Package ‘transltr’

February 14, 2025

Title Support Many Languages in R
Version 0.1.0

Description An object model for source text and translations. Find and extract
translatable strings. Provide translations and seamlessly retrieve them at
runtime.

License MIT + file LICENSE
URL https://transltr.ununoctium.dev

BugReports https://github.com/jeanmathieupotvin/transltr/issues
Encoding UTF-8

Language en

RoxygenNote 7.3.2

Config/testthat/edition 3

Depends R (>=4.3)

Imports digest, R6, stringi, utils, yaml

Suggests covr, devtools, lifecycle, microbenchmark, pkgdown, testthat
(>=3.0.0), usethis, withr

Collate 'aaa.R''assert.R' 'class-location.R' 'class-text.R'
'class-translator.R' 'find-source-in-exprs.R' 'find-source.R'
'flat.R' 'hash.R' language.R' 'normalize.R' 'serialize.R'
'text-i0.R" 'translator-io.R' 'transltr-package.R'
'utils-format-vector.R' 'utils-map.R' 'utils-nullish-op.R'
'utils-stop.R' 'utils-strings.R' 'uuid.R' 'zzz.R'

NeedsCompilation no

Author Jean-Mathieu Potvin [aut, cre, cph],
Jérdme Lavoué [ctb, fnd, rev] (<https://orcid.org/0000-0003-4950-5475>)

Maintainer Jean-Mathieu Potvin <jeanmathieupotvin@ununoctium.dev>
Repository CRAN
Date/Publication 2025-02-14 16:40:02 UTC

https://transltr.ununoctium.dev
https://github.com/jeanmathieupotvin/transltr/issues
https://orcid.org/0000-0003-4950-5475

2 find_source
Contents
find_source e 2
language_set L. 5
translator L L e e e e e e 7
translator_read L L e 15
Index 19
find_source Find Source Text
Description
Find and extract source text that must be translated.
Usage
find_source(
path = ".",
encoding = "UTF-8",
verbose = getOption("transltr.verbose”, TRUE),
tr = translator(),
interface = NULL
)
find_source_in_files(
paths = character(),
encoding = "UTF-8",
verbose = getOption("transltr.verbose”, TRUE),
algorithm = algorithms(),
interface = NULL
)
Arguments
path A non-empty and non-NA character string. A path to a directory containing R
source scripts. All subdirectories are searched. Files that do not have a .R, or
.Rprofile extension are skipped.
encoding A non-empty and non-NA character string. The source character encoding.
In almost all cases, this should be UTF-8. Other encodings are internally re-
encoded to UTF-8 for portability.
verbose A non-NA logical value. Should progress information be reported?
tr A Translator object.
interface A name, a call object, or aNULL. A reference to an alternative (custom) function

used to translate text. If a call object is passed to interface, it must be to
operator ::. Calls to method Translator$translate() are ignored and calls
to interface are extracted instead. See Details below.

find_source 3

paths A character vector of non-empty and non-NA values. A set of paths to R source
scripts that must be searched.

algorithm A non-empty and non-NA character string equal to "shal”, or "utf8”. The
algorithm to use when hashing source information for identification purposes.

Details

find_source() and find_source_in_files() look for calls to method Translator$translate()
in R scripts and convert them to Text objects. The former further sets these resulting objects into a
Translator object. See argument tr.

find_source() and find_source_in_files() work on a purely lexical basis. The source code is
parsed but never evaluated (aside from extracted literal character vectors).

* The underlying Translator object is never evaluated and does not need to exist (placeholders
may be used in the source code).

* Only literal character vectors can be passed to arguments of method Translator$translate().

Interfaces:

In some cases, it may not be desirable to call method Translator$translate() directly. A
custom function wrapping (interfacing) this method may always be used as long as it has the
same signature as method Translator$translate(). In other words, it must minimally have
two formal arguments: . .. and source_lang.

