
Trust Regions

Charles J. Geyer

January 7, 2020

1 Trust Region Theory

We follow Nocedal and Wright (1999, Chapter 4), using their notation.
Fletcher (1987, Section 5.1) discusses the same algorithm, but with slight
differences.

1.1 Main Loop

Suppose f : Rn → R is a function we wish to minimize, and we do so by
producing a sequence x1, x2, . . . of points in Rn that converge to a solution.

This sequence of iterates is produced by the trust region main loop which
repeatedly solves the trust region subproblem. First we form the Taylor series
expansion of f about xk

mk(p) = fk + gTk p+ 1
2p
TBkp

where

fk = f(xk)

gk = ∇f(xk)

Bk = ∇2f(xk)

and the idea is we “trust” the Taylor series expansion only so far, so we
minimize mk subject to the constraint ‖p‖ ≤ ∆k where ‖ · ‖ denotes the
Euclidean norm.

Suppose pk is a solution to the trust region subproblem (about which
more in Section 1.2 below). The adjustment of ∆k is done as follows (Nocedal
and Wright, 1999, Algorithm 4.1) based on

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(1)

1

which is the actual decrease in the objective function f in the step compared
to the predicted decrease using mk. If ρk is small or negative, then mk is a
bad model at xk + pk so the step should not be used and the trust region
radius should be adjusted. The complete trust region main loop body solves
the trust region subproblem and then adjusts the current point and trust
region radius as follows

if (ρk < 1/4) then
xk+1 := xk
∆k+1 = ‖pk‖/4

else
xk+1 := xk + pk
if (ρk > 3/4 and ‖pk‖ = ∆k) then

∆k+1 = min(2∆k, ∆̄)
fi

fi

where ∆̄ is the maximum allowed ∆k.

1.2 Trust Region Subproblem

Now we follow Section 4.2 of Nocedal and Wright (1999). We drop
subscripts writing m instead of mk and so forth. So the subproblem is

minimize m(p)
def
= f + gT p+ 1

2p
TBp

subject to ‖p‖≤ ∆

which minimizes a quadratic function over the closed ball of radius ∆ cen-
tered at the origin.

A vector p∗ is a global solution to the trust region subproblem if and
only if

‖p∗‖ ≤ ∆ (2a)

and there exists a scalar λ ≥ 0 such that

(B + λI)p∗ = −g (2b)

λ = 0 or ‖p∗‖ = ∆ (2c)

B + λI is positive semidefinite (2d)

(Nocedal and Wright, 1999, Theorem 4.3).

2

1.2.1 Unconstrained Solutions

The λ = 0 case is easy. If B is positive definite and p∗ = −B−1g satisfies
(2a), then that is the solution.

1.2.2 Constrained Solutions

The ‖p∗‖ = ∆ case is more complicated. Define

p(λ) = −(B + λI)−1g = −
n∑
j=1

qTj g

λj + λ
qj (3)

where λj are the eigenvalues of B and qj are the corresponding orthonormal
eigenvectors (this is valid only when λ 6= −λj for all j). Then

‖p(λ)‖2 =
n∑
j=1

(
qTj g

λj + λ

)2

(4)

The analysis again splits into several cases.

The Easy Case Let λmin denote the minimum eigenvalue of B. If

(qTj g) 6= 0, for some j such that λj = λmin (5)

then p(λ) is a continuous, strictly decreasing function on the open interval
(−λmin,∞) and goes to ∞ as λ→ −λmin and to zero as λ→∞. Thus a λ∗

such that ‖p(λ∗)‖2 = ∆2 exists and is unique, equation (4) can be used to
find it, and p(λ∗) is the solution to the trust region subproblem.

The Hard Case In the other case, when (5) is false, (4) is continuous at
λ = λmin and now defines a continuous strictly decreasing function on the
closed interval [−λmin,∞), and λ must be in this interval in order for (2d)
to hold.

Now the analysis splits into two subcases yet again.

Hard Case: Easy Part If (5) is false but

‖p(−λmin)‖2 > ∆2, (6)

then there is still a unique λ∗ in (−λmin,∞) such that ‖p(λ∗)‖2 = ∆2,
equation (4) can be used to find it, and p(λ∗) is the solution to the trust
region subproblem.

3

Hard Case: Hard Part Otherwise, when (5) and (6) are both false, we
must have λ = −λmin. Then B + λI is singular, and (3) can no longer be
used. Now solutions of (2b) are non-unique, and we have

phard(τ) = −
n∑
j=1

λj 6=λmin

qTj g

λj − λmin
qj +

n∑
j=1

λj=λmin

τjqj (7)

is a solution of (2b) for every vector τ . Since the first sum on the right hand
side of (7) has norm less than ∆ by the falsity of (6), we can choose τ to
make ‖phard(τ)‖ = ∆.

