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1 Introduction

This document is a user’s guide for the R1 package tlm, which provides the effect of an explanatory
variable of interest, X, on a response variable, Y , under a linear, logistic or Poisson regression
model with transformations in X and/or Y . In the case of the linear regression model, log and
power transformations in any of X and Y are allowed. In the case of logistic and Poisson regression
models, log or power transformation in X are allowed. Other explanatory variables can be in the
model, in which case adjusted measures for Y and adjusted effects of X on Y are automatically
computed. The package also works if there are no transformations. The package provides both
numerical and graphical outputs as well as information on interpreting results. The methodology
is described in the original work by Barrera-Gómez and Basagaña [1], whose illustrative examples,
among others, are reproduced here.

2 Getting started

Start an R session and load the package by typing

library(tlm)

##

## This is tlm 0.2.0. For details, use:

## > help(package = ’tlm’) and browseVignettes(’tlm’)

##

## To cite the methods in the package use:

## > citation(’tlm’)

You can get a brief overview of the package by typing

help(package = "tlm")

This user’s guide can be recovered by typing

browseVignettes("tlm")

2.1 Fitting the model

The first step is to fit the model in the transformed space (i.e., considering that Y and X are already
transformed, if any transformation is assumed), which is performed by the function tlm. We can
get information on this function using the help:

?tlm

The main arguments of the function tlm are:

• formula: the model formula with the usual syntax as in lm and glm. Left-hand-side indicates
the response variable (whose values are assumed to be already transformed). First term in
right-hand-side indicates the explanatory variable of interest (whose values are assumed to be
already transformed). Right-hand-side can include additional terms (e.g. adjusting variables)
but the explanatory variable of interest cannot be involved in any of them.

1R is a free and open source software and it is available at http://cran.r-project.org/.
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• family: the model family. It can be gaussian, for linear regression (default); binomial, for
logistic regression with logit link, o poisson, for Poisson regression.

• data: a data.frame containing the variables in the model.

• ypow and xpow: the power transformations already done in the response and in the explanatory
variable of interest, respectively. The value 1 (default) means no transformation; the value 0
means log transformation.

• ...: additional arguments for the underlying lm or glm fitting.

As a result of a call to the function tlm, we obtain an object of class "tlm" which can be passed
to the following functions or methods:

• summary to summarize the fitted model (section 2.2)

• plot to visualize the fitted model (section 2.3)

• MY to obtain adjusted measures (section 2.4)

• effect to obtain adjusted effects (section 2.5)

2.2 Summary of the fitted model

The method summary provides information on the fitted model. It essentially provides the summary
of the underlying lm or glm fitted in the transformed space.

2.3 Visualization of the fitted model

The specific method plot provides, for an object of class "tlm" (output of the tlm function), a
graphical representation of the fitted model. There are three types of visualization, depending on
the value of the argument type passed to plot:

• type = "original" (default): the fitted model is plotted in the original space of the variables.
If a visualization of the fitted model is reported, this is the proper option.

• type = "transformed": the fitted model is plotted in the transformed space of the variables
(where the model has been fitted). Plots obtained for this option are intended to visually
explore the model goodness of fit and should not be reported because values of the transformed
variables are meaningless (e.g. the logarithm of cotinine levels (ng/ml) has no sense).

• type = "diagnosis": a fitted model diagnostics plot is shown as with plot.lm or plot.glm.

Other arguments of the specific method plot are:

• observed: logical indicating whether the observations are shown in the plot. Default is FALSE.

• xname, yname: character indicating the name of the explanatory and the response variable of
interest for labeling the plot axes. Default are "x" and "y", respectively.

• level: numeric indicating the confidence level for the confidence of the expectation of the
response variable according to the fitted model. Default is 0.95.

The specific method plot automatically labels the Y axis with the appropriate name of the
measure (i.e. mean, geometric mean, etc).
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2.4 Adjusted measures

Once the model has been fitted with the function tlm, the resulting object can be passed to the
function MY, which provides measures of the response variable for given values of the explanatory
variable. If the model contains other explanatory variables, then adjusted measures are auto-
matically computed. These adjusted measures are obtained by setting the remaining explanatory
variables in the model at their means. We can get information on this function using the help:

?MY

The main arguments of the function MY are:

• object: an object of class "tlm", the result of a call to the function tlm.

• x: the value(s) of the explanatory variable of interest for which the expected measure of the
response variable should be computed.

• npoints: if x is not provided, the number of points where the measure should be computed.
Default is 10.

• space: the space of the variables in which measures should be computed. It can be "original"
(default) or "transformed".

• level: the confidence level for measures. Default is 0.95.

The function MY automatically provides the unit of the measure (mean, geometric mean, median,
probability or logodds, depending on the case).

