Package ‘traveltimeR’

July 17, 2025
Title Interface to 'Travel Time' API

Version 1.3.1

Description 'Travel Time' API <https:
//docs.traveltime.com/api/overview/introduction> helps users find locations by jour-
ney time rather than using ‘as the crow flies’ distance.
Time-based searching gives users more opportunities for personalisation and delivers a more rel-
evant search.

Maintainer TravelTime <frontend@traveltime.com>
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Imports data.table, httr, jsonlite, RProtoBuf

URL https://github.com/traveltime-dev/traveltime-sdk-r

BugReports https://github.com/traveltime-dev/traveltime-sdk-r/issues
Depends R (>=2.10)

NeedsCompilation no

Author TravelTime [aut, cre] (https://github.com/traveltime-dev)

Repository CRAN

Date/Publication 2025-07-17 07:30:02 UTC

Contents
check_coords_for_error e e 2
distance_map e e 2
geocoding e e 4
ge0COdING_TEVEISE« v v vttt e e e e e e e e 5
make _location s 6
make_search e 6
make _union_intersect e e e e e e e e e 7
map_info 8

https://docs.traveltime.com/api/overview/introduction
https://docs.traveltime.com/api/overview/introduction
https://github.com/traveltime-dev/traveltime-sdk-r
https://github.com/traveltime-dev/traveltime-sdk-r/issues

Index

distance_map

TOULES . & v v v e e e e e e e e e e e 9
supported_locations L. 10
time_filter e e e e e e 11
time_filter_fast e e 12
time_filter_fast_proto 14
time_filter_postcodes L. 15
time_filter_postcode_districts oo 16
time_filter_postcode_sectors e 17
HME_MAP .+ .« v v v v o e 19
time_map_fast. 20

22

check_coords_for_error

Validates location coordinates

Description

Validates location coordinates

Usage

check_coords_for_error(coords)

Arguments

coords Location coordinates. Must use this format: list(lat = 0, Ing = 0)

Value

TRUE if coords are valid, FALSE otherwise

distance_map Distance Map

Description

Given origin coordinates, find shapes of zones reachable within corresponding travel distance. Find
unions/intersections between different searches

distance_map 3

Usage

distance_map(
departure_searches = NULL,
arrival_searches = NULL,
unions = NULL,
intersections = NULL,
format = NULL

Arguments

departure_searches

One or more objects created by make_search
arrival_searches

One or more objects created by make_search

unions One or more objects created by make_union_intersect
intersections One or more objects created by make_union_intersect

format distance-map response format. See https://docs. traveltime.com/api/reference/
distance-map#Response-Body for details.

Details

See https://docs.traveltime.com/api/reference/distance-map/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:
dateTime <- strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ")

departure_search <-
make_search(id = "driving from Trafalgar Square”,
departure_time = dateTime,
travel_distance = 900,
coords = list(lat = 51.507609, lng = -0.128315),
transportation = list(type = "driving"))

arrival_search <-
make_search(id = "driving to Trafalgar Square”,
arrival_time = dateTime,
travel_distance = 900,
coords = list(lat = 51.507609, 1lng = -0.128315),
transportation = list(type = "driving"),
range = list(enabled = TRUE, width = 3600))

https://docs.traveltime.com/api/reference/distance-map#Response-Body
https://docs.traveltime.com/api/reference/distance-map#Response-Body
https://docs.traveltime.com/api/reference/distance-map/

geocoding

union <- make_union_intersect(id = "union of driving to and from Trafalgar Square”,

intersection <- make_union_intersect(id = "intersection of driving to and from Trafalgar Square”,

result <-
distance_map(

departure_searches
arrival_searches

search_ids = list('driving from Trafalgar Square',
'driving to Trafalgar Square'))

search_ids = list('driving from Trafalgar Square',
'driving to Trafalgar Square'))

departure_search,
arrival_search,

unions = union,
intersections = intersection
)
End(Not run)
geocoding Geocoding (Search)
Description

Match a query string to geographic coordinates.

Usage

geocoding(
query,
within
format
format
bounds

.hame

= NA

Arguments

query

within.country

format.name

format.exclude.

bounds

.country = NA,

NA,

.exclude.country = NA,

A query to geocode. Can be an address, a postcode or a venue.