Note that the solution p∗ obtained in this case is non-unique. Even if
there is only one term in the second sum in (7), τj of opposite signs produce
phard(τ) of the same length. When there is more than one term in the
second sum in (7), there are even more possibilities of nonuniqueness. This
nonuniqueness is not an issue, because (at least as far as the subproblem is
concerned) one solution is just as good as another.

1.2.3 Numerical Stability

We need to examine how all this case splitting works when the arithmetic
is inexact (as it is in a computer). Let us take the eigendecomposition of
B that gives us equation (3) or equation (7) as authoritative. We know
the eigendecomposition is inexact, but we do not attempt to correct for its
inexactness.

If all of the λj as calculated (inexactly) by the eigendecomposition rou-
tine are strictly positive, then (3) with λ = 0 gives an “unconstrained”
solution, and this solution has squared norm (4) that is either greater than
∆2 or not. If not, we have found an inexact solution. If greater, we decide
to impose the constraint. This decision is stable in the sense that we will
not want to undo it later.

With inexact arithmetic, we are unlikely ever to get the “hard” case.
Nevertheless, we allow for the possibility. Define

C1 =

n∑
j=1

λj 6=λmin

(
qTj g

λj − λmin

)2

(8a)

C2 =

n∑
j=1

λj=λmin

(
qTj g

)2
(8b)

4

Then the constrained cases are distinguished as follows.

� easy case: C2 6= 0.

� hard-easy case: C2 = 0 and C1 > ∆2.

� hard-hard case: C2 = 0 and C1 ≤ ∆2.

The “hard-hard case” is now obvious. τ is adjusted so that the second
term on the right hand side in (7) has squared length ∆2 − C1.

In the other two cases we must find a zero of the function of λ given by

‖p(λ)‖2 −∆ (9a)

or (what is equivalent) a zero of the function defined by

φ(λ) =
1

‖p(λ)‖
− 1

∆
(9b)

which is better behaved (Nocedal and Wright, 1999, Chapter 4). Both are
monotone, (9a) strictly decreasing and (9b) strictly increasing, but (9b) is
also nearly linear.

We would like to bracket the zero, finding an interval containing the zero.
We know that λ = −λmin is a lower bound. We have

φ(−λmin) =
1√
C1
− 1

∆
< 0

in the “hard-easy case” and

φ(−λmin) = − 1

∆

in the “easy case”. A better lower bound uses

‖p(λ)‖2 ≥ C2

(λmin + λ)2

from which (setting the right hand side equal to ∆2 and solving for λ) we
get

λdn =

√
C2

∆
− λmin

as a lower bound for the λ that makes ‖p(λ)‖ = ∆.

5

To get an upper bound, we note that if we define

C3 =
n∑
j=1

(
qTj g

)2
(10)

then we have

‖p(λ)‖2 ≤ C3

(λmin + λ)2

Setting the right hand side equal to ∆2 and solving for λ gives

λup =

√
C3

∆
− λmin

as an upper bound. So now we know there is a solution in [λdn, λup].

1.3 Rescaling

When the variables are ill-scaled, the trust region is badly designed and
Nocedal and Wright (1999, Section 4.4) recommend changing the trust re-
gion subproblem to

minimize m(p)
def
= f + gT p+ 1

2p
TBp

subject to ‖Dp‖≤ ∆
(11)

where D is a strictly positive definite diagonal matrix (as will be seen below,
D can be any invertible matrix).

We claim that this is equivalent to running our original algorithm (with
no D or, what is equivalent, with D the identity matrix) on the function f̃
defined by

f̃(x̃) = f(D−1x̃)

Consider a point x̃k = Dxk. Here, if g and B denote the gradient and
Hessian of f , then

g̃ = D−1g (12a)

B̃ = D−1BD−1 (12b)

are the gradient and Hessian of f . The trust region subproblem (of the
original kind with no D) for f̃ (for an iterate centered at x̃k using trust
region “radius” ∆k) is

minimize m̃(w)
def
= f + g̃Tw + 1

2w
T B̃w

f + gTD−1w + 1
2w

TD−1BD−1w

subject to ‖w‖≤ ∆k

(13)

6

Let w∗ be a solution to (13), and define p∗ = D−1w∗. Then p∗ solves (11).
Let x1 is the starting point for the trust region problem of minimizing f

using rescaling D. Define x̃1 = D−1x1, and consider it the starting point for
the trust region problem of minimizing f̃ using no rescaling. Let x̃1, x̃2, . . .
be the sequence of iterates produced in the latter problem. Then we have

x̃k+1 − x̃k = w∗k

= Dp∗k

= D(xk+1 − xk)

whenever we have an accepted step (so xk+1 6= xk).