2.5 Adjusted effects

The fitted model can be passed to the function effect in order to obtain the effect of X on Y in the
original space of the variables, adjusted for other potential adjusting variables passed in formula
to the tlm function. We can get information on this function using the help:

?effect

The main arguments of the function effect are:

• object: an object of class "tlm", the result of a call to the function tlm.

• x1: the value(s) of the explanatory variable where the effect should be computed.

• x2: the alternative value(s) of the explanatory variable (changing from x1) for which the effect
should be computed.

• c: the additive change in the explanatory variable.

• q: the multiplicative change in the explanatory variable.

• r: the percent change in the explanatory variable.

• npoints: the number of points where the effect should be computed.
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• level: the confidence level for the effect.

In order to compute effects, the change in the explanatory variable should be characterized. It
can be done in several ways. For instance, providing: (1) x1 and x2; (2) x1 and one of c, q or
r; (3) x1, npoints and one of c, q or r. Only one of the arguments c, q or r is used, prevailing
c and then q. If no enough arguments are passed, the interquartile range will be considered and
a summary effect should be computed, if it exists. If the explanatory variable is categorical, then
the effect is computing for a change between the reference level and each of the remaining levels of
the explanatory variable. Confidence intervals are computed by transforming the endpoints of the
intervals in the transformed scale when it is possible, while non-parametric bootstrap is used other-
wise. The function effect automatically provides the unit of the effect measure (mean, geometric
mean, median or odds ratio, depending on the case).

In addition, the function effectInfo provides further information on how to interpret the effect
(use ?effectInfo for further details).

3 Illustrative examples

3.1 Linear regression model

3.1.1 Log transformation in the response

Consider the evaluation of the association between the intima media thickness of the carotid artery
(IMT), measured in mm, Y , and age, in years, X. Variable Y was log transformed to achieve
normality. The imt data were simulated to emulate true data pattern observed in a real study [2].

First, we can load data (further information about data is available with the help function,
?imt) and see its first rows and a summary:

data(imt)

dim(imt)

## [1] 2784 3

head(imt)

## age imt logimt

## 1 53 0.6588690 -0.41723048

## 2 67 0.9215614 -0.08168583

## 3 57 0.9539836 -0.04710877

## 4 55 0.7226028 -0.32489555

## 5 73 0.7406030 -0.30029063

## 6 57 0.7638349 -0.26940367

summary(imt)

## age imt logimt

## Min. :32.00 Min. :0.3755 Min. :-0.9794

## 1st Qu.:51.00 1st Qu.:0.6307 1st Qu.:-0.4609

## Median :59.00 Median :0.7257 Median :-0.3206
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## Mean :58.48 Mean :0.7420 Mean :-0.3196

## 3rd Qu.:66.00 3rd Qu.:0.8324 3rd Qu.:-0.1834

## Max. :86.00 Max. :1.5788 Max. : 0.4567

Suppose that we are interested in the effect of age on IMT, under a linear regression model with
log transformation in the response variable, IMT. The model can be fitted as follows:

modimt <- tlm(logimt ~ age, data = imt, ypow = 0)

where ypow = 0 indicates that the response variable is already log transformed. Note that we have
not set the family since default family is Gaussian. The fitted model results in:

modimt

##

## Linear regression fitted model in the transformed space

## -------------------------------------------------------

##

## Transformations:

## In the response variable: log

##

## Call:

## lm(formula = logimt ~ age, data = imt)

##

## Coefficients:

## (Intercept) age

## -0.877692 0.009543

Further information on the fitted model is available using the method summary:

summary(modimt)

##

## Linear regression fitted model in the transformed space

## -------------------------------------------------------

##

## Transformations:

## In the response variable: log

##

## Call:

## lm(formula = logimt ~ age, data = imt)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.57891 -0.11792 0.00142 0.11879 0.61968

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.8776919 0.0183979 -47.71 <2e-16 ***

## age 0.0095433 0.0003093 30.86 <2e-16 ***

## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1778 on 2782 degrees of freedom

## Multiple R-squared: 0.255,Adjusted R-squared: 0.2547

## F-statistic: 952.2 on 1 and 2782 DF, p-value: < 2.2e-16

A numerical representation of the relationship between age and IMT is available using the
function MY. As default, the measure of the response variable is computed in 10 points along the
range of the explanatory variable:

MY(modimt)

##

## Estimated adjusted geometric mean of the response variable in the original space:

##

## X geomMean(Y) lower95% upper95%

## 1 32 0.5642233 0.5545100 0.5741068

## 2 38 0.5974736 0.5891267 0.6059388

## 3 44 0.6326834 0.6257680 0.6396752

## 4 50 0.6699681 0.6643811 0.6756020

## 5 56 0.7094501 0.7046577 0.7142750

## 6 62 0.7512587 0.7460592 0.7564945

## 7 68 0.7955312 0.7885807 0.8025430

## 8 74 0.8424128 0.8327802 0.8521567

## 9 80 0.8920571 0.8791028 0.9052023

## 10 86 0.9446270 0.9278224 0.9617360

The number of points can be set using npoints:

