Package ‘tokenizers’

December 22, 2022
Type Package

Title Fast, Consistent Tokenization of Natural Language Text
Version 0.3.0
Date 2022-12-19

Description Convert natural language text into tokens. Includes tokenizers for
shingled n-grams, skip n-grams, words, word stems, sentences, paragraphs,
characters, shingled characters, lines, Penn Treebank, regular
expressions, as well as functions for counting characters, words, and sentences,
and a function for splitting longer texts into separate documents, each with
the same number of words. The tokenizers have a consistent interface, and
the package is built on the 'stringi' and 'Rcpp' packages for fast
yet correct tokenization in "'UTF-§'.

License MIT + file LICENSE
LazyData yes

URL https://docs.ropensci.org/tokenizers/,

https://github.com/ropensci/tokenizers

BugReports https://github.com/ropensci/tokenizers/issues
RoxygenNote 7.2.1

Depends R (>=3.1.3)

Imports stringi (>= 1.0.1), Repp (>=0.12.3), SnowballC (>=0.5.1)
LinkingTo Rcpp

Encoding UTF-8

Suggests covr, knitr, rmarkdown, stopwords (>= 0.9.0), testthat
VignetteBuilder knitr

NeedsCompilation yes

Author Lincoln Mullen [aut, cre] (<https://orcid.org/0000-0001-5103-6917>),
Os Keyes [ctb] (<https://orcid.org/0000-0001-5196-609X>),
Dmitriy Selivanov [ctb],
Jeffrey Arnold [ctb] (<https://orcid.org/0000-0001-9953-3904>),
Kenneth Benoit [ctb] (<https://orcid.org/0000-0002-0797-564X>)

1

https://docs.ropensci.org/tokenizers/
https://github.com/ropensci/tokenizers
https://github.com/ropensci/tokenizers/issues
https://orcid.org/0000-0001-5103-6917
https://orcid.org/0000-0001-5196-609X
https://orcid.org/0000-0001-9953-3904
https://orcid.org/0000-0002-0797-564X

Maintainer Lincoln Mullen <lincoln@lincolnmullen.com>
Repository CRAN
Date/Publication 2022-12-22 08:50:02 UTC

R topics documented:

basic-tokenizers

basic-tokenizers e e 2
chunk text. e 4
count_wWordS e e e e e 5
mobydick e 5
ngram-tokenizers e e e 6
tOKENIZEIS o e 7
tokenize_character_shingles oL oo 8
tokenize_ptb L L e e e 9
tokenize_word_Stems e e e e 10

Index 12

basic-tokenizers Basic tokenizers
Description

These functions perform basic tokenization into words, sentences, paragraphs, lines, and characters.
The functions can be piped into one another to create at most two levels of tokenization. For
instance, one might split a text into paragraphs and then word tokens, or into sentences and then

word tokens.

Usage

tokenize_characters(
X,
lowercase = TRUE,
strip_non_alphanum = TRUE,
simplify = FALSE

)

tokenize_words(
X!
lowercase = TRUE,
stopwords = NULL,
strip_punct = TRUE,
strip_numeric = FALSE,
simplify = FALSE

)

tokenize_sentences(x, lowercase = FALSE, strip_punct = FALSE, simplify = FALSE)

basic-tokenizers

tokenize_lines(x, simplify = FALSE)

tokenize_paragraphs(x, paragraph_break = "\n\n", simplify = FALSE)

tokenize_regex(x, pattern = "\\s+", simplify = FALSE)

Arguments

X

lowercase

A character vector or a list of character vectors to be tokenized. If x is a character
vector, it can be of any length, and each element will be tokenized separately.
If x is a list of character vectors, where each element of the list should have a
length of 1.

Should the tokens be made lower case? The default value varies by tokenizer; it
is only TRUE by default for the tokenizers that you are likely to use last.

strip_non_alphanum

simplify

stopwords
strip_punct

strip_numeric

Should punctuation and white space be stripped?

FALSE by default so that a consistent value is returned regardless of length of
input. If TRUE, then an input with a single element will return a character vector
of tokens instead of a list.