2 Termination Criteria

Although not part of the trust region algorithm proper, termination
criteria are important. Fletcher (1987) discusses them on pp. 22–23 and 57
ff. The conventional criteria are to terminate when any of

f(xk)− f(xk+1) (14a)

xk − xk+1 (14b)

∇f(xk) (14c)

are small. All are used in practice. Note that (14b) and (14c) are vectors,
so what “small” means for them is more complicated.

Fletcher (1987, pp. 57 ff.) makes the point that it is desirable that an
optimization algorithm be invariant under rescaling, perhaps under arbi-
trary affine transformation of the domain of the objective function, perhaps
only under diagonal scaling. A trust region algorithm is not invariant un-
der rescaling unless the scaling matrix D introduced in Section 1.3 exactly
matches the scaling. Nevertheless, invariant convergence tests still make
sense and only (14a) among those considered above is invariant.

Fletcher also suggests

(xk+1 − xk)T∇f(xk) (14d)

which is invariant when the step is a Newton step.
It is also possible for ∆k → 0 as k → ∞ (see Fletcher, 1987, proof of

Theorem 5.1.1). Thus it is also necessary to consider termination when

∆k (14e)

is small.

7

3 Algorithm

3.1 Order of Operations

The algorithm has one main loop and (as described) does

� one objective function evaluation (value, gradient, and Hessian) and

� one adjustment of ∆k and xk

per iteration. The main tricky bit is to decide where in the loop each part
of the computation occurs. We can break the body of the loop into the
following parts.

� Solve trust region subproblem.

� Evaluate objective function and derivatives at xk + pk.

� Adjust current point xk and trust radius ∆k.

� Test for termination with xk+1 the solution.

The following considerations influence the order in which these steps are
done.

� Evaluation of f(xk + pk) must come between the solution of the sub-
problem (which produces pk) and the adjustment of xk and ∆k, be-
cause the adjustment depends on (1), which depends on pk.

� Thus all that remains to be decided is where in the Solve-Evaluate-
Adjust cycle to put the termination test.

– Solve-Test-Evaluate-Adjust and Solve-Evaluate-Test-Adjust are
senseless, because we can’t decide that xk + pk is the solution
until after we decide whether or not to set xk+1 = xk + pk in the
Adjust step, and it makes no sense to do the work of producing
pk and not let xk + pk be considered for the solution.

– Thus the order should be Solve-Evaluate-Adjust-Test as in the
list above.

3.2 Termination Test

Criteria for termination.

8

(a) The change in the objective function value |f(xk) − f(xk+1)| is less
than the termination criterion ε1 in any step.

(b) The change in the second-order Taylor-series model of the objective
function value

∣∣(xk − xk+1)
T
(
gk + 1

2Bk(xk − xk−1)
)∣∣ is less than the

termination criterion ε3 in any step.

(c) The trust region radius ∆k has shrunk to less than the termination
criterion ε4 in any step.

Condition (b) is also invariant under affine transformations of the pa-
rameter space. It seems to make more sense than using the first-order series
condition (14d) discussed above, especially since we are already calculating
it, because it is the denominator in (1).

Condition (c) appears to be redundant, since when the trust region
shrinks to too small, this will force (a) and (b) to be small too.

Now we have a nice unification of ideas. The object tested in (a) is
the numerator in (1), the object tested in (b) is the denominator in (1).
When either is small, the ratio (1) may be wildly erroneous due to inexact
computer arithmetic, but then we terminate the algorithm anyway.

However, this analysis tells us that our separation of work to do into
“Adjust” and “Test” steps is erroneous. When we should terminate, we
cannot adjust because we cannot (or should not) calculate the “Adjust”
criterion (1). The reason why we originally wanted “Test” after “Adjust”
is that we thought that it made no sense to terminate when the “Adjust”
procedure rejects the step. But now we see that if it rejects the step based
on a value of (1) that is reliable, then we won’t terminate anyway because
we have decided to terminate if and only if we declare (1) unreliable.

References

Fletcher, R. (1987). Practical Methods of Optimization, second edition. John
Wiley.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer-
Verlag.

9

