap replications (default is 399)
alpha	The significance level of the test (default is .05)
pvalue	Logical variable. TRUE(default) prints out the p-value of the test.
sn	Sets the seed for the simulations (default = 0))

whale

Value

р	AR order used for the bootstrap simulations
phi	The AR coefficients of the AR model fit to data
pv	The p-value of the test

Author(s)

Wayne Woodward

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

Examples

whale

Whale click data

Description

256 point whale click echolocation signal

Usage

data("whale")

Format

The format is: num [1:286] 0.0014 -0.008 0.01126 0.00412 0.0069 ...

Source

Stan Kuczaj from University of Southern Mississippi

References

Applied Time Series Analysis with R, second edition by Woodward, Gray, and Elliott

Examples

data(whale)

wtcrude

Description

Monthly West Texas intermediate crude oil prices from January 2000 through October 2009.

Usage

```
data("wtcrude")
```

Format

The format is: num [1:118] 27.2 29.4 29.9 25.7 28.8 ...

Source

Internet

References

"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott

wtcrude2020 Monthly WTI Crude Oil Prices

Description

Monthly WTI crude oil prices from January 1990 through December 2020

Usage

```
data("wtcrude2020")
```

Format

ts object consisting of monthly data from January 1990 through December 2020

Source

https://fred.stlouis.org

References

"Time Series for Data Sience: Analysis and Forecasting" by Woodward, Sadler, and Robertson

Examples

data(wtcrude2020)

wv.wge

Description

Calculates and plots Wigner-Ville spectrum for a realization

Usage

wv.wge(x)

Arguments ×

Realization to be analyzed

Value

Plots Wigner-Ville spectrum

Author(s)

Wayne Woodward

References

Boashash (2003). Time Frequency Analysis

Examples

```
data(doppler)
wv.dop=wv.wge(doppler)
```

yellowcab.precleaned Precleaned Yellow Cab data

Description

The number of Yellow Cab Trips in NYC before and during the COVID outbreak: January 2019 through February 2021

Usage

```
data("yellowcab.precleaned")
```

Format

The format is: Time-Series [1:26] from 2019 to 2021: 247315 250654 252634 247742 ...

Source

NYC Taxi and Limousine website

References

Time Series for Data Science Woodward, Sadler, and Robertson

Examples

data(yellowcab.precleaned)

Index

* AICC aic.ar.wge, 6 aic.burg.wge,7 aic.wge, 8 aic5.ar.wge, 9 aic5.wge, 10 * AIC aic.ar.wge, 6 aic.burg.wge, 7 aic.wge, 8 aic5.ar.wge, 9 aic5.wge, 10 * AR Model Identification aic.ar.wge, 6 aic5.ar.wge,9 * ARCH gen.arch.wge, 74 * ARIMA fore.arima.wge, 64 fore.aruma.wge, 67 gen.arima.wge, 75 * ARMA fore.arma.wge, 66 gen.arma.wge, 76 plotts.true.wge, 112 true.arma.aut.wge, 139 true.arma.spec.wge, 140 * ARUMA fore.aruma.wge, 67 gen.aruma.wge, 77 * Additive components factor.comp.wge, 36 * Autocorrelations plotts.true.wge, 112 true.arma.aut.wge, 139 * Autoregressive aic.ar.wge, 6 aic5.ar.wge, 9 est.ar.wge, 30

factor.comp.wge, 36 * BIC aic.ar.wge, 6 aic.burg.wge, 7 aic.wge, 8 aic5.ar.wge, 9 aic5.wge, 10 * Backcasting est.arma.wge, 31 * Bootstrap wbg.boot.wge, 146 * Burg aic.ar.wge, 6 aic5.ar.wge, 9 est.ar.wge, 30 pacfts.wge, 103 * Butterworth butterworth.wge, 18 * Centered ma.smooth.wge, 95 * Cochrane-Orcutt co.wge, 21***** Conditional variance gen.arch.wge, 74 gen.garch.wge, 78 * DWT plotts.dwt.wge, 108 * FARMA est.farma.wge, 32 fore.farma.wge, 68 true.farma.aut.wge, 141 * Factor table factor.wge, 37 * Factors mult.wge, 99 * Forecasts fore.arima.wge, 64 fore.arma.wge, 66 fore.aruma.wge, 67