Only return the results that are within the specified country. If no results are
found it will return the country itself. Optional. Format:ISO 3166-1 alpha-2 or
alpha-3

Format the name field of the response to a well formatted, human-readable ad-
dress of the location. Experimental. Optional.

country

Exclude the country from the formatted name field (used only if format.name is
equal true). Optional.

Used to limit the results to a bounding box. Expecting a character vector with
four floats, marking a south-east and north-west corners of a rectangle: min-
latitude, min-longitude,max-latitude,max-longitude. e.g. bounds for Scandinavia
c(54.16243,4.04297,71.18316,31.81641). Optional.

geocoding_reverse

Details

See https://docs.traveltime.com/api/reference/geocoding-search/ for details

Value

API response parsed as list and as a raw json

Examples

Not run:
geocoding('Parliament square')

End(Not run)

geocoding_reverse Reverse Geocoding

Description

Attempt to match a latitude, longitude pair to an address.

Usage

geocoding_reverse(lat, 1ng)

Arguments
lat Latitude of the point to reverse geocode.
1ng Longitude of the point to reverse geocode.
Details

See https://docs.traveltime.com/api/reference/geocoding-reverse/ for details

Value

API response parsed as list and as a raw json

Examples

Not run:
geocoding_reverse(lat=51.507281, lng=-0.132120)

End(Not run)

https://docs.traveltime.com/api/reference/geocoding-search/
https://docs.traveltime.com/api/reference/geocoding-reverse/

6 make_search

make_location Location objects constructor

Description

Define your locations to use later in departure_searches or arrival_searches.

Usage

make_location(id, coords)

Arguments
id You will have to reference this id in your searches. It will also be used in the
response body. MUST be unique among all locations.
coords Location coordinates. Must use this format: list(lat = 0, Ing = 0)
Details

See https://docs.traveltime.com/api/reference/distance-matrix for details

Value
A data.frame wrapped in a list. It is constructed in a way that allows jsonlite::toJSON to correctly
transform it into a valid request body

See Also

See time_filter for usage examples

make_search Search objects constructor

Description

Searches based on departure or arrival times. Departure: Leave departure location at no earlier than
given time. You can define a maximum of 10 searches Arrival: Arrive at destination location at no
later than given time. You can define a maximum of 10 searches

https://docs.traveltime.com/api/reference/distance-matrix

make_union_intersect 7

Usage

make_search(
id,
travel_time = NA,
coords = NA,
departure_time = NA,
arrival_time = NA,

transportation = list(type = "driving"),
)
Arguments
id Used to identify this specific search in the results array. MUST be unique among
all searches.
travel_time Travel time in seconds. Maximum value is 14400 (4 hours)
coords The coordinates of the location we should start the search from. Must use this

format: list(lat = 0, Ing = 0)
departure_time Date in extended ISO-8601 format
arrival_time Date in extended ISO-8601 format
transportation Transportation mode and related parameters.

Any additional parameters to pass. Some functions require extra parameters to
work. Check their API documentation for details.

Value

A data.frame wrapped in a list. It is constructed in a way that allows jsonlite::toJSON to correctly
transform it into a valid request body

See Also

See time_map for usage examples

make_union_intersect Set objects constructor

Description

Allows you to define unions or intersections of shapes that are results of previously defined searches.
You can define a maximum of 10 unions/intersections

Usage

make_union_intersect(id, search_ids)

8 map_info

Arguments
id Used to identify this specific search in the results array. MUST be unique among
all searches.
search_ids An unnamed list of search ids which results will formulate this union.
Details

See https://docs.traveltime.com/api/reference/isochrones for details

Value
A data.frame wrapped in a list. It is constructed in a way that allows jsonlite::toJSON to correctly
transform it into a valid request body

See Also

See time_map for usage examples

map_info Map Info

Description

Returns information about currently supported countries.

Usage

map_info()

Details

See https://docs.traveltime.com/api/reference/map-info/ for details

Value

API response parsed as list and as a raw json

Examples

Not run:
map_info()

End(Not run)

https://docs.traveltime.com/api/reference/isochrones
https://docs.traveltime.com/api/reference/map-info/

routes 9

routes Routes

Description

Returns routing information between source and destinations.

