Package 'timsac'

September 30, 2023

Version 1.3.8-4
Title Time Series Analysis and Control Package
Author The Institute of Statistical Mathematics
Maintainer Masami Saga <msaga@mtb.biglobe.ne.jp>
Depends R (>= 4.0.0)
Imports graphics, grDevices, stats
Description Functions for statistical analysis, prediction and control of time series based mainly on Akaike and Nakagawa (1988) <ISBN 978-90-277-2786-2>.
License GPL (>= 2)
MailingList Please send bug reports to <ismrp@grp.ism.ac.jp>.
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-30 09:30:02 UTC

R topics documented:

nsac-package		. 2
irpollution		
merikamaru		. 4
mafit		. 4
ispec		. 5
Itcor		. 6
ıtoarmafit		. 7
iysea	• • •	. 8
spec	• • •	. 10
specData		. 11
ocar		. 12
omar		. 13
lsallfood		. 14
subst		. 15
anadianlynx		. 17
narm		. 18

canoca	19
covgen	21
decomp	21
exsar	24
fftcor	25
fpeaut	26
fpec	27
LaborData	28
locarData	29
markov	29
mfilter	31
mlocar	32
mlomar	34
mulbar	35
mulcor	37
mulfrf	38
mulmar	39
mulnos	41
mulrsp	42
mulspe	43
nonst	45
nonstData	47
optdes	47
optsim	48
perars	50
plot.decomp	51
plot.specmx	52
Powerplant	52
prdctr	53
raspec	54
sglfre	55
simcon	56
thirmo	58
unibar	59
unimar	61
wnoise	62
xsarma	63
A	05
	65

Index

timsac-package

Time Series Analysis and Control Program Package

Description

R functions for statistical analysis and control of time series.

Airpollution

Details

This package provides functions for statistical analysis, prediction and control of time series. The original TIMSAC (TIMe Series Analysis and Control) or TIMSAC-72 was published in Akaike and Nakagawa (1972). After that, TIMSAC-74, TIMSAC-78 and TIMSAC-84 were published as the TIMSAC series in Computer Science Monograph.

For overview of models and information criteria for model selection, see .../doc/timsac-guide_ e.pdf or .../doc/timsac-guide_j.pdf (in Japanese).

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1985) *Computer Science Monograph, No.22, Timsac84 Part 1*. The Institute of Statistical Mathematics.

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Airpollution Airpollution Data

Description

An airpollution data for testing perars.

Usage

```
data(Airpollution)
```

Format

A time series of 372 observations.

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics. Amerikamaru

Description

A multivariate non-stationary data for testing **blomar**.

Usage

```
data(Amerikamaru)
```

Format

A 2-dimensional array with 896 observations on 2 variables.

[, 1]	rudder
[, 2]	yawing

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

armafit

ARMA Model Fitting

Description

Fit an ARMA model with specified order by using DAVIDON's algorithm.

Usage

armafit(y, model.order)

Arguments

У	a univariate time series.
model.order	a numerical vector of the form c(ar, ma) which gives the order to be fitted successively.

Details

The maximum likelihood estimates of the coefficients of a scalar ARMA model

 $y(t) - a(1)y(t-1) - \dots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \dots - b(q)u(t-q)$

of a time series y(t) are obtained by using DAVIDON's algorithm. Pure autoregression is not allowed.

auspec

Value

arcoef	maximum likelihood estimates of AR coefficients.
macoef	maximum likelihood estimates of MA coefficients.
arstd	standard deviation (AR).
mastd	standard deviation (MA).
v	innovation variance.
aic	AIC.
grad	final gradient.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y <- arima.sim(list(order=c(2,0,1), ar=c(0.64,-0.8), ma=-0.5), n = 1000)
z <- armafit(y, model.order = c(2,1))
z$arcoef
z$macoef
```

auspec I	Power Spectrum
----------	----------------

Description

Compute power spectrum estimates for two trigonometric windows of Blackman-Tukey type by Goertzel method.

Usage

```
auspec(y, lag = NULL, window = "Akaike", log = FALSE, plot = TRUE)
```

Arguments

У	a univariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the length of time series y.
window	character string giving the definition of smoothing window. Allowed strings are "Akaike" (default) or "Hanning".
log	logical. If TRUE, the spectrum spec is plotted as log(spec).
plot	logical. If TRUE (default), the spectrum spec is plotted.

Details

autcor

Hanning Window :	a1(0)=0.5,	a1(1)=a1(-1)=0.25,	a1(2)=a1(-2)=0
Akaike Window :	a2(0)=0.625,	a2(1)=a2(-1)=0.25,	a2(2)=a2(-2)=-0.0625

Value

spec	spectrum smoothing by 'window'
stat	test statistics.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

y <- arima.sim(list(order=c(2,0,0), ar=c(0.64,-0.8)), n = 200)
auspec(y, log = TRUE)</pre>

autcor Autocorrelation

Description

Estimate autocovariances and autocorrelations.

Usage

autcor(y, lag = NULL, plot = TRUE, lag_axis = TRUE)

Arguments

У	a univariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the length of the time series y.
plot	logical. If TRUE (default), autocorrelations are plotted.
lag_axis	logical. If TRUE (default) with plot = TRUE, x -axis is drawn.

acov	autocovariances.
acor	autocorrelations (normalized covariances).
mean	mean of y.

autoarmafit

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
# Example 1 for the normal distribution
y <- rnorm(200)
autcor(y, lag_axis = FALSE)
# Example 2 for the ARIMA model
y <- arima.sim(list(order=c(2,0,0), ar=c(0.64,-0.8)), n = 200)
autcor(y, lag = 20)
```