* Fractional fore.farma.wge, 68 * G(lambda) model is.glambda.wge, 85 is.sample.wge, 86 * G(lambda) fore.glambda.wge, 70 * GARCH gen.garch.wge, 78 * GARMA est.garma.wge, 33 fore.garma.wge, 69 gen.garma.wge, 79 * GLP macoef.geg.wge,96 * Gegenbauer est.garma.wge, 33 fore.garma.wge, 69 gegenb.wge, 73 gen.garma.wge, 79 gen.geg.wge, 80 macoef.geg.wge,96 true.garma.aut.wge, 142 * Glambda trans.to.dual.wge, 137 trans.to.original.wge, 138 * Hilbert hilbert.wge, 85 * Integrated gen.arima.wge, 75 * Kalman filter kalman.miss.wge, 87 kalman.wge, 88 * Linear slr.wge, 130 * Ljung-Box test ljung.wge, 91 * Long memory gen.geg.wge, 80 * MLE aic5.ar.wge, 9 est.ar.wge, 30 pacfts.wge, 103 * MLaic.ar.wge, 6 * MRA plotts.mra.wge, 109 * Maximum likelihood

est.arma.wge, 31 * Model Identification aic.burg.wge,7 aic.wge, 8 aic5.wge, 10 *** Moving Average Predictor** ma.pred.wge, 94 *** Moving Average Smoother** ma.smooth.wge, 95 * Nonstationary gen.aruma.wge, 77 * One-sided Moving Average ma.pred.wge, 94 * PACF pacfts.wge, 103 * Parzen ample.spec.wge, 12 parzen.wge, 104 plotts.sample.wge, 111 * Periodogram plotts.sample.wge, 111 * Pi weights pi.weights.wge, 107 * Plot ample.spec.wge, 12 parzen.wge, 104 plotts.sample.wge, 111 plotts.wge, 113 * Psi weights psi.weights.wge, 127 * **RMSE** roll.win.rmse.nn.wge, 128 roll.win.rmse.wge, 129 * Realization gen.arima.wge, 75 gen.arma.wge, 76 gen.aruma.wge, 77 gen.garma.wge, 79 gen.geg.wge, 80 gen.glambda.wge, 81 plotts.wge, 113 * Regression co.wge, 21 slr.wge, 130 wbg.boot.wge, 146 * Rolling Moving Average ma.pred.wge, 94 * Root

unit.circle.wge, 144 * Seasonal fore.arima.wge, 64 fore.aruma.wge, 67 * Spectral density plotts.true.wge, 112 * Stationary unit.circle.wge, 144 * TVF data is.glambda.wge, 85 is.sample.wge, 86 * TVF est.glambda.wge, 34 fore.glambda.wge, 70 gen.glambda.wge, 81 trans.to.dual.wge, 137 trans.to.original.wge, 138 wv.wge, 149 * Trend Test co.wge, 21 wbg.boot.wge, 146 * Unit Circle unit.circle.wge, 144 * Wigner-Ville spectrum wv.wge, 149 * Wigner-Ville hilbert.wge, 85 * Woodward-Bottone-Gray wbg.boot.wge, 146 * **YW** aic.ar.wge, 6 aic5.ar.wge, 9 * Yule Walker est.ar.wge, 30 pacfts.wge, 103 * autocorrelations true.farma.aut.wge, 141 true.garma.aut.wge, 142 * backcasting backcast.wge, 14 * dB period.wge, 106 * datasets airline, 11 airlog, 11 appy, 13 bat, 15 bitcoin, 16

Bsales, 16 bumps16, 17 bumps256, 17 cardiac, 19 cement, 19 chirp, 20 dfw.2011,22 dfw.mon.22 dfw.yr, 23doppler, 24doppler2, 24 dow.annual, 25 dow.rate, 25 dow1000, 26 dow1985, 27 dowjones2014, 27 eco.cd6, 28 eco.corp.bond, 28 eco.mort30, 29 fig1.10a, 38 fig1.10b, 38 fig1.10c, 39 fig1.10d, 40 fig1.16a, 40 fig1.21a, 41 fig1.22a, 42 fig1.5,42 fig10.11x,43 fig10.11y, 44 fig10.1bond, 44 fig10.1cd, 45 fig10.1mort, 46 fig10.3x1,46 fig10.3x2,47 fig11.12,48 fig11.4a,48 fig12.1a, 49 fig12.1b, 50 fig13.18a, 50 fig13.2c, 51 fig3.10d, 52 fig3.16a, 52 fig3.18a, 53 fig3.24a, 54 fig3.29a, 54 fig4.8a, 55 fig5.3c, 56 fig6.11a, 56