MY(modimt, npoints = 3)

##

## Estimated adjusted geometric mean of the response variable in the original space:

##

## X geomMean(Y) lower95% upper95%

## 1 32 0.5642233 0.5545100 0.5741068

## 2 59 0.7300552 0.7252407 0.7349016

## 3 86 0.9446270 0.9278224 0.9617360

We can also choose a specific set of values of the explanatory variable for which the measure of
the response variable should be computed. For instance, the first and third quartile:

q13 <- quantile(imt$age, probs = c(1, 3)/4)

MY(modimt, x = q13)

##

## Estimated adjusted geometric mean of the response variable in the original space:

##

## X geomMean(Y) lower95% upper95%

## 1 51 0.6763924 0.6709922 0.6818362

## 2 66 0.7804912 0.7742493 0.7867834
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Measures can also be computed in the transformed space:

MY(modimt, x = q13, space = "transformed")

##

## Estimated adjusted mean of the response variable in the transformed space:

##

## X mean(log(Y)) lower95% upper95%

## 1 51 -0.3909818 -0.3989978 -0.3829659

## 2 66 -0.2478318 -0.2558614 -0.2398023

A graphical representation of the relationship between age and IMT is available using the method
plot. For instance, the two following instructions provide left and right plots in Figure 1, respec-
tively:

plot(modimt, type = "transformed", observed = TRUE, xname = "Age (years)", yname = "IMT")

plot(modimt, observed = TRUE, xname = "Age (years)", yname = "IMT (mm)")
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Figure 1: Visualization of the fitted model modimt. Left: In the transformed
space, the mean of the logarithm of IMT values as a function of age is
shown. Note that this plot should not be reported since the logarithm
of IMT values are meaningless. This type of plot is intended just to
visually explore the model goodness of fit. Right: In the original space,
the geometric mean (or equivalently the median) of IMT values as a
function of age is shown. This type of plot is appropriate for reporting.
Dashed lines represent 95% confidence intervals for the measure.

The argument observed controls whether observations are shown in the plot (default is FALSE).
Further information on the usage of the method plot is available using ?tlm.
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Diagnostics plot as in Figure 2 can be obtained with the following instruction:

plot(modimt, type = "diagnosis")

The function effectInfo provides information on interpreting the relationship between age (X)
and IMT (Y ):

effectInfo(modimt)

##

## The effect of X on Y can be summarized with a single number as follows:

##

## - Change in X: additive of c units

## - Type of effect on Y: percent change in the geometric mean of Y

## - Effect size: 100 * [exp(c * beta) - 1]%

##

## beta coefficient estimate:

## Estimate Std. Error t value Pr(>|t|)

## age 0.009543334 0.0003092751 30.8571 4.531758e-180

##

## Further details can be obtained using effect().

Thus, we can see that, in this case, if we use additive changes in X and percent (or multiplicative)
changes in the geometric mean of Y , a summary effect can be obtained, which is independent of
the value of X for which the effect is computed.

The function effect provides as default the expected change in IMT for an additive change in
age equal to the interquartile range:

effect(modimt)

##

## Computing effects...

##

## Adjusted percent change in the geometric mean of the response variable

## for a 'c' units additive change in the explanatory variable equivalent

## to the interquartile range:

##

## c Estimate lower95% upper95%

## 1 15 15.39029 14.3454 16.44472

##

## For further information on interpreting the effect use effectInfo().

Other measures of effects can be obtained. For instance, we may be interested in a difference of
(geometric) means when changing age across the first quartile, the median and the third quartile:

q123 <- quantile(imt$age, probs = 1:3/4) # quartiles

effect(modimt, x1 = q123)

##

## Computing effects...

##
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Figure 2: Diagnostics plot for the model modimt.

## Adjusted change in the geometric mean of the response variable when the

## explanatory variable changes from x1 to x2 (confidence interval for the

## difference change based on 999 bootstrap samples):

##

## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95% upper95%

## 25% 51 59 0.05366274 0.05010240 0.05714970 7.933669 7.411302 8.458576

## 50% 59 66 0.05043602 0.04707039 0.05362892 6.908521 6.455654 7.363315
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##

## For further information on interpreting the effect use effectInfo().

As in this example, when a summary effect is not computed, then both difference and percent
changes in the response are computed. The number of bootstrap samples is controlled by the
argument nboot whose default value is 999 [3].

3.1.2 Log transformation in the explanatory variable

Consider now the evaluation of the association between the birth weight, in grams, Y , and the cord
serum cotinine level in the mother, in ng/ml, X. Variable X was log transformed to achieve a
more homogeneous distribution. The cotinine data were simulated to emulate true data patterns
observed in a real study [4]. Data also contains a binary variable indicating whether the birth weight
was low (defined as lower than 2500 g).