Usage

routes(locations, departure_searches = NULL, arrival_searches = NULL)

Arguments

locations One or more objects created by make_location
departure_searches

One or more objects created by make_search
arrival_searches

One or more objects created by make_search

Details

See https://docs.traveltime.com/api/reference/routes/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:
locations <- ¢(
make_location(
id = 'London center',
coords = list(lat = 51.508930, 1ng
make_location(
id = 'Hyde Park',
coords = list(lat = 51.508824, 1ng = -0.167093)),
make_location(
id = '"ZSL London Zoo',
coords = list(lat = 51.536067, 1ng = -0.153596))

-0.131387)),

)
departure_search <-
make_search(id = "departure search example”,
departure_location_id = "London center”,

arrival_location_ids = list("Hyde Park”, "ZSL London Zoo"),
departure_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),

transportation = list(type = "driving"),

properties = list("travel_time", "distance”, "route"))

https://docs.traveltime.com/api/reference/routes/

10 supported_locations

arrival_search <-
make_search(id = "arrival search example”,
arrival_location_id = "London center”,
departure_location_ids = list("Hyde Park”, "ZSL London Zoo"),
arrival_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
transportation = list(type = "public_transport”),
properties = list('travel_time', "distance”, "route”, "fares"),
range = list(enabled = TRUE, width = 1800, max_results = 1))

result <-
routes(
departure_searches = departure_search,
arrival_searches = arrival_search,
locations = locations

End(Not run)

supported_locations Supported Locations

Description
Find out what points are supported by the api. The returned map name for a point can be used to
determine what features are supported. See also the map_info.

Usage

supported_locations(locations)

Arguments

locations One or more objects created by make_location

Details

See https://docs.traveltime.com/api/reference/supported-locations/ for details

Value

API response parsed as list and as a raw json

Examples
Not run:
locationsDF <- data.frame(
id = c¢('Kaunas', 'London', 'Bangkok', 'Lisbon'),

lat = c(54.900008, 51.506756, 13.761866, 38.721869),
Ing = c(23.957734, -0.128050, 100.544818, -9.138549)

https://docs.traveltime.com/api/reference/supported-locations/

time_filter 11

)

locations <- apply(locationsDF, 1, function(x)
make_location(id = x['id'], coords = list(lat = as.numeric(x["lat"]),
lIng = as.numeric(x["1ng"1))))
supported_locations(unlist(locations, recursive = FALSE))

End(Not run)

time_filter Distance Matrix (Time Filter)

Description

Given origin and destination points filter out points that cannot be reached within specified time
limit. Find out travel times, distances and costs between an origin and up to 2,000 destination
points.

Usage

time_filter(locations, departure_searches = NULL, arrival_searches = NULL)

Arguments

locations One or more objects created by make_location
departure_searches

One or more objects created by make_search
arrival_searches

One or more objects created by make_search

Details

See https://docs. traveltime.com/api/reference/travel-time-distance-matrix/ forde-
tails

Value

API response parsed as a list and as a raw json

Examples

Not run:
locationsDF <- data.frame(
id = c('London center', 'Hyde Park', 'ZSL London Zoo'),
lat = ¢(51.508930, 51.508824, 51.536067),
1ng = c(-0.131387, -0.167093, -0.153596)
)
locations <- apply(locationsDF, 1, function(x)
make_location(id = x['id'], coords = list(lat = as.numeric(x["lat"]),
lng = as.numeric(x["1ng"1))))

https://docs.traveltime.com/api/reference/travel-time-distance-matrix/

12 time_filter fast

locations <- unlist(locations, recursive = FALSE)

departure_search <-
make_search(id = "forward search example”,
departure_location_id = "London center”,
arrival_location_ids = list("Hyde Park”, "ZSL London Zoo"),
departure_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
travel_time = 1800,
transportation = list(type = "bus"),
properties = list('travel_time'),
range = list(enabled = TRUE, width = 600, max_results = 3))

arrival_search <-
make_search(id = "backward search example”,

arrival_location_id = "London center”,
departure_location_ids = list("Hyde Park”, "ZSL London Zoo"),

arrival_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
travel_time = 1800,
transportation = list(type = "public_transport”),

properties = list('travel_time', "distance”, "distance_breakdown”, "fares"),
range = list(enabled = TRUE, width = 600, max_results = 3))

result <-
time_filter(
departure_searches = departure_search,
arrival_searches = arrival_search,
locations = locations

End(Not run)

time_filter_fast Time Filter (Fast)

Description

A very fast version of time_filter. However, the request parameters are much more limited.
Currently only supports UK and Ireland.