A character vector of stop words to be excluded.
Should punctuation be stripped?
Should numbers be stripped?

paragraph_break

pattern

Value

A string identifying the boundary between two paragraphs.

A regular expression that defines the split.

A list of character vectors containing the tokens, with one element in the list for each element that
was passed as input. If simplify = TRUE and only a single element was passed as input, then the
output is a character vector of tokens.

Examples

song <- paste@("How many roads must a man walk down\n",

"Before you call him a man?\n",

"How many seas must a white dove sail\n”,

"Before she sleeps in the sand?\n",

"\n",

"How many times must the cannonballs fly\n",
"Before they're forever banned?\n",

"The answer, my friend, is blowin' in the wind.\n",
"The answer is blowin' in the wind.\n")

tokenize_words(song)
tokenize_words(song, strip_punct = FALSE)
tokenize_sentences(song)

4 chunk_text

tokenize_paragraphs(song)
tokenize_lines(song)
tokenize_characters(song)

chunk_text Chunk text into smaller segments

Description

Given a text or vector/list of texts, break the texts into smaller segments each with the same number
of words. This allows you to treat a very long document, such as a novel, as a set of smaller

documents.
Usage
chunk_text(x, chunk_size = 100, doc_id = names(x), ...)
Arguments
X A character vector or a list of character vectors to be tokenized into n-grams. If
x is a character vector, it can be of any length, and each element will be chunked
separately. If x is a list of character vectors, each element of the list should have
a length of 1.
chunk_size The number of words in each chunk.
doc_id The document IDs as a character vector. This will be taken from the names of
the x vector if available. NULL is acceptable.
Arguments passed on to tokenize_words.
Details

Chunking the text passes it through tokenize_words, which will strip punctuation and lowercase
the text unless you provide arguments to pass along to that function.

Examples

Not run:

chunked <- chunk_text(mobydick, chunk_size = 100)
length(chunked)

chunked[1:3]

End(Not run)

count_words

count_words Count words, sentences, characters

Description
Count words, sentences, and characters in input texts. These functions use the stringi package, so
they handle the counting of Unicode strings (e.g., characters with diacritical marks) in a way that

makes sense to people counting characters.
Usage

count_words(x)

count_characters(x)

count_sentences(x)

Arguments
X A character vector or a list of character vectors. If x is a character vector, it can
be of any length, and each element will be tokenized separately. If x is a list of
character vectors, each element of the list should have a length of 1.
Value

An integer vector containing the counted elements. If the input vector or list has names, they will

be preserved.

Examples

count_words (mobydick)
count_sentences(mobydick)
count_characters(mobydick)

mobydick The text of Moby Dick

Description
The text of Moby Dick, by Herman Melville, taken from Project Gutenberg.

Usage
mobydick

6 ngram-tokenizers

Format

A named character vector with length 1.

Source

http://www.gutenberg.org/

ngram-tokenizers N-gram tokenizers

Description

These functions tokenize their inputs into different kinds of n-grams. The input can be a character
vector of any length, or a list of character vectors where each character vector in the list has a length
of 1. See details for an explanation of what each function does.

Usage
tokenize_ngrams(
X’
lowercase = TRUE,
n = 3L,
n_min = n,

stopwords = character(),

n o n

ngram_delim = ,
simplify = FALSE

)
tokenize_skip_ngrams(
X,
lowercase = TRUE,
n_min = 1,
n =3,
k=1,

stopwords = character(),
simplify = FALSE

)
Arguments

X A character vector or a list of character vectors to be tokenized into n-grams. If x
is a character vector, it can be of any length, and each element will be tokenized
separately. If x is a list of character vectors, each element of the list should have
alength of 1.

lowercase Should the tokens be made lower case?

n The number of words in the n-gram. This must be an integer greater than or

equal to 1.

http://www.gutenberg.org/

tokenizers 7

n_min The minimum number of words in the n-gram. This must be an integer greater
than or equal to 1, and less than or equal to n.

stopwords A character vector of stop words to be excluded from the n-grams.

ngram_delim The separator between words in an n-gram.

simplify FALSE by default so that a consistent value is returned regardless of length of

input. If TRUE, then an input with a single element will return a character vector
of tokens instead of a list.

k For the skip n-gram tokenizer, the maximum skip distance between words. The
function will compute all skip n-grams between @ and k.