We can load and explore data (further information about data is available with the help function,
?cotinine):

data(cotinine)

dim(cotinine)

## [1] 351 4

head(cotinine)

## cotinine logcotinine weight underweight

## 2 5.1584035 1.640627 3626 no

## 5 0.2909473 -1.234613 3672 no

## 11 4.1119142 1.413889 3779 no

## 12 3.0037959 1.099877 3540 no

## 14 5.9240779 1.779025 3179 no

## 17 7.3854370 1.999510 2494 yes

summary(cotinine)

## cotinine logcotinine weight underweight

## Min. : 0.200 Min. :-1.609 Min. :1656 no :327

## 1st Qu.: 3.234 1st Qu.: 1.174 1st Qu.:2920 yes: 24

## Median : 7.385 Median : 2.000 Median :3232

## Mean : 39.431 Mean : 2.353 Mean :3218

## 3rd Qu.: 39.226 3rd Qu.: 3.669 3rd Qu.:3522

## Max. :910.000 Max. : 6.813 Max. :4771

Suppose that we are interested in the effect of cotinine level on birth weight, under a linear
regression model with log transformation in the explanatory variable, cotinine. The model can be
fitted as follows:

modcot <- tlm(weight ~ logcotinine, data = cotinine, xpow = 0)

where xpow = 0 indicates that the explanatory variable is already log transformed. The fitted
model provides the following results:
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summary(modcot)

##

## Linear regression fitted model in the transformed space

## -------------------------------------------------------

##

## Transformations:

## In the explanatory variable: log

##

## Call:

## lm(formula = weight ~ logcotinine, data = cotinine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1390.64 -280.11 -2.95 300.47 1422.31

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3406.49 42.59 79.978 < 2e-16 ***

## logcotinine -80.00 14.95 -5.351 1.58e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 450.1 on 349 degrees of freedom

## Multiple R-squared: 0.07583,Adjusted R-squared: 0.07318

## F-statistic: 28.64 on 1 and 349 DF, p-value: 1.585e-07

In Figure 3 (obtained with the following instructions) we can see the fitted model (left) and the
relationship between cotinine level and birth weight, under the model, in the original space of the
variables (right).

plot(modcot, type = "transformed", observed = TRUE, xname = "Cotinine", yname = "weight (kg)")

plot(modcot, xname = "Cotinine (ng/ml)", yname = "weight (kg)")

The function effectInfo provides information on interpreting the relationship between cotinine
levels (X) and weight (Y ):

effectInfo(modcot)

##

## The effect of X on Y can be summarized with a single number as follows:

##

## - Change in X: multiplicative of factor q (equivalently, adding an r = 100 * (q - 1)% to X)

## - Type of effect on Y: additive change in the mean of Y

## - Effect size: beta * log(q) units of Y

##

## beta coefficient estimate:

## Estimate Std. Error t value Pr(>|t|)

## logcotinine -80.00108 14.94986 -5.351292 1.584903e-07

##

## Further details can be obtained using effect().
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Figure 3: Visualization of the fitted model modcot. Left: In the transformed
space, mean weight (kg) as a function of the logarithm of cotinine levels
is shown. Note that this plot should not be reported since the logarithm
of cotinine levels are meaningless. This type of plot is intended just to
visually explore the model goodness of fit. Right: In the original space,
the mean weight (kg) as a function of cotinine levels is shown. This
type of plot is appropriate for reporting. Dashed lines represent 95%
confidence intervals for the measure.

In this case, if we use multiplicative (or percent) changes in X and additive changes in the mean
of Y , a summary effect can be obtained, which is independent of the value of X for which the effect
is computed. The function effect provides as default the expected change in weight for a percent
change in cotinine levels equal to the interquartile ratio:

effect(modcot)

##

## Computing effects...

##

## Adjusted additive change in the mean of the response variable for an

## 'r'% change in the explanatory variable equivalent to the interquartile

## ratio:

##

## r Estimate lower95% upper95%

## 1 1112.878 -199.6492 -273.0272 -126.2712

##

## For further information on interpreting the effect use effectInfo().
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Alternatively, by exploring Figure 3, we can see that several 10-fold changes occur in the popu-
lation and choose the more common number q = 10, in which case the effect is

effect(modcot, q = 10)

##

## Computing effects...

##

## Adjusted additive change in the mean of the response variable for an

## 'r' = 900% change in the explanatory variable:

##

## r Estimate lower95% upper95%

## 1 900 -184.2093 -251.9126 -116.506

##

## For further information on interpreting the effect use effectInfo().

If we are interested in explore the effect of an additive change in cotinine levels, we can obtain,
for example, effects for additive changes in X along its range. For instance:

range(cotinine$cotinine)

## [1] 0.2 910.0

effect(modcot, x1 = 100, c = 200, npoints = 4)