Usage

time_filter_fast(
locations,
arrival_many_to_one = NULL,
arrival_one_to_many = NULL

time_filter fast 13

Arguments

locations One or more objects created by make_location
arrival_many_to_one

One or more objects created by make_search
arrival_one_to_many

One or more objects created by make_search

Details

See https://docs.traveltime.com/api/reference/time-filter-fast/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:

locations <- c(
make_location(
id = 'London center',
coords = list(lat = 51.508930, lng
make_location(
id = 'Hyde Park',
coords = list(lat = 51.508824, 1ng = -0.167093)),
make_location(
id = 'ZSL London Zoo',
coords = list(lat = 51.536067, lng
)
arrival_many_to_one <- make_search(id = "arrive-at many-to-one search example”,
arrival_location_id = "London center”,
departure_location_ids = list("Hyde Park"”, "ZSL London Zoo"),
travel_time = 1900,
transportation = list(type = "public_transport”),
properties = list('travel_time', "fares"),
arrival_time_period = "weekday_morning")

-0.131387)),

-0.153596))

arrival_one_to_many <- make_search(id = "arrive-at one-to-many search example”,
departure_location_id = "London center”,
arrival_location_ids = list("Hyde Park"”, "ZSL London Zoo"),
travel_time = 1900,
transportation = list(type = "public_transport”),
properties = list('travel_time', "fares"),
arrival_time_period = "weekday_morning")

result <- time_filter_fast(locations, arrival_many_to_one, arrival_one_to_many)

End(Not run)

https://docs.traveltime.com/api/reference/time-filter-fast/

14 time_filter_fast_proto

time_filter_fast_proto
Time Filter (Fast) with Protobuf

Description

The Travel Time Matrix (Fast) endpoint is available with even higher performance through a version
using Protocol Buffers. The endpoint takes as inputs a single origin location, multiple destination
locations, a mode of transport, and a maximum travel time. The endpoint returns the travel times to
each destination location, so long as it is within the maximum travel time.

Usage
time_filter_fast_proto(
departurelLat,
departurelng,
country = c(
"nl"”, "at", "uk", "be", "de", "fr", "ie", "1t", "us", "za",

"ro”, "pt”, "ph", "nz", "no", "lv", "jp", "in", "id", "hu",
"gr", "fi", "dk", "ca", "au", "sg", "ch", "es", "it", "pl”,
"se", "1i", "mx", "sa", "rs", "si"

),

travelTime,

destinationCoordinates,

transportation = names(protoTransport),

useDistance = FALSE

Arguments

departurelLat origin latitude
departureLng origin longitude

country Origin country. See https://docs.traveltime.com/api/overview/supported-countries
for the list of supported countries

travelTime Maximum journey time (in seconds).

destinationCoordinates
data.frame with pairs of coordinates. Coordinates columns must be named ’lat’

and ’Ing’

transportation One of supported transportation methods: ’pt’, ’driving+ferry’, *cycling+ferry’,
walking+ferry’.

useDistance return distance information

Details

See https://docs.traveltime.com/api/start/travel-time-distance-matrix-proto for de-
tails

https://docs.traveltime.com/api/overview/supported-countries
https://docs.traveltime.com/api/start/travel-time-distance-matrix-proto

time_filter_postcodes 15

Value

API response parsed as a list and as a raw json

Examples

Not run:

time_filter_fast_proto(

departurelLat = 51.508930,

departurelLng = -0.131387,

destinationCoordinates = data.frame(
lat = c(51.508824, 51.536067),
Ing = c(-0.167093, -0.153596)

),

transportation = 'drivingtferry',

travelTime = 7200,

country = "uk",

useDistance = FALSE

)

End(Not run)

time_filter_postcodes Time Filter (Postcodes)

Description
Find reachable postcodes from origin (or to destination) and get statistics about such postcodes.
Currently only supports United Kingdom.