Details

tokenize_ngrams: Basic shingled n-grams. A contiguous subsequence of n words. This will
compute shingled n-grams for every value of between n_min (which must be at least 1) and n.

tokenize_skip_ngrams: Skip n-grams. A subsequence of n words which are at most a gap of k
words between them. The skip n-grams will be calculated for all values from @ to k.

These functions will strip all punctuation and normalize all whitespace to a single space character.

Value

A list of character vectors containing the tokens, with one element in the list for each element that
was passed as input. If simplify = TRUE and only a single element was passed as input, then the
output is a character vector of tokens.

Examples

song <- paste@("How many roads must a man walk down\n",
"Before you call him a man?\n",
"How many seas must a white dove sail\n”,
"Before she sleeps in the sand?\n”,
"\n",
"How many times must the cannonballs fly\n",
"Before they're forever banned?\n”,
"The answer, my friend, is blowin' in the wind.\n",
"The answer is blowin' in the wind.\n")

tokenize_ngrams(song, n = 4)
tokenize_ngrams(song, n = 4, n_min = 1)

tokenize_skip_ngrams(song, n = 4, k = 2)

tokenizers Tokenizers

Description

A collection of functions with a consistent interface to convert natural language text into tokens.

Details

tokenize_character_shingles

The tokenizers in this package have a consistent interface. They all take either a character vector of
any length, or a list where each element is a character vector of length one. The idea is that each
element comprises a text. Then each function returns a list with the same length as the input vector,
where each element in the list are the tokens generated by the function. If the input character vector
or list is named, then the names are preserved.

tokenize_character_shingles

Character shingle tokenizers

Description

The character shingle tokenizer functions like an n-gram tokenizer, except the units that are shin-
gled are characters instead of words. Options to the function let you determine whether non-
alphanumeric characters like punctuation should be retained or discarded.

tokenize_character_shingles(

Usage
X,
n = 3L,
n_min = n,
lowercase

TRUE,

strip_non_alphanum = TRUE,
simplify = FALSE

Arguments

X

n_min

lowercase

A character vector or a list of character vectors to be tokenized into character
shingles. If x is a character vector, it can be of any length, and each element will
be tokenized separately. If x is a list of character vectors, each element of the
list should have a length of 1.

The number of characters in each shingle. This must be an integer greater than
or equal to 1.

This must be an integer greater than or equal to 1, and less than or equal to n.

Should the characters be made lower case?

strip_non_alphanum

simplify

Should punctuation and white space be stripped?

FALSE by default so that a consistent value is returned regardless of length of
input. If TRUE, then an input with a single element will return a character vector
of tokens instead of a list.

tokenize_ptb 9

Value

A list of character vectors containing the tokens, with one element in the list for each element that
was passed as input. If simplify = TRUE and only a single element was passed as input, then the
output is a character vector of tokens.

Examples

x <= c("Now is the hour of our discontent”)

tokenize_character_shingles(x)

tokenize_character_shingles(x, n = 5)

tokenize_character_shingles(x, n = 5, strip_non_alphanum = FALSE)
tokenize_character_shingles(x, n =5, n_min = 3, strip_non_alphanum = FALSE)

tokenize_ptb Penn Treebank Tokenizer

Description

This function implements the Penn Treebank word tokenizer.

Usage

tokenize_ptb(x, lowercase = FALSE, simplify = FALSE)

Arguments
X A character vector or a list of character vectors to be tokenized into n-grams. If x
is a character vector, it can be of any length, and each element will be tokenized
separately. If x is a list of character vectors, each element of the list should have
a length of 1.
lowercase Should the tokens be made lower case?
simplify FALSE by default so that a consistent value is returned regardless of length of
input. If TRUE, then an input with a single element will return a character vector
of tokens instead of a list.
Details

This tokenizer uses regular expressions to tokenize text similar to the tokenization used in the Penn
Treebank. It assumes that text has already been split into sentences. The tokenizer does the follow-
ing:

* splits common English contractions, e.g. don't is tokenized into do n't and they'll is
tokenized into -> they '11,
* handles punctuation characters as separate tokens,

* splits commas and single quotes off from words, when they are followed by whitespace,
* splits off periods that occur at the end of the sentence.