##

## Computing effects...

##

## Adjusted change in the mean of the response variable when the explanatory

## variable changes from x1 to x2 (confidence interval for the percent change

## based on 999 bootstrap samples):

##

## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95%

## 1 100 300 -87.89017 -120.19284 -55.58750 -2.8929637 -4.0411918

## 2 300 500 -40.86660 -55.88649 -25.84671 -1.3852256 -1.9996276

## 3 500 700 -26.91814 -36.81149 -17.02479 -0.9252415 -1.3195109

## 4 700 900 -20.10543 -27.49486 -12.71599 -0.6975258 -0.9923362

## upper95%

## 1 -1.7854058

## 2 -0.8817584

## 3 -0.5283016

## 4 -0.4061337

##

## For further information on interpreting the effect use effectInfo().

3.1.3 Log transformation in both the response and the explanatory variable

Consider an epidemiological study to assess the association between cat allergen levels (Fel d 1) in
the bed mattress, X, and in the living room, Y , in homes of study participants, taking into account
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cat ownership, C. Both variables X and Y were log transformed to achieve linearity in their re-
lationship. The feld1 data were simulated to emulate true data patterns observed in a real study [5].

We can load and explore data (further information about data is available with the help function,
?feld1):

data(feld1)

dim(feld1)

## [1] 471 5

head(feld1)

## mattress room logmattress logroom cat

## 1 0.66504894 0.26758221 -0.4078946 -1.3183284 yes

## 2 0.02723504 0.16796992 -3.6032509 -1.7839704 no

## 3 0.16773827 0.76728932 -1.7853504 -0.2648913 no

## 4 0.01391101 0.05480368 -4.2750750 -2.9039979 no

## 5 0.04216982 0.11931900 -3.1660504 -2.1259547 yes

## 6 1.44212520 17.29388484 0.3661179 2.8503530 yes

summary(feld1)

## mattress room logmattress logroom

## Min. : 0.0030 Min. : 0.0017 Min. :-5.7975 Min. :-6.3565

## 1st Qu.: 0.0636 1st Qu.: 0.1076 1st Qu.:-2.7559 1st Qu.:-2.2295

## Median : 0.1773 Median : 0.3081 Median :-1.7297 Median :-1.1774

## Mean : 3.1976 Mean : 27.5263 Mean :-1.5942 Mean :-0.8528

## 3rd Qu.: 0.5565 3rd Qu.: 1.1713 3rd Qu.:-0.5861 3rd Qu.: 0.1581

## Max. :467.7814 Max. :2120.4743 Max. : 6.1480 Max. : 7.6594

## cat

## no :403

## yes: 68

##

##

##

##

Suppose that we are interested in the association between allergen levels in the mattress and in
the living room, under a linear regression model with log transformation in both variables, adjusting
for cat ownership. The model can be fitted as follows:

modcat <- tlm(logroom ~ logmattress + cat, data = feld1, ypow = 0, xpow = 0)

where ypow = 0 and xpow = 0 indicate that both the explanatory and the response variables are
already log transformed. The fitted model provides the following results:

summary(modcat)

##

## Linear regression fitted model in the transformed space

15



## -------------------------------------------------------

##

## Transformations:

## In the response variable: log

## In the explanatory variable: log

##

## Call:

## lm(formula = logroom ~ logmattress + cat, data = feld1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.9172 -1.1228 -0.0631 0.9464 6.0440

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.05412 0.11651 -0.465 0.642

## logmattress 0.63936 0.04454 14.354 < 2e-16 ***

## catyes 1.52747 0.23098 6.613 1.03e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.68 on 468 degrees of freedom

## Multiple R-squared: 0.4192,Adjusted R-squared: 0.4167

## F-statistic: 168.9 on 2 and 468 DF, p-value: < 2.2e-16

We can create Figure 4 with

plot(modcat, type = "transformed", observed = TRUE, xname = "Mattress levels",

yname = "living room levels")

plot(modcat, xname = "Mattress levels", yname = "living room levels")

which provides a graphical representation of the relationship between allergen levels in the mattress
and in the living room. Measures in Figure 4 have been obtained after averaging the expected
measure of Y over all subjects in the data set. This is equivalent to saying that measures and
effects are calculated for an average individual in the population and they can be interpreted as
adjusted measures and adjusted effects [6] .

The function effectInfo provides information on interpreting the relationship between allergen
levels in mattress (X) and in living room (Y ):

effectInfo(modcat)

##

## The effect of X on Y can be summarized with a single number as follows:

##

## - Change in X: multiplicative of factor q (equivalently, adding an r = 100 * (q - 1)% to X)

## - Type of effect on Y: percent change in the geometric mean of Y

## - Effect size: 100 * (q^beta - 1)%

##

## beta coefficient estimate:

## Estimate Std. Error t value Pr(>|t|)
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Figure 4: Visualization of the fitted model modcat. Left: In the transformed
space, the logarithm of mean Fel d 1 levels in room as a function of
the logarithm of Fel d 1 levels in mattress is shown. Note that this
plot should not be reported since the logarithm of Fel d 1 levels are
meaningless. This type of plot is intended just to visually explore the
model goodness of fit. Right: In the original space, the geometric mean
(or equivalently median) of Fel d 1 levels in room as a function of
Fel d 1 levels in mattress is shown. This type of plot is appropriate
for reporting. Dashed lines represent 95% confidence intervals for the
measure.