Usage

time_filter_postcodes(departure_searches = NULL, arrival_searches = NULL)

Arguments

departure_searches

One or more objects created by make_search
arrival_searches

One or more objects created by make_search

Details

See https://docs.traveltime.com/api/reference/postcode-search/ for details

Value

API response parsed as a list and as a raw json

https://docs.traveltime.com/api/reference/postcode-search/

16 time_filter_postcode_districts

Examples

Not run:
departure_search <-
make_search(id = "public transport from Trafalgar Square”,
departure_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
travel_time = 1800,
coords = list(lat = 51.507609, 1lng = -0.128315),
transportation = list(type = "public_transport”),
properties = list('travel_time', 'distance'))

arrival_search <-
make_search(id = "public transport to Trafalgar Square”,
arrival_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
travel_time = 1800,
coords = list(lat = 51.507609, 1ng = -0.128315),
transportation = list(type = "public_transport”),
properties = list('travel_time', 'distance'))

result <-
time_filter_postcodes(
departure_searches = departure_search,
arrival_searches = arrival_search

)

End(Not run)

time_filter_postcode_districts
Time Filter (Postcode Districts)

Description

Find districts that have a certain coverage from origin (or to destination) and get statistics about
postcodes within such districts. Currently only supports United Kingdom.

Usage

time_filter_postcode_districts(
departure_searches = NULL,
arrival_searches = NULL

Arguments

departure_searches

One or more objects created by make_search
arrival_searches

One or more objects created by make_search

time_filter_postcode_sectors 17

Details

See https://docs.traveltime.com/api/reference/postcode-district-filter/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:
departure_search <-
make_search(id = "public transport from Trafalgar Square”,
departure_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),

travel_time = 1800,
coords = list(lat = 51.507609, lng = -0.128315),
transportation = list(type = "public_transport”),
reachable_postcodes_threshold = 0.1,
properties = list("coverage”, "travel_time_reachable”, "travel_time_all"))

arrival_search <-
make_search(id = "public transport to Trafalgar Square”,

arrival_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
travel_time = 1800,
coords = list(lat = 51.507609, lng = -0.128315),
transportation = list(type = "public_transport”),
reachable_postcodes_threshold = 0.1,
properties = list("coverage”, "travel_time_reachable”, "travel_time_all"))

result <-
time_filter_postcode_districts(
departure_searches = departure_search,
arrival_searches = arrival_search

)

End(Not run)

time_filter_postcode_sectors
Time Filter (Postcode Sectors)

Description

Find sectors that have a certain coverage from origin (or to destination) and get statistics about
postcodes within such sectors. Currently only supports United Kingdom.

https://docs.traveltime.com/api/reference/postcode-district-filter/

18 time_filter_postcode_sectors

Usage

time_filter_postcode_sectors(
departure_searches = NULL,
arrival_searches = NULL

Arguments

departure_searches

One or more objects created by make_search
arrival_searches

One or more objects created by make_search

Details

See https://docs.traveltime.com/api/reference/postcode-sector-filter/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:
departure_search <-
make_search(id = "public transport from Trafalgar Square”,
departure_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),

travel_time = 1800,
coords = list(lat = 51.507609, 1lng = -0.128315),
transportation = list(type = "public_transport”),
reachable_postcodes_threshold = 0.1,
properties = list("coverage”, "travel_time_reachable”, "travel_time_all"))

arrival_search <-
make_search(id = "public transport to Trafalgar Square”,

arrival_time = strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ"),
travel_time = 1800,
coords = list(lat = 51.507609, 1lng = -0.128315),
transportation = list(type = "public_transport”),
reachable_postcodes_threshold = 0.1,
properties = list("coverage”, "travel_time_reachable”, "travel_time_all"))

result <-
time_filter_postcode_sectors(
departure_searches = departure_search,
arrival_searches = arrival_search

)

End(Not run)

https://docs.traveltime.com/api/reference/postcode-sector-filter/

time_map

19

time_map

Isochrones (Time Map)

Description

Given origin coordinates, find shapes of zones reachable within corresponding travel time. Find
unions/intersections between different searches

Usage

time_map(

departure_searches = NULL,
arrival_searches = NULL,
unions = NULL,
intersections = NULL,

format =

Arguments

NULL

departure_searches

One or more objects created by make_search

arrival_searches

unions

One or more objects created by make_search

One or more objects created by make_union_intersect

intersections One or more objects created by make_union_intersect

format

Details

time-map response format. See https://docs.traveltime.com/api/reference/
isochrones#Response-Body for details.