Custom interfaces must be passed to find_source() and find_source_in_files() for extrac-
tion purposes. Since these functions work on a lexical basis, interfaces can be placeholders in the
source code (non- existent bindings) at the time these functions are called. However, they must be
bound to a function (ultimately) calling Translator$translate() at runtime.

Custom interfaces are passed to find_source() and find_source_in_files() as name or call
objects in a variety of ways. The most straightforward way is to use base: :quote(). See Exam-
ples below.

Methodology:
find_source() and find_source_in_files() go through these steps to extract source text from
a single R script.
1. Itis read with text_read() and re-encoded to UTF-8 if necessary.
2. It is parsed with parse() and underlying tokens are extracted from parsed expressions with
utils::getParseData().
3. Each expression (expr) token is converted to language objects with str2lang(). Parsing
errors and invalid expressions are silently skipped.
4. Valid call objects stemming from step 3 are filtered with is_source().
5. Calls to method Translator$translate() or to interface stemming from step 4 are co-
erced to Text objects with as_text().

These steps are repeated for each R script. find_source() further merges all resulting Text
objects into a coherent set with merge_texts() (identical source code is merged into single Text
entities).

Extracted character vectors are always normalized for consistency (at step 5). See normalize()
for more information.

https://en.wikipedia.org/wiki/Type_signature

4 find_source

Limitations:

The current version of transltr can only handle literal character vectors. This means it cannot
resolve non-trivial expressions that depends on a state. All values passed to argument ... of
method Translator$translate() must yield character vectors (trivially).

Value

find_source() returns an R6 object of class Translator. If an existing Translator object is
passed to tr, it is modified in place and returned.

find_source_in_files() returns a list of Text objects. It may contain duplicated elements, de-
pending on the extracted contents.

See Also

Translator, Text, normalize(), translator_read(), translator_write(), base: :quote(),
base::call(), base::as.name()

Examples

Create a directory containing dummy R scripts for illustration purposes.
temp_dir <- file.path(tempdir(TRUE), "find-source")

temp_files <- file.path(temp_dir, c("ex-script-1.R", "ex-script-2.R"))
dir.create(temp_dir, showWarnings = FALSE, recursive = TRUE)

cat(
"tr$translate('Hello, world!')",
"tr$translate('Farewell, world!')",

sep = "\n",
file = temp_files[[1L]1])
cat(

"tr$translate('Hello, world!')",
"tr$translate('Farewell, world!')",
sep = "\n",

file = temp_files[[2L]])

Extract calls to method Translator$translate().
find_source(temp_dir)
find_source_in_files(temp_files)

Use custom functions.
For illustrations purposes, assume the package
exports an hypothetical translate() function.
cat(
"translate('Hello, world!')",
"transtlr::translate('Farewell, world!')",

sep = n\nn,
file = temp_files[[1L]])
cat(

"translate('Hello, world!')",
"transltr::translate('Farewell, world!')",
sep = "\n",

language_set 5

file = temp_files[[2L1])

Extract calls to translate() and transltr::translate().

Since find_source() and find_source_in_files() work on

a lexical basis, these are always considered to be two

distinct functions. They also don't need to exist in the

R session calling find_source() and find_source_in_files().
find_source(temp_dir, interface = quote(translate))
find_source_in_files(temp_files, interface = quote(transltr::translate))

language_set Get or Set Language

Description

Get or set the current, and source languages.

They are registered as environment variables named TRANSLTR_LANGUAGE, and TRANSLTR_SOURCE _LANGUAGE.

Usage

language_set(lang = "en")
language_get ()
language_source_set(lang = "en")

language_source_get ()

Arguments
lang A non-empty and non-NA character string. The underlying language.
A language is usually a code (of two or three letters) for a native language name.
While users retain full control over codes, it is best to use language codes stem-
ming from well-known schemes such as IETF BCP 47, or ISO 639-1 to maxi-
mize portability and cross-compatibility.
Details

The language and the source language can always be temporarily changed. See argument lang of
method Translator$translate() for more information.