fig6.1nf, 57 fig6.2nf, 58 fig6.5nf, 58 fig6.6nf, 59 fig6.7nf, 60 fig6.8nf, 60 fig8.11a, 61 fig8.4a, 62 fig8.6a,62 fig8.8a,63 flu, 64 freeze, 72 freight, 73 global.temp, 83 global2020, 83 hadley, 84 kingkong, 89 lavon, 90 lavon15, 90 linearchirp, 91 11vnx. 92 1ynx, 93 ma2.table7.1,96 mass.mountain, 97 MedDays, 98 mm.eq, 98 NAICS, 100 nbumps256, 100 nile.min, 101 noctula, 102 NSA, 102 ozona, 103 patemp, 105 prob10.4, 114 prob10.6x, 115 prob10.6y, 115 prob10.7x, 116 prob10.7y, 117 prob11.5, 117 prob12.1c, 118 prob12.3a, 119 prob12.3b, 119 prob12.6c, 120 prob13.2, 121 prob8.1a, 121 prob8.1b, 122 prob8.1c, 123 prob8.1d, 123

prob9.6c1, 124 prob9.6c2, 125 prob9.6c3, 125 prob9.6c4, 126 rate, 128 ss08, 131 ss08.1850, 131 starwort.ex, 132 sunspot.classic, 133 sunspot2.0, 133 sunspot2.0.month, 134 table10.1.noise, 135 table10.1.signal, 135 table7.1, 136 tesla, 137 tx.unemp.adj, 143 tx.unemp.unadj, 143 us.retail, 145 uspop, 145 wages, 146 whale. 147 wtcrude, 148 wtcrude2020, 148 yellowcab.precleaned, 149 * difference artrans.wge, 13 * discrete wavelet transform plotts.dwt.wge, 108 * dual trans.to.dual.wge, 137 trans.to.original.wge, 138 * estimation est.farma.wge, 32 est.garma.wge, 33 * filtering butterworth.wge, 18 kalman.miss.wge, 87 kalman.wge, 88 * forecasting expsmooth.wge, 35 * forecasts fore.farma.wge, 68 fore.garma.wge, 69 fore.glambda.wge, 70 * forecast fore.sigplusnoise.wge, 71 * fractional true.farma.aut.wge, 141

* g(lambda) process gen.glambda.wge, 81 * g(lambda) est.glambda.wge, 34 * generate gen.sigplusnoise.wge, 82 * instantaneous spectrum is.glambda.wge, 85 is.sample.wge, 86 * missing kalman.miss.wge, 87 * multiresolution analysis plotts.mra.wge, 109 * partial autocorrelations pacfts.wge, 103 * periodogram period.wge, 106 plotts.parzen.wge, 110 * plot plotts.dwt.wge, 108 plotts.mra.wge, 109 * predicting kalman.miss.wge, 87 kalman.wge, 88 * residuals backcast.wge, 14 * rolling roll.win.rmse.nn.wge, 128 roll.win.rmse.wge, 129 * signal plus noise fore.sigplusnoise.wge, 71 * signal-plus-noise gen.sigplusnoise.wge, 82 * smoothing expsmooth.wge, 35 kalman.miss.wge, 87 kalman.wge, 88 * spectral density true.arma.spec.wge, 140 * spectrum plotts.parzen.wge, 110 * time varying spectrum is.glambda.wge, 85 is.sample.wge, 86 * transformation artrans.wge, 13 * white noise ljung.wge, 91

* window plotts.parzen.wge, 110 roll.win.rmse.nn.wge, 128 roll.win.rmse.wge, 129 aic.ar.wge, 6 aic.burg.wge, 7 aic.wge, 8 aic5.ar.wge, 9 aic5.wge, 10 airline, 11 airlog, 11 ample.spec.wge, 12 appy, 13 artrans.wge, 13 backcast.wge, 14 bat, 15 bitcoin, 16 Bsales, 16 bumps16, 17 bumps256, 17 butterworth.wge, 18 cardiac, 19 cement, 19 chirp. 20 co.wge, 21 dfw.2011,22 dfw.mon, 22 dfw.yr, 23 doppler, 24 doppler2, 24 dow.annual, 25 dow.rate, 25 dow1000, 26 dow1985, 27 dowjones2014, 27 eco.cd6, 28 eco.corp.bond, 28 eco.mort30, 29 est.ar.wge, 30 est.arma.wge, 31 est.farma.wge, 32 est.garma.wge, 33 est.glambda.wge, 34 expsmooth.wge, 35