## logmattress 0.6393565 0.04454319 14.35363 5.610118e-39

##

## Further details can be obtained using effect().

In this case, if we use multiplicative (or percent) changes in both variables, a summary effect
can be obtained, which is independent of the value of the explanatory variable for which the effect
is computed.

The function effect provides as default the expected change in allergen levels in the living
room for a percent change in allergen levels in mattress equal to the interquartile ratio:

effect(modcat)

##

## Computing effects...

##

17



## Adjusted percent change in the geometric mean of the response variable

## for an 'r'% change in the explanatory variable equivalent to the

## interquartile ratio:

##

## r Estimate lower95% upper95%

## 1 775.6541 300.393 231.1347 384.137

##

## For further information on interpreting the effect use effectInfo().

If we are interested in the effect of cat ownership on allergen levels in the living room, with log
transformation in this, we should run a new model with cat ownership as the explanatory variable:

modcat2 <- tlm(logroom ~ cat, data = feld1, ypow = 0)

modcat2

##

## Linear regression fitted model in the transformed space

## -------------------------------------------------------

##

## Transformations:

## In the response variable: log

##

## Call:

## lm(formula = logroom ~ cat, data = feld1)

##

## Coefficients:

## (Intercept) catyes

## -1.218 2.528

Then, we can computed measures:

MY(modcat2)

##

## Estimated adjusted geometric mean of the response variable in the original space:

##

## xlevel geomMean(Y) lower95% upper95%

## 1 no 0.295888 0.2429528 0.360357

## 2 yes 3.706041 2.2935543 5.988407

and the effect:

effect(modcat2)

##

## Computing effects...

##

## Adjusted change in the geometric mean of the response variable when

## the explanatory variable changes from its reference level, 'no', to

## an alternative level (confidence interval for the difference based
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## on 999 bootstrap samples):

##

## EstimateDiff lower95% upper95% EstimatePercent lower95% upper95%

## no -> yes 3.410153 1.571001 7.22778 1152.515 645.5631 2004.171

##

## For further information on interpreting the effect use effectInfo().

A graphical representation of the relationship can be obtained (see Figure 5):

plot(modcat2, yname = "room levels")
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Figure 5: Geometric mean (and 95% confidence intervals) of allergen levels in the
living room as a function of cat ownership.

3.1.4 Power transformations

Consider now the modeling of the association between triglycerides, X, and glucose, Y , levels
in blood, both measured in mg/dl. Variables X and Y were transformed under power functions
g(X) = 1/

√
X = X−1/2 and f(Y ) = 1/Y 2 = Y −2, respectively, to achieve linearity. The glucose

data were simulated to emulate true data pattern observed in a real study [2].

First, we can load and explore data (further information about data is available with the help
function, ?glucose):

data(glucose)

dim(glucose)

## [1] 400 4
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head(glucose)

## trigly gluco inv12tri inv2glu

## 1 264 116 0.06154575 7.431629e-05

## 2 151 123 0.08137885 6.609822e-05

## 3 67 96 0.12216944 1.085069e-04

## 4 73 86 0.11704115 1.352082e-04

## 5 180 104 0.07453560 9.245562e-05

## 6 130 114 0.08770580 7.694675e-05

summary(glucose)

## trigly gluco inv12tri inv2glu

## Min. : 33.00 Min. : 63.00 Min. :0.03875 Min. :1.457e-05

## 1st Qu.: 70.75 1st Qu.: 85.00 1st Qu.:0.08805 1st Qu.:8.573e-05

## Median : 94.50 Median : 95.00 Median :0.10287 Median :1.108e-04

## Mean :112.38 Mean : 99.13 Mean :0.10297 Mean :1.131e-04

## 3rd Qu.:129.00 3rd Qu.:108.00 3rd Qu.:0.11889 3rd Qu.:1.384e-04

## Max. :666.00 Max. :262.00 Max. :0.17408 Max. :2.520e-04

Then, we can fit and explore the model of interest:

modglucose <- tlm(inv2glu ~ inv12tri, data = glucose, ypow = -2, xpow = -1/2)

summary(modglucose)

##

## Linear regression fitted model in the transformed space

## -------------------------------------------------------

##

## Transformations:

## In the response variable: power, exponent = -2

## In the explanatory variable: power, exponent = -0.5

##

## Call:

## lm(formula = inv2glu ~ inv12tri, data = glucose)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.831e-05 -2.282e-05 -8.110e-07 2.037e-05 1.226e-04