The underlying locale is left as is. To change an R session’s locale, use Sys.setlocale() or
Sys.setLanguage () instead. See below for more information.

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes

6 language_set

Value

language_set(), and language_source_set() return NULL, invisibly. They are used for their
side-effect of setting environment variables TRANSLTR_LANGUAGE and TRANSLTR_SOURCE _LANGUAGE,
respectively.

language_get () returns a character string. It is the current value of environment variable TRANSLTR_LANGUAGE.
It is empty if the latter is unset.

language_source_get () returns a character string. It is the current value of environment variable
TRANSLTR_SOURCE _LANGUAGE. It returns "en" if the latter is unset.

Locales versus languages

A locale is a set of multiple low-level settings that relate to the user’s language and region. The
language itself is just one parameter among many others.

Modifying a locale on-the-fly can be considered risky in some situations. It may not be the optimal
solution for merely changing textual representations of a program or an application at runtime, as it
may introduce unintended changes and induce subtle bugs that are harder to fix.

Moreover, it makes sense for some applications and/or programs such as Shiny applications to
decouple the front-end’s current language (what users see) from the back-end’s locale (what de-
velopers see). A Ul may be displayed in a certain language while keeping logs and R internal
messages, warnings, and errors as is.

Consequently, the language setting of transltr is purposely kept separate from the underlying
locale and removes the complexity of having to support many of them. Users can always change
both the locale and the 1anguage parameter of the package. See Examples.

Note

Environment variables are used because they can be shared among different processes. This mat-
ters when using parallel and/or concurrent R sessions. It can further be shared among direct and
transitive dependencies (other packages that rely on transltr).

Examples

Change the language parameters (globally).
language_source_set("en")
language_set("fr")

language_source_get() ## Outputs "en"
language_get () ## Outputs "fr"

Change both the language parameter and the locale.

Note that while users control how languages are named
for language_set(), they do not for Sys.setlLanguage().
language_set("fr")

Sys.setLanguage("fr-CA")

Reset settings.
language_source_set (NULL)
language_set (NULL)

https://en.wikipedia.org/wiki/Locale_(computer_software)
https://shiny.posit.co/

translator 7

Source language has a default value.
language_source_get() ## Outputs "en”

translator Source Text and Translations

Description

Structure and manipulate the source text of a project and its translations.
Usage

translator(..., id = uuid(), algorithm = algorithms())

is_translator(x)

S3 method for class 'Translator'
format(x, ...)

S3 method for class 'Translator'

print(x, ...)
Arguments
Usage depends on the underlying function.
* Any number of Text objects and/or named character strings for translator()
(in no preferred order).
* Further arguments passed to or from other methods for format(), and
print().
id A non-empty and non-NA character string. A globally unique identifier for the
Translator object. Beware of collisions when using user-defined values.
algorithm A non-empty and non-NA character string equal to "shal”, or "utf8”. The
algorithm to use when hashing source information for identification purposes.
X Any R object.
Details

A Translator object encapsulates the source text of a project (or any other context) and all related
translations. Under the hood, Translator objects are collections of Text objects. These do most of
the work. They are treated as lower-level component and in typical situations, users rarely interact
with them.

Translator objects can be saved and exported with translator_write(). They can be imported
back into an R session with translator_read().

translator

Value

translator () returns an R6 object of class Translator.
is_translator () returns a logical value.
format () returns a character vector.

print() returns argument x invisibly.