factor.comp.wge, 36 factor.wge, 37 fig1.10a, 38 fig1.10b, 38 fig1.10c, 39 fig1.10d, 40 fig1.16a,40 fig1.21a,41 fig1.22a, 42 fig1.5,42 fig10.11x, 43 fig10.11y, 44 fig10.1bond, 44 fig10.1cd, 45 fig10.1mort, 46 fig10.3x1,46 fig10.3x2,47 fig11.12,48 fig11.4a,48 fig12.1a, 49 fig12.1b, 50 fig13.18a, 50 fig13.2c, 51 fig3.10d, 52 fig3.16a, 52 fig3.18a, 53 fig3.24a, 54 fig3.29a, 54 fig4.8a,55 fig5.3c, 56 fig6.11a, 56 fig6.1nf, 57 fig6.2nf, 58 fig6.5nf, 58 fig6.6nf, 59 fig6.7nf, 60 fig6.8nf, 60 fig8.11a,61 fig8.4a, 62 fig8.6a, 62 fig8.8a,63 flu, <mark>64</mark> fore.arima.wge, 64 fore.arma.wge, 66 fore.aruma.wge, 67 fore.farma.wge, 68 fore.garma.wge, 69 fore.glambda.wge, 70

fore.sigplusnoise.wge, 71 freeze, 72 freight, 73 gegenb.wge, 73 gen.arch.wge, 74 gen.arima.wge, 75 gen.arma.wge, 76 gen.aruma.wge, 77 gen.garch.wge, 78 gen.garma.wge, 79 gen.geg.wge, 80 gen.glambda.wge, 81 gen.sigplusnoise.wge, 82 global.temp, 83 global2020, 83 hadley, 84 hilbert.wge, 85 is.glambda.wge, 85 is.sample.wge, 86 kalman.miss.wge, 87 kalman.wge, 88 kingkong, 89 lavon, 90 lavon15, 90 linearchirp, 91 ljung.wge, 91 11ynx, 92 lynx, 93 ma.pred.wge, 94 ma.smooth.wge, 95 ma2.table7.1,96 macoef.geg.wge, 96 mass.mountain, 97 MedDays, 98 mm.eq, 98 mult.wge, 99 NAICS, 100 nbumps256, 100 nile.min, 101 noctula, 102 NSA, 102 ozona, 103

pacfts.wge, 103 parzen.wge, 104 patemp, 105 period.wge, 106 pi.weights.wge, 107 plotts.dwt.wge, 108 plotts.mra.wge, 109 plotts.parzen.wge, 110 plotts.sample.wge, 111 plotts.true.wge, 112 plotts.wge, 113 prob10.4, 114 prob10.6x, 115 prob10.6y, 115 prob10.7x, 116 prob10.7y, 117 prob11.5, 117 prob12.1c, 118 prob12.3a, 119 prob12.3b, 119 prob12.6c, 120 prob13.2, 121 prob8.1a, 121 prob8.1b, 122 prob8.1c, 123 prob8.1d, 123 prob9.6c1, 124 prob9.6c2, 125 prob9.6c3, 125 prob9.6c4, 126 psi.weights.wge, 127 rate, 128 roll.win.rmse.nn.wge, 128 roll.win.rmse.wge, 129 sample.spec.wge(ample.spec.wge), 12 slr.wge, 130 ss08, 131 ss08.1850, 131 starwort.ex, 132 sunspot.classic, 133 sunspot2.0, 133 sunspot2.0.month, 134 table10.1.noise, 135 table10.1.signal, 135 table7.1, 136 tesla, 137

trans.to.dual.wge, 137 trans.to.original.wge, 138 true.arma.aut.wge, 139 true.arma.spec.wge, 140 true.farma.aut.wge, 141 true.garma.aut.wge, 142 tswge (tswge-package), 6 tswge-package, 6 tx.unemp.adj, 143 tx.unemp.unadj, 143 unit.circle.wge, 144 us.retail, 145 uspop, 145 wages, 146 wbg.boot.wge, 146 whale. 147 wtcrude, 148 wtcrude2020, 148 wv.wge, 149 yellowcab.precleaned, 149