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.424e-05 8.409e-06 6.45 3.25e-10 ***

## inv12tri 5.715e-04 7.982e-05 7.16 3.92e-12 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.557e-05 on 398 degrees of freedom

## Multiple R-squared: 0.1141,Adjusted R-squared: 0.1119

## F-statistic: 51.27 on 1 and 398 DF, p-value: 3.915e-12
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The function MY provides a numerical representation of the relationship between triglycerides
(X) and glucose (Y ), under the fitted model, in the original scale of the variables:

MY(modglucose)

##

## Estimated adjusted median of the response variable in the original space:

##

## X median(Y) lower95% upper95%

## 1 33.0000 80.65215 77.74929 83.90648

## 2 103.3333 95.14538 93.64405 96.72131

## 3 173.6667 101.21681 98.47839 104.19717

## 4 244.0000 104.92701 101.08180 109.24731

## 5 314.3333 107.53510 102.82668 112.95582

## 6 384.6667 109.51322 104.11239 115.85237

## 7 455.0000 111.08770 105.11481 118.21011

## 8 525.3333 112.38364 105.92678 120.18625

## 9 595.6667 113.47702 106.60300 121.87907

## 10 666.0000 114.41723 107.17821 123.35386

This relationship can also be represented graphically in Figure 6:

plot(modglucose, type = "transformed", observed = TRUE, xname = "Triglycerides (mg/dl)",

yname = "glucose (mg/dl)")

plot(modglucose, xname = "Triglycerides (mg/dl)", yname = "glucose (mg/dl)")

The function effectInfo indicates that, under the fitted model, there is no summary effect:

effectInfo(modglucose)

##

## The effect of X on Y cannot be summarized with a single number.

## Its behavior can be explored using effect().

Indeed, for general transformations it is not possible to find a summary measure that works
for all values of X and its change. In such cases, we can create tables with the four possible
combinations that result when considering both additive and multiplicative changes in both X
and Y . These tables should report the effects for several basal values of X along the observed
range [7]. For instance, the 2.5th and 97.5th percentiles of triglycerides level were 47 mg/dl and
313 mg/dl, respectively. Thus, we can report the effects between pairs of consecutive values of
X = 50, 100, 150, 200 and 250 mg/dl, that is to say, for an additive increase of c = 50 mg/dl,
and also between pairs of consecutive values: 50, 75, 112.5, 168.8 and 253.1 mg/dl, that is, for an
r = 50% increase:

# Effects for an additive change in triglycerides level:

xc <- 50 * (1:5)

xc

## [1] 50 100 150 200 250

effectXdiff <- effect(modglucose, x1 = xc)
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Figure 6: Visualization of the fitted model modglucose. Left: In the transformed
space, the reciprocal of the squared mean of glucose levels as a function
of the reciprocal of the square root of triglycerides levels is shown. Note
that this plot should not be reported since the reciprocal of the squared
mean of glucose levels and the square root of triglycerides levels are
meaningless. This type of plot is intended just to visually explore the
model goodness of fit. Right: In the original space, the geometric mean
(or equivalently median) of glucose levels as a function of triglycerides
levels is shown. This type of plot is appropriate for reporting. Dashed
lines represent 95% confidence intervals for the measure.

##

## Computing effects...

effectXdiff

##

## Adjusted change in the median of the response variable when the explanatory

## variable changes from x1 to x2 (confidence intervals based on 999 bootstrap

## samples):

##

## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95% upper95%

## 1 50 100 8.703222 6.482939 10.849441 10.114803 7.354460 12.871487

## 2 100 150 4.802290 3.408412 6.335814 5.068507 3.592610 6.660220

## 3 150 200 3.235200 2.188123 4.493912 3.249826 2.242664 4.439129

## 4 200 250 2.397980 1.624646 3.312092 2.333003 1.615346 3.140562
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# Effects for an percent change in triglycerides level:

xq <- 50 * 1.5^(0:4)

xq

## [1] 50.000 75.000 112.500 168.750 253.125

effectXperc <- effect(modglucose, x1 = xq)

##

## Computing effects...

effectXperc

##

## Adjusted change in the median of the response variable when the explanatory

## variable changes from x1 to x2 (confidence intervals based on 999 bootstrap

## samples):

##

## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95%

## 1 50.00 75.000 5.152950 3.897949 6.328020 5.988710 4.421962

## 2 75.00 112.500 4.971764 3.635856 6.362094 5.451653 3.942760

## 3 112.50 168.750 4.724024 3.271731 6.385583 4.912204 3.436794

## 4 168.75 253.125 4.420430 3.018380 6.055787 4.381299 3.040427

## upper95%

## 1 7.504820

## 2 7.013019

## 3 6.603796

## 4 5.883341

Exploring previous results, one can see that the more easily interpretable effect appears to be the
additive change in the median of glucose level associated to a percent change in triglycerides level.
Indeed, we can see that, for any given value of the triglycerides level along the observed range, a
50% increase in triglycerides level is associated to around a 4.8 mg/dl increase in the median glucose
level. For the other measures, the effect is more dependent on the basal value of the triglycerides
level.