Active bindings

id A non-empty and non-NA character string. A globally unique identifier for the underlying
object. Beware of plausible collisions when using user-defined values.

algorithm A non-empty and non-NA character string equal to "sha1”, or "utf8". The algorithm
to use when hashing source information for identification purposes.

hashes A character vector of non-empty and non-NA values, or NULL. The set of all hash exposed
by registered Text objects. If there is none, hashes is NULL. This is a read-only field updated
whenever field algorithm is updated.

source_texts A character vector of non-empty and non-NA values, or NULL. The set of all regis-
tered source texts. If there is none, source_texts is NULL. This is a read-only field.

source_langs A character vector of non-empty and non-NA values, or NULL. The set of all regis-
tered source languages. This is a read-only field.
e If there is none, source_langs is NULL.
* If there is one unique value, source_langs is an unnamed character string.
¢ Otherwise, it is a named character vector.

languages A character vector of non-empty and non-NA values, or NULL. The set of all registered
languages (codes). If there is none, languages is NULL. This is a read-only field.

native_languages A named character vector of non-empty and non-NA values, or NULL. A map
(bijection) of languages (codes) to native language names. Names are codes and values are
native languages. If there is none, native_languages is NULL.
While users retain full control over native_languages, it is best to use well-known schemes
such as IETF BCP 47, or ISO 639-1. Doing so maximizes portability and cross-compatibility
between packages.

Update this field with method $set_native_languages(). See below for more information.

Methods

Public methods:

e Translator$new()

* Translator$translate()

e Translator$get_translation()

* Translator$get_text()

* Translator$set_text()

* Translator$set_texts()

e Translator$rm_text()

* Translator$set_native_languages()

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes

translator 9

e Translator$set_default_value()

Method new(): Create a Translator object.

Usage:
Translator$new(id = uuid(), algorithm = algorithms())

Arguments:

id A non-empty and non-NA character string. A globally unique identifier for the Translator
object. Beware of collisions when using user-defined values.

algorithm A non-empty and non-NA character string equal to "shal”, or "utf8". The algo-
rithm to use when hashing source information for identification purposes.

Returns: An R6 object of class Translator.

Examples:

Consider using translator() instead.
tr <- Translator$new()

Method translate(): Translate source text.

Usage:
Translator$translate(

lang = language_get(),
source_lang = language_source_get()

)
Arguments:
. Any number of vectors containing atomic elements. Each vector is normalized as a para-
graph.
* Elements are coerced to character values.
* NA values and empty strings are discarded.
* Multi-line strings are supported and encouraged. Blank lines are interpreted (two or more
newline characters) as paragraph separators.
lang A non-empty and non-NA character string. The underlying language.
A language is usually a code (of two or three letters) for a native language name. While
users retain full control over codes, it is best to use language codes stemming from well-
known schemes such as IETF BCP 47, or ISO 639-1 to maximize portability and cross-
compatibility.
source_lang A non-empty and non-NA character string. The language of the source text. See
argument lang for more information.

Details: See normalize() for further details on how . .. is normalized.

Returns: A character string. If there is no corresponding translation, the value passed to method
$set_default_value() is returned. NULL is returned by default.

Examples:

tr <- Translator$new()

tr$set_text(en = "Hello, world!"”, fr = "Bonjour, monde!")
tr$translate("Hello, world!"”, lang = "en") ## Outputs "Hello, world!"
tr$translate("Hello, world!"”, lang = "fr") ## Outputs "Bonjour, monde!"”

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes

translator

Method get_translation(): Extract a translation or a source text.

Usage:

nn

Translator$get_translation(hash = , lang = "")

Arguments:

hash A non-empty and non-NA character string. The unique identifier of the requested source
text.

lang A non-empty and non-NA character string. The underlying language.
A language is usually a code (of two or three letters) for a native language name. While
users retain full control over codes, it is best to use language codes stemming from well-
known schemes such as IETF BCP 47, or ISO 639-1 to maximize portability and cross-
compatibility.

Returns: A character string. If there is no corresponding translation, the value passed to method
$set_default_value() is returned. NULL is returned by default.

Examples:

tr <- Translator$new()
tr$set_text(en = "Hello, world!")

Consider using translate() instead.
tr$get_translation(”256e0d7", "en") ## Outputs "Hello, world!”

Method get_text(): Extract a source text and its translations.

Usage:
Translator$get_text(hash = "")

Arguments:

hash A non-empty and non-NA character string. The unique identifier of the requested source
text.

Returns: A Text object, or NULL.

