Type Package

Package ‘transformr’
February 26, 2024

Title Polygon and Path Transformations

Version 0.1.5

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description In order to smoothly animate the transformation of polygons and
paths, many aspects needs to be taken into account, such as differing number
of control points, changing center of rotation, etc. The 'transformr’
package provides an extensive framework for manipulating the shapes of
polygons and paths and can be seen as the spatial brother to the 'tweent'

package.

License MIT + file LICENSE

Encoding UTF-8

Imports tweenr, rlang, sf, IpSolve, vctrs

Suggests covr, magrittr

LinkingTo cppll

RoxygenNote 7.3.

1

URL https://github.com/thomasp85/transformr

BugReports https://github.com/thomasp85/transformr/issues

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>)

Repository CRAN
Date/Publication 2024-02-26 14:30:02 UTC

R topics documented:

simple_shapes L e e e
stnormalize e e
tween_path
tween_polygon e e

tween_sf

https://github.com/thomasp85/transformr
https://github.com/thomasp85/transformr/issues
https://orcid.org/0000-0002-5147-4711

2 simple_shapes

Index 9

simple_shapes Some different geometries to play with

Description

These functions are provided to allow you to play with somee simple shapes as you explore transformr
and are also used in the examples for the different tween functions. All geometries can be returned
as either a standard data. frame with x, y, and id column, or as an sf geometry of the appropriate

type.

Usage

poly_circle(st = FALSE, detail = 360)

poly_circles(st = FALSE, n = 3, r = 0.25, detail = 360)
poly_star(st = FALSE, n =5, r1 = 0.5)
poly_star_hole(st = FALSE, n = 5, r1 = 0.5)
path_spiral(st = FALSE, windings = 5)

path_waves(st = FALSE, wl =7, w2 = 11)

point_random(st = FALSE, n = 10)

point_grid(st = FALSE, dim = 5)
Arguments
st Logical. Should the geometry be returned as an sf feature?
detail The number of points defining the shape
n For poly_circles the number of circles, for poly_star and poly_star_hole
the number of "arms’, and for point_random the number of points
r, ri The radius of the geometry. r gives the radius of the circles in poly_circles
and r1 gives the inner radius for poly_star/poly_star_hole, thus determining
how pointy it is
windings The number of revolutions in the spiral
wl, w2 The frequency for the two sine waves
dim the number of rows and columns in the grid
Value

Either a data.frame or an sf feature depending on the value of st

st_normalize 3

Examples

Create a 7-pointed star
poly_star(n = 7)

st_normalize Normalise a geometry to fit inside a unit square

Description

This is a small helper function that will take an sf geometry and fit it inside the unit square (a square
centered on 0 and ranging from -1 to 1 in both dimensions). The function will retain the aspect ratio
of the geometry and simply scale it down until it fits.

Usage

st_normalize(st)

Arguments

st An sf geometry such as sf, sfc, or sfg

Value

An object of the same type as st

Examples

library(sf)
nc <- st_read(system.file("shape/nc.shp”, package="sf"), quiet = TRUE)
st_bbox(nc)

nc_norm <- st_normalize(nc)
st_bbox(nc_norm)

tween_path Transition between path data frames

Description

This function is equivalent to tweenr: :tween_state() but expects the data to have an x and y
column and encode paths.

Usage

tween_path(
.data,
to,
ease,
nframes,
id = NULL,
enter = NULL,
exit = NULL,
match = TRUE

Arguments

.data

to

ease

nframes

id

enter, exit

match

Value

tween_path

A data.frame to start from. If .data is the result of a prior tween, only the last
frame will be used for the tween. The new tween will then be added to the prior
tween

A data.frame to end at. It must contain the same columns as .data (exluding
.frame)

The easing function to use. Either a single string or one for each column in the
data set.

The number of frames to calculate for the tween

The column to match observations on. If NULL observations will be matched by
position. See the Match, Enter, and Exit section for more information.

functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

Should polygons be matched by id? If FALSE then polygons will be matched
by shortest distance and if any state has more polygons than the other, the other
states polygons will be chopped up so the numbers match.

A data.frame containing intermediary states

Aligning paths

There is less work required to align paths than there is to align polygons, simply because no rotation
is possible/required, and the notion of clockwise winding order is not meaningful in the scope of
paths. Still, paths need to be matched and the number of points in each pair of matched paths must
be equal. Paths are matched based on relative length rather than on position and seek to minimize
the change in length during transition. This is chosen from the point of view that huge elongation
or contraction are much more distracting than longer travel distances.

tween_polygon 5

Cutting paths

If the number of paths to transition between is not even, some of the paths need to be cut in order to
succesfully match the paths. The cuts are distributed based on the same algorithm that distributes
cuts in polygons and seek to cut the lines into as even-length pieces as possible.

Multipaths

It is possible to encode multiple paths with the same id be separating them with a NA row, much
in the same way as holes are encoded in polygons. If paths are not matched based on id (match
= FALSE) then multipaths will simply be split into separate paths. On the other hand, if paths are
matched by id all paths within a multipath will transition into the (multi)path that has the same id
in the other state.

tween_polygon Transition between polygon data.frames

Description

This function is equivalent to tweenr: : tween_state() except that data is interpeted as encoding
polygons. Data is expected to have an x and y column encoding the location of corners in the

polygon.