autoarmafit Automatic ARMA Model Fitting

Description

Provide an automatic ARMA model fitting procedure. Models with various orders are fitted and the best choice is determined with the aid of the statistics AIC.

Usage

```
autoarmafit(y, max.order = NULL)
```

Arguments

У	a univariate time series.
max.order	upper limit of AR order and MA order. Default is $2\sqrt{n}$, where n is the length of the time series y.

Details

The maximum likelihood estimates of the coefficients of a scalar ARMA model

$$y(t) - a(1)y(t-1) - \dots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \dots - b(q)u(t-q)$$

of a time series y(t) are obtained by using DAVIDON's variance algorithm. Where p is AR order, q is MA order and u(t) is a zero mean white noise. Pure autoregression is not allowed.

best.model	the best choice of ARMA coefficients.
model	a list with components arcoef (Maximum likelihood estimates of AR coefficients), macoef (Maximum likelihood estimates of MA coefficients), arstd (AR standard deviation), mastd (MA standard deviation), v (Innovation variance), aic (AIC = $n \log(det(v)) + 2(p+q)$) and grad (Final gradient) in AIC increasing order.
	•

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y <- arima.sim(list(order=c(2,0,1),ar=c(0.64,-0.8),ma=-0.5), n = 1000)
autoarmafit(y)</pre>
```

baysea

Bayesian Seasonal Adjustment Procedure

Description

Decompose a nonstationary time series into several possible components.

Usage

```
baysea(y, period = 12, span = 4, shift = 1, forecast = 0, trend.order = 2,
seasonal.order = 1, year = 0, month = 1, out = 0, rigid = 1,
zersum = 1, delta = 7, alpha = 0.01, beta = 0.01, gamma = 0.1,
spec = TRUE, plot = TRUE, separate.graphics = FALSE)
```

Arguments

У	a univariate time series.	
period	number of seasonals within a period.	
span	number of periods to be processed at one time.	
shift	number of periods to be shifted to define the new span of data.	
forecast	length of forecast at the end of data.	
trend.order	order of differencing of trend.	
seasonal.order	order of differencing of seasonal. seasonal.order is smaller than or equal to span.	
year	trading-day adjustment option.	
	 = 0: without trading day adjustment > 0: with trading day adjustment (the series is supposed to start at this year) 	
month	number of the month in which the series starts. If year=0 this parameter is ignored.	
out	outlier correction option.	

baysea

	0: without outlier detection1: with outlier detection by marginal probability2: with outlier detection by model selection	
rigid	controls the rigidity of the seasonal component. more rigid seasonal with larger than rigid.	
zersum	controls the sum of the seasonals within a period.	
delta	controls the leap year effect.	
alpha	controls prior variance of initial trend.	
beta	controls prior variance of initial seasonal.	
gamma	controls prior variance of initial sum of seasonal.	
spec	logical. If TRUE (default), estimate spectra of irregular and differenced adjusted.	
plot	logical. If TRUE (default), plot trend, adjust, smoothed, season and irregular.	
separate.graphi	ics	
	logical If TRUE a graphic dovice is opened for each graphics display	

logical. If TRUE, a graphic device is opened for each graphics display.

Details

This function realized a decomposition of time series y into the form

$$y(t) = T(t) + S(t) + I(t) + TDC(t) + OCF(t)$$

where T(t) is trend component, S(t) is seasonal component, I(t) is irregular, TDC(t) is trading day factor and OCF(t) is outlier correction factor. For the purpose of comparison of models the criterion ABIC is defined

 $ABIC = -2\log(maximum\ likelihood\ of\ the\ model).$

Smaller value of ABIC represents better fit.

outlier	outlier correction factor.
trend	trend.
season	seasonal.
tday	trading day component if year > 0 .
irregular	= y - trend - season - tday - outlier.
adjust	= trend - irregular.
smoothed	= trend + season + tday.
aveABIC	averaged ABIC.
irregular.spec	a list with components acov (autocovariances), acor (normalized covariances), mean, v (innovation variance), aic (AIC), parcor (partial autocorrelation) and rspec (rational spectrum) of irregular if spec = TRUE.
adjusted.spec	a list with components acov, acor, mean, v, aic, parcor and rspec of differ- enced adjusted series if spec = TRUE.

differenced.trend

a list with components acov, acor, mean, v, aic and parcor of differenced trend series if spec = TRUE.

differenced.season

a list with components acov, acor, mean, v, aic and parcor of differenced seasonal series if spec = TRUE.

References

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1985) *Computer Science Monograph, No.22, Timsac84 Part 1.* The Institute of Statistical Mathematics.

Examples

data(LaborData)
baysea(LaborData, forecast = 12)

bispec

Bispectrum

Description

Compute bi-spectrum using the direct Fourier transform of sample third order moments.

Usage

bispec(y, lag = NULL, window = "Akaike", log = FALSE, plot = TRUE)

Arguments

У	a univariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the length of the time series y.
window	character string giving the definition of smoothing window. Allowed strings are "Akaike" (default) or "Hanning".
log	logical. If TRUE, the spectrum pspec is plotted as $log(pspec)$.
plot	logical. If TRUE (default), the spectrum pspec is plotted.

Details

Hanning Window :	a1(0)=0.5,	a1(1)=a1(-1)=0.25,	a1(2)=a1(-2)=0
Akaike Window :	a2(0)=0.625,	a2(1)=a2(-1)=0.25,	a2(2)=a2(-2)=-0.0625

bispecData

Value

pspec	power spectrum smoothed by 'window'.
sig	significance.
cohe	coherence.
breal	real part of bispectrum.
bimag	imaginary part of bispectrum.
exval	approximate expected value of coherence under Gaussian assumption.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

Examples