Examples:

tr <- Translator$new()
tr$set_text(en = "Hello, world!")

tr$get_translation(”256e0d7", "en") ## Outputs "Hello, world!”

Method set_text(): Register a source text.
Usage:
Translator$set_text(..., source_lang = language_source_get())

Arguments:
. Passed as is to text ().
source_lang Passed as is to text ().

Returns: A NULL, invisibly.

Examples:

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes

translator 11

tr <- Translator$new()

tr$set_text(en = "Hello, world!", location())

Method set_texts(): Register one or more source texts.
Usage:
Translator$set_texts(...)
Arguments:

. Any number of Text objects.

Details: This method calls merge_texts() to merge all values passed to ... together with
previously registered Text objects. The underlying registered source texts, translations, and
Location objects won’t be duplicated.

Returns: A NULL, invisibly.

Examples:

Set source language.
language_source_set("en")

tr <- Translator$new()

Create Text objects.

txtl <- text(
location("a", 1L, 2L, 3L, 4L),
en = "Hello, world!"”,
fr = "Bonjour, monde!")

txt2 <- text(
location("b", 5L, 6L, 7L, 8L),
en = "Farewell, world!",
fr = "Au revoir, monde!")

tr$set_texts(txtl, txt2)

Method rm_text(): Remove a registered source text.
Usage:
Translator$rm_text(hash = "")
Arguments:
hash A non-empty and non-NA character string identifying the source text to remove.
Returns: A NULL, invisibly.
Examples:

tr <- Translator$new()
tr$set_text(en = "Hello, world!")

tr$rm_text ("256e0d7")

Method set_native_languages(): Map a language code to a native language name.

12 translator
Usage:
Translator$set_native_languages(...)
Arguments:
. Any number of named, non-empty, and non-NA character strings. Names are codes and
values are native languages. See field native_languages for more information.
Returns: A NULL, invisibly.
Examples:
tr <- Translator$new()
tr$set_native_languages(en = "English”, fr = "Francais”)
Remove existing entries.
tr$set_native_languages(fr = NULL)
Method set_default_value(): Register a default value to return when there is no correspond-
ing translations for the requested language.
Usage:
Translator$set_default_value(value = NULL)
Arguments:
value A NULL or a non-NA character string. It can be empty. The former is returned by default.
Details: This modifies what methods $translate() and $get_translation() returns when
there is no translation for lang.
Returns: A NULL, invisibly.
Examples:
tr <- Translator$new()
tr$set_default_value("<unavailable>")
See Also
find_source(), translator_read(), translator_write()
Examples

Set source language.
language_source_set("en")

Create a Translator object.

This would normally be done automatically
by find_source(), or translator_read().
tr <- translator(

id = "test-translator”,
en = "English",

es = "Espafol”,

fr = "Frangais”,

text(

location("a", 1L, 2L, 3L, 4L),

translator 13

en = "Hello, world!"”,
fr = "Bonjour, monde!"),
text(
location("b", 1L, 2L, 3L, 4L),
en = "Farewell, world!”,
fr = "Au revoir, monde!"))

is_translator(tr)

Translator objects has a specific format.
print() calls format() internally, as expected.
print(tr)

oo
Method ~Translator$new”
o

Consider using translator() instead.
tr <- Translator$new()

oo
Method ~Translator$translate”
B m o

tr <- Translator$new()

tr$set_text(en = "Hello, world!”, fr = "Bonjour, monde!")
tr$translate(”Hello, world!"”, lang = "en") ## Outputs "Hello, world!"
tr$translate("Hello, world!”, lang = "fr") ## Outputs "Bonjour, monde!"”

oo
Method "“Translator$get_translation”
e

tr <- Translator$new()
tr$set_text(en = "Hello, world!")

Consider using translate() instead.
tr$get_translation(”256e0d7"”, "en") ## Outputs "Hello, world!"”