3.2 Logistic regression model with log transformation in the explanatory vari-
able

Revisiting the cotinine example (Section 3.1.2), supose we are now interested in the association
between low birth weight (defined as weight lower than 2500 g), Y , and cotinine level, X, after log
transforming X. The model can be fitted as follows:

modcot2 <- tlm(underweight ~ logcotinine, family = binomial, data = cotinine, xpow = 0)

where xpow = 0 indicates that the explanatory variable is already log transformed and the argument
family = binomial indicates that the regression model is logistic with logit link (default is family
= gaussian, for the lineal regression model). The fitted model provides the following results:
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summary(modcot2)

##

## Logistic regression fitted model in the transformed space

## ---------------------------------------------------------

##

## Transformations:

## In the response variable: logit link for logistic regression

## In the explanatory variable: log

##

## Call:

## glm(formula = underweight ~ logcotinine, family = binomial, data = cotinine)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.5146 0.4539 -7.744 9.65e-15 ***

## logcotinine 0.3306 0.1289 2.566 0.0103 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 175.09 on 350 degrees of freedom

## Residual deviance: 168.45 on 349 degrees of freedom

## AIC: 172.45

##

## Number of Fisher Scoring iterations: 5

Then, we can obtain the probability of low birth weight as a function of cotinine level:

MY(modcot2)

##

## Estimated adjusted probability of the response variable in the original space:

##

## X P(Y) lower95% upper95%

## 1 0.2000 0.01717866 0.004920113 0.05819342

## 2 101.2889 0.12049711 0.072138318 0.19447904

## 3 202.3778 0.14693118 0.079055696 0.25683106

## 4 303.4667 0.16452717 0.082757167 0.30061256

## 5 404.5556 0.17801453 0.085288433 0.33466844

## 6 505.6444 0.18906298 0.087213645 0.36260410

## 7 606.7333 0.19847559 0.088768165 0.38629112

## 8 707.8222 0.20670597 0.090072508 0.40684022

## 9 808.9111 0.21403755 0.091196603 0.42496992

## 10 910.0000 0.22066025 0.092184631 0.44117414

A graphical representation of the relationship between cotinine level and low birth weight can
be obtained by:
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plot(modcot2, type = "transformed", xname = "Cotinine (ng/ml) levels",

yname = "low birth weight")

plot(modcot2, xname = "Cotinine (ng/ml) levels", yname = "low birth weight")

which provides Figure 7.
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Figure 7: Visualization of the fitted model modcot2. Left: In the transformed
space, the logarithm of the odds of low birth weight as a function of the
logarithm of cotinine levels is shown. Note that this plot should not
be reported since the logarithm of cotinine levels is meaningless, and
the logarithm of the odds is difficult to interpret. This type of plot is
intended just to visually explore the model goodness of fit. Right: In
the original space, the probability of low birth weight as a function of
cotinine levels is shown. This type of plot is appropriate for reporting.
Dashed lines represent 95% confidence intervals for the measure.

Regarding effects, the function effectInfo indicates that, under the fitted model, we can sum-
marize the effect of cotinine level (X) on low birth weight (Y ) in terms of odds ratio (OR) for a
percent (or multiplicative) change in cotinine level:

effectInfo(modcot2)

##

## The effect of X on Y can be summarized with a single number as follows:

##

## - Change in X: multiplicative of factor q (equivalently, adding an r = 100 * (q - 1)% to X)

## - Type of effect on Y: odds ratio of Y

## - Effect size: q^beta
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##

## beta coefficient estimate:

## Estimate Std. Error z value Pr(>|z|)

## logcotinine 0.3306394 0.1288549 2.565982 0.01028842

##

## Further details can be obtained using effect().

Thus, the function effect provides as default the OR of low birth weight for a percent change
in the cotinine level equal to the interquartile ratio:

effect(modcot2)

##

## Computing effects...

##

## Adjusted odds ratio of the response variable for an 'r'% change in

## the explanatory variable equivalent to the interquartile ratio:

##

## r Estimate lower95% upper95%

## 1 1112.878 2.282194 1.21516 4.286193

##

## For further information on interpreting the effect use effectInfo().

Alternatively, the effect for a 10-fold change in the cotinine level is:

effect(modcot2, q = 10)

##

## Computing effects...

##

## Adjusted odds ratio of the response variable for an 'r' = 900% change

## in the explanatory variable:

##

## r Estimate lower95% upper95%

## 1 900 2.141112 1.196984 3.829926

##

## For further information on interpreting the effect use effectInfo().
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