Usage
tween_polygon(
.data,
to,
ease,
nframes,
id = NULL,
enter = NULL,
exit = NULL,
match = TRUE
)
Arguments
.data A data.frame to start from. If .data is the result of a prior tween, only the last
frame will be used for the tween. The new tween will then be added to the prior
tween
to A data.frame to end at. It must contain the same columns as .data (exluding
.frame)
ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

6 tween_polygon

id The column to match observations on. If NULL observations will be matched by
position. See the Match, Enter, and Exit section for more information.

enter, exit functions that calculate a start state for new observations that appear in to or
an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

match Should polygons be matched by id? If FALSE then polygons will be matched
by shortest distance and if any state has more polygons than the other, the other
states polygons will be chopped up so the numbers match.

Value

A data.frame containing intermediary states

Aligning polygons

transformr performs a lot of work to try to ensure the transition between different shapes are as
smooth and direct as possible. The first operation is to ensure that the two end states of the polygon
are both drawn clockwise, so that the transition will not contain an inversion. Second, we need to
make sure that each end state is drawn with the same number of points. If not, the less detailed
polygon will get points inserted at the longest edges so that the number is even between the two
states. Third, we rotate the last state so as to minimize the cumulative distance between all point
pairs, thus ensuring that the transition will involve a minimum of rotation.

Cutting polygons

If the transition involves changing the number of polygons, there are two strategies: Making poly-
gons appear/disappear to even out the number, or cutting up the polygons in the state with the fewest
in order to create the same number of polygons for the transition. In the latter case, a choice have
to be made with regards to which polygons to cut, into how many, and where to cut it. transformr
will distribute the number of cuts among candidate polygons based on their relative area, ensuring
that it is not necessarily the largest polygon that gets all the cuts, but that divisions are distributed as
fairly as possible. For deciding on where to cut the polygons they are triangulated and the triangles
are then reassembled into the number of pieces needed by always adding to the smallest piece.

Polygon with holes

transformr support polygons with any number of holes. Holes are encoded by adding an NA row
to the main enclosing polygon and appending the hole after that. Multiple holes are likewise added
by simply separating them with NA rows. A hole might get cut up and disappear during transition
if the polygon needs to be divided. When transitioning between polygons with holes the holes are
matched by position to minimize the travel distance. If there is a mismatch between the number of
holes in each end state then new zero-area holes are inserted in the centroid of the polygon with the
fewest to even out the number.

tween_sf 7

Examples

library(magrittr)

star <- poly_star_hole()
circle <- poly_circle()
circles <- poly_circles()

tween_polygon(circle, star, 'cubic-in-out', 20) %>%
tween_polygon(circles, 'cubic-in-out', 20)

tween_sf Transition between data.frames containing sfc columns

Description

This function is equivalent to tweenr: : tween_state () except that it understands sf: : sfc columns,
as defined by the sf package. An sfc column is a column containing simple features and can
this hold both points, lines polygons and more. tween_sf currently has support for (multi)point,
(multi)linestring, and (multi)polygon types and requires that the transition is between compati-
ble types (points-to-points, linestring-to-linestring, polygon-to-polygon). For (multi)linestring and
(multi)polygon, the behavior is similar to tween_path() and tween_polygon() respectively, with
each feature beeing run through the respective function with match = FALSE. For (multi)points it
behaves more or less like tweenr: : tween_state() except additional points are added as needed
to make the to stages contain the same number of points. Points are added on top of existing points
so it appears as if the points are divided into more.

Usage

tween_sf(.data, to, ease, nframes, id = NULL, enter = NULL, exit = NULL)

Arguments

.data A data.frame to start from. If .data is the result of a prior tween, only the last
frame will be used for the tween. The new tween will then be added to the prior
tween

to A data.frame to end at. It must contain the same columns as .data (exluding
.frame)

ease The easing function to use. Either a single string or one for each column in the
data set.

nframes The number of frames to calculate for the tween

id The column to match observations on. If NULL observations will be matched by
position. See the Match, Enter, and Exit section for more information.

enter, exit functions that calculate a start state for new observations that appear in to or

an end state for observations that are not present in to. If NULL the new/old
observations will not be part of the tween. The function gets a data.frame with
either the start state of the exiting observations, or the end state of the entering
observations and must return a modified version of that data.frame. See the
Match, Enter, and Exit section for more information.

8 tween_st

Value

A data.frame containing intermediary states

Examples

library(magrittr)

star_hole <- poly_star_hole(st = TRUE)

circles <- poly_circles(st = TRUE)

spiral <- path_spiral(st = TRUE)

waves <- path_waves(st = TRUE)

random <- point_random(st = TRUE)

grid <- point_grid(st = TRUE)

df1 <- data.frame(geo = sf::st_sfc(star_hole, spiral, random))
df2 <- data.frame(geo = sf::st_sfc(circles, waves, grid))

tween_sf(df1, df2, 'linear', 30)

Index

path_spiral (simple_shapes), 2
path_waves (simple_shapes), 2
point_grid (simple_shapes), 2
point_random (simple_shapes), 2
poly_circle (simple_shapes), 2
poly_circles (simple_shapes), 2
poly_star (simple_shapes), 2
poly_star_hole (simple_shapes), 2

sf::sfc, 7
simple_shapes, 2
st_normalize, 3

tween_path, 3

tween_path(), 7
tween_polygon, 5
tween_polygon(), 7
tween_sf, 7

tweenr: :tween_state(), 3, 5,7

	simple_shapes
	st_normalize
	tween_path
	tween_polygon
	tween_sf
	Index