B m o
Method ~Translator$get_text”
e

tr <- Translator$new()
tr$set_text(en = "Hello, world!")

tr$get_translation(”256e0d7"”, "en") ## Outputs "Hello, world!"”
B m o

Method ~Translator$set_text"
e

14

tr <- Translator$new()
tr$set_text(en = "Hello, world!"”, location())

H m o
Method ~Translator$set_texts”
H m o

Set source language.
language_source_set("en")

tr <- Translator$new()

Create Text objects.

txtl <- text(
location("a", 1L, 2L, 3L, 4L),
en = "Hello, world!",
fr = "Bonjour, monde!")

txt2 <- text(
location("b", 5L, 6L, 7L, 8L),
en = "Farewell, world!",
fr = "Au revoir, monde!")
tr$set_texts(txtl, txt2)
#H# -
Method “Translator$rm_text"
#H -

tr <- Translator$new()
tr$set_text(en = "Hello, world!")

tr$rm_text("256e0d7")

B oo
Method “Translator$set_native_languages”

B =
tr <- Translator$new()

tr$set_native_languages(en = "English”, fr = "Frangais")

Remove existing entries.

tr$set_native_languages(fr = NULL)

B oo
Method ~“Translator$set_default_value”
et

tr <- Translator$new()
tr$set_default_value(”<unavailable>")

translator

translator _read 15

translator_read Read and Write Translations

Description

Export Translator objects to text files and import such files back into R as Translator objects.

Usage

translator_read(
path = getOption("transltr.path”),
encoding = "UTF-8",
verbose = getOption("transltr.verbose”, TRUE),
translations = TRUE

)

translator_write(
tr = translator(),
path = getOption("transltr.path”),
overwrite = FALSE,
verbose = getOption("transltr.verbose”, TRUE),
translations = TRUE
)

translations_read(path = "", encoding = "UTF-8", tr = NULL)

nn

translations_write(tr = translator(), path = , lang = "")
translations_paths(

tr = translator(),

parent_dir = dirname(getOption("transltr.path"))

)
Arguments
path A non-empty and non-NA character string. A path to a file to read from, or write
to.
e This file must be a Translator file for translator_read().
e This file must be a translations file for translations_read().
See Details for more information. translator_write() automatically creates
the parent directories of path (recursively) if they do not exist.
encoding A non-empty and non-NA character string. The source character encoding.

In almost all cases, this should be UTF-8. Other encodings are internally re-
encoded to UTF-8 for portability.

verbose A non-NA logical value. Should progress information be reported?

16 translator_read

translations A non-NA logical value. Should translations files also be read, or written along
with path (the Translator file)?
tr A Translator object.

This argument is NULL by default for translations_read(). If a Translator
object is passed to this function, it will read translations and further register them
(as long as they correspond to an existing source text).

overwrite A non-NA logical value. Should existing files be overwritten? If such files are
detected and overwrite is set equal to TRUE, an error is thrown.
lang A non-empty and non-NA character string. The underlying language.

A language is usually a code (of two or three letters) for a native language name.
While users retain full control over codes, it is best to use language codes stem-
ming from well-known schemes such as IETF BCP 47, or ISO 639-1 to maxi-
mize portability and cross-compatibility.

parent_dir A non-empty and non-NA character string. A path to a parent directory.

Details
The information contained within a Translator object is split: translations are reorganized by
language and exported independently from other fields.

translator_write() creates two types of file: a single Translator file, and zero, or more transla-
tions files. These are plain text files that can be inspected and modified using a wide variety of tools
and systems. They target different audiences:

* the Translator file is useful to developers, and

e translations files are meant to be shared with non-technical collaborators such as translators.
translator_read() first reads a Translator file and creates a Translator object from it. It then
calls translations_paths() to list expected translations files (that should normally be stored

alongside the Translator file), attempts to read them, and registers successfully imported transla-
tions.

There are two requirements.
* All files must be stored in the same directory. By default, this is set equal to inst/transltr/
(see getOption("transltr.path”)).
* Filenames of translations files are standardized and must correspond to languages (language
codes, see 1lang).