See https://docs.traveltime.com/api/reference/isochrones/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:

dateTime <- strftime(as.POSIX1t(Sys.time(), "UTC"), "%Y-%m-%dT%H:%M:%SZ")

departure_searchl <-
make_search(id = "public transport from Trafalgar Square”,

departure_time = dateTime,
travel_time = 900,

https://docs.traveltime.com/api/reference/isochrones#Response-Body
https://docs.traveltime.com/api/reference/isochrones#Response-Body
https://docs.traveltime.com/api/reference/isochrones/

20 time_map_fast

coords = list(lat = 51.507609, lng = -0.128315),
transportation = list(type = "public_transport”),
properties = list('is_only_walking'))

departure_search2 <-
make_search(id = "driving from Trafalgar Square”,
departure_time = dateTime,
travel_time = 900,
coords = list(lat = 51.507609, 1lng = -0.128315),
transportation = list(type = "driving"))

arrival_search <-
make_search(id = "public transport to Trafalgar Square”,
arrival_time = dateTime,
travel_time = 900,
coords = list(lat = 51.507609, lng = -0.128315),
transportation = list(type = "public_transport”),
range = list(enabled = TRUE, width = 3600))

union <- make_union_intersect(id = "union of driving and public transport”,
search_ids = list('driving from Trafalgar Square',
'public transport from Trafalgar Square'))
intersection <- make_union_intersect(id = "intersection of driving and public transport”,
search_ids = list('driving from Trafalgar Square',

'public transport from Trafalgar Square'))
result <-

time_map(
departure_searches = c(departure_searchl, departure_search2),
arrival_searches = arrival_search,
unions = union,
intersections = intersection

)

End(Not run)

time_map_fast Isochrones (Time Map) Fast

Description

A very fast version of Isochrone API. However, the request parameters are much more limited.

Usage

time_map_fast(
arrival_many_to_one = NULL,
arrival_one_to_many NULL,
format = NULL

time_map_fast 21

Arguments
arrival_many_to_one
One or more objects created by make_search
arrival_one_to_many
One or more objects created by make_search

format time-map response format. See https://docs. traveltime.com/api/reference/
isochrones-fast#Response-Body for details.

Details

See https://docs.traveltime.com/api/reference/isochrones-fast/ for details

Value

API response parsed as a list and as a raw json

Examples

Not run:

arrival_search <-
make_search(id = "public transport to Trafalgar Square”,
travel_time = 900,
coords = list(lat = 51.507609, 1ng = -0.128315),
arrival_time_period = "weekday_morning",
transportation = list(type = "public_transport”))

result <-
time_map_fast(
arrival_many_to_one = arrival_search

)

End(Not run)

https://docs.traveltime.com/api/reference/isochrones-fast#Response-Body
https://docs.traveltime.com/api/reference/isochrones-fast#Response-Body
https://docs.traveltime.com/api/reference/isochrones-fast/

Index

check_coords_for_error, 2
distance_map, 2

geocoding, 4
geocoding_reverse, 5

make_location, 6, 9-11, 13
make_search, 3,6, 9,11, 13,15, 16, 18, 19, 21
make_union_intersect, 3,7, 19
map_info, 8, 10

routes, 9
supported_locations, 10

time_filter, 6, 11, 12
time_filter_fast, 12
time_filter_fast_proto, 14
time_filter_postcode_districts, 16
time_filter_postcode_sectors, 17
time_filter_postcodes, 15
time_map, 7, 8, 19

time_map_fast, 20

22

	check_coords_for_error
	distance_map
	geocoding
	geocoding_reverse
	make_location
	make_search
	make_union_intersect
	map_info
	routes
	supported_locations
	time_filter
	time_filter_fast
	time_filter_fast_proto
	time_filter_postcodes
	time_filter_postcode_districts
	time_filter_postcode_sectors
	time_map
	time_map_fast
	Index