This function is a port of the Python NLTK version of the Penn Treebank Tokenizer.

10 tokenize_word_stems

Value

A list of character vectors containing the tokens, with one element in the list for each element that
was passed as input. If simplify = TRUE and only a single element was passed as input, then the
output is a character vector of tokens.

References

NLTK TreebankWordTokenizer

Examples

song <- list(paste@("How many roads must a man walk down\n"”,
"Before you call him a man?"),
paste@("How many seas must a white dove sail\n”,
"Before she sleeps in the sand?\n"),
paste@("How many times must the cannonballs fly\n",
"Before they're forever banned?\n"),
"The answer, my friend, is blowin' in the wind.",
"The answer is blowin' in the wind.")
tokenize_ptb(song)
tokenize_ptb(c(”"Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.”,
"They'll save and invest more.”,
"Hi, I can't say hello."))

tokenize_word_stems Word stem tokenizer

Description

This function turns its input into a character vector of word stems. This is just a wrapper around
the wordStem function from the SnowballC package which does the heavy lifting, but this function
provides a consistent interface with the rest of the tokenizers in this package. The input can be a
character vector of any length, or a list of character vectors where each character vector in the list
has a length of 1.

Usage
tokenize_word_stems(
X’
language = "english”,

stopwords = NULL,
simplify = FALSE

https://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankWordTokenizer

tokenize_word_stems 11

Arguments
X A character vector or a list of character vectors to be tokenized. If x is a character
vector, it can be of any length, and each element will be tokenized separately.
If x is a list of character vectors, where each element of the list should have a
length of 1.
language The language to use for word stemming. This must be one of the languages
available in the SnowballC package. A list is provided by getStemLanguages.
stopwords A character vector of stop words to be excluded
simplify FALSE by default so that a consistent value is returned regardless of length of
input. If TRUE, then an input with a single element will return a character vector
of tokens instead of a list.
Details

This function will strip all white space and punctuation and make all word stems lowercase.

Value

A list of character vectors containing the tokens, with one element in the list for each element that
was passed as input. If simplify = TRUE and only a single element was passed as input, then the
output is a character vector of tokens.

See Also

wordStem

Examples

song <- paste@("How many roads must a man walk down\n”,
"Before you call him a man?\n",
"How many seas must a white dove sail\n”,
"Before she sleeps in the sand?\n",
"\n",
"How many times must the cannonballs fly\n”,
"Before they're forever banned?\n",
"The answer, my friend, is blowin' in the wind.\n",
"The answer is blowin' in the wind.\n")

tokenize_word_stems(song)

Index

x datasets
mobydick, 5

basic-tokenizers, 2

chunk_text, 4
count_characters (count_words), 5
count_sentences (count_words), 5
count_words, 5

getStemLanguages, 11/
mobydick, 5
ngram-tokenizers, 6

tokenize_character_shingles, 8

tokenize_characters (basic-tokenizers),
2

tokenize_lines (basic-tokenizers), 2

tokenize_ngrams (ngram-tokenizers), 6

tokenize_paragraphs (basic-tokenizers),
2

tokenize_ptb, 9

tokenize_regex (basic-tokenizers), 2

tokenize_sentences (basic-tokenizers), 2

tokenize_skip_ngrams
(ngram-tokenizers), 6

tokenize_word_stems, 10

tokenize_words, 4

tokenize_words (basic-tokenizers), 2

tokenizers, 7

wordStem, 10, 11

12

	basic-tokenizers
	chunk_text
	count_words
	mobydick
	ngram-tokenizers
	tokenizers
	tokenize_character_shingles
	tokenize_ptb
	tokenize_word_stems
	Index