The inner workings of the serialization process are thoroughly described in serialize().

Translator file:

A Translator file contains a YAML (1.1) representation of a Translator object stripped of all its
translations except those that are registered as source text.

Translations files:

A translations file contains a FLAT representation of a set of translations sharing the same target
language. This format attempts to be as simple as possible for non-technical collaborators.

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes
https://yaml.org/spec/1.1/

translator _read 17

Value

translator_read() returns an R6 object of class Translator.

translator_write() returns NULL, invisibly. It is used for its side-effects of

* creating a Translator file to the location given by path, and

* creating further translations file(s) in the same directory if translations is TRUE.
translations_read() returns an S3 object of class ExportedTranslations.

translations_write() returns NULL, invisibly.

translations_paths() returns a named character vector.

See Also

Translator, serialize()

Examples

Set source language.
language_source_set("en")

Create a path to a temporary Translator file.
temp_path <- tempfile(pattern = "translator_", fileext = ".yml")

-

temp_dir <- dirname(temp_path) ## tempdir() could also be used

Create a Translator object.
This would normally be done by find_source(), or translator_read().
tr <- translator(

id = "test-translator”,
en = "English”,
es = "Espafiol”,
fr = "Frangais”,
text(
en = "Hello, world!”,
fr = "Bonjour, monde!"),
text(
en = "Farewell, world!”,
fr = "Au revoir, monde!"))

Export it. This creates 3 files: 1 Translator file, and 2 translations
files because two non-source languages are registered. The file for

language "es" contains placeholders and must be completed.
translator_write(tr, temp_path)

translator_read(temp_path)

Translations can be read individually.
translations_files <- translations_paths(tr, temp_dir)
translations_read(translations_files[["es"]])
translations_read(translations_files[["fr"]1)

This is rarely useful, but translations can also be exported individually.
You may use this to add a new language, as long as it has an entry in the

18

underlying Translator object (or file).
tr$set_native_languages(el = "Greek")

translations_files <- translations_paths(tr, temp_dir)

translations_write(tr, translations_files[["el"]], "el")
translations_read(file.path(temp_dir, "el.txt"))

translator_read

Index

$get_translation(), 12
$set_default_value(), 9, 10
$set_native_languages(), 8§
$translate(), 12

as_text(), 3
atomic, 9

base::as.name(), 4
base::call(), 4
base: :quote(), 3, 4

call, 2, 3

errors, 6
ExportedTranslations, 17

find_source, 2

find_source(), 3, 4, 12
find_source_in_files (find_source), 2
find_source_in_files(), 3, 4

FLAT, 16

format(), 7, 8

format.Translator (translator), 7

is_source(), 3
is_translator (translator), 7
is_translator(), 8

language_get (language_set), 5
language_get(), 6

language_set, 5

language_set(), 6
language_source_get (language_set), 5
language_source_get(), 6
language_source_set (language_set), 5
language_source_set(), 6
Location, /1

merge_texts(), 3, 11
messages, 6

19

name, 2, 3
normalize(), 3, 4, 9

parse(), 3
print(),7, 8
print.Translator (translator), 7

R6,4,8, 9,17

serialize(), 16, 17
str2lang(), 3
Sys.setlLanguage(), 5
Sys.setlocale(), 5

Text, 3, 4,7, 8,10, 11

text(), 10

text_read(), 3

translations_paths (translator_read), 15
translations_paths(), 16, 17
translations_read (translator_read), 15
translations_read(), 15-17
translations_write (translator_read), 15
translations_write(), 17
Translator, 2—4, 7-9, 15-17

Translator (translator), 7

translator, 7

translator(), 7, 8
Translator$translate(), 2-5
translator_read, 15
translator_read(),4, 7, 12, 15-17
translator_write (translator_read), 15
translator_write(),4, 7,12, 15-17
transltr, 4, 6

utils::getParseData(), 3

warnings, 6

	find_source
	language_set
	translator
	translator_read
	Index