```
data(bispecData)
bispec(bispecData, lag = 30)
```

bispecData Univariate Test Data

Description

A univariate data for testing bispec and thirmo.

Usage

data(bispecData)

Format

A time series of 1500 observations.

Source

H.Akaike, E.Arahata and T.Ozaki (1976) *Computer Science Monograph, No.6, Timsac74 A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

blocar

Description

Locally fit autoregressive models to non-stationary time series by a Bayesian procedure.

Usage

blocar(y, max.order = NULL, span, plot = TRUE)

Arguments

У	a univariate time series.
max.order	upper limit of the order of AR model. Default is $2\sqrt{n}$, where n is the length of the time series y.
span	length of basic local span.
plot	logical. If TRUE (default), spectrums pspec are plotted.

Details

The basic AR model of scalar time series y(t)(t = 1, ..., n) is given by

 $y(t) = a(1)y(t-1) + a(2)y(t-2) + \ldots + a(p)y(t-p) + u(t),$

where p is order of the model and u(t) is Gaussian white noise with mean 0 and variance v. At each stage of modeling of locally AR model, a two-step Bayesian procedure is applied

- 1. Averaging of the models with different orders fitted to the newly obtained data.
- 2. Averaging of the models fitted to the present and preceding spans.

AIC of the model fitted to the new span is defined by

$$AIC = ns\log(sd) + 2k,$$

where ns is the length of new data, sd is innovation variance and k is the equivalent number of parameters, defined as the sum of squares of the Bayesian weights. AIC of the model fitted to the preceding spans are defined by

$$AIC(j+1) = ns\log(sd(j)) + 2,$$

where sd(j) is the prediction error variance by the model fitted to j periods former span.

var	variance.
aic	AIC.

blomar

bweight	Bayesian weight.
pacoef	partial autocorrelation.
arcoef	coefficients (average by the Bayesian weights).
V	innovation variance.
init	initial point of the data fitted to the current model.
end	end point of the data fitted to the current model.
pspec	power spectrum.

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike (1978) A Bayesian Extension of the Minimum AIC Procedure of Autoregressive Model Fitting. Research Memo. NO.126. The Institute of The Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

```
data(locarData)
z <- blocar(locarData, max.order = 10, span = 300)
z$arcoef</pre>
```

blomar

Bayesian Method of Locally Stationary Multivariate AR Model Fitting

Description

Locally fit multivariate autoregressive models to non-stationary time series by a Bayesian procedure.

Usage

```
blomar(y, max.order = NULL, span)
```

Arguments

У	A multivariate time series.
max.order	upper limit of the order of AR model, less than or equal to $n/2d$ where n is the length and d is the dimension of the time series y. Default is $min(2\sqrt{n}, n/2d)$.
span	length of basic local span. Let m denote max.order, if $n - m - 1$ is less than or equal to span or $n - m - 1$ -span is less than $2md$, span is $n - m$.

Details

The basic AR model is given by

 $y(t) = A(1)y(t-1) + A(2)y(t-2) + \ldots + A(p)y(t-p) + u(t),$

where p is order of the AR model and u(t) is innovation variance v.

Value

mean	mean.
var	variance.
bweight	Bayesian weight.
aic	AIC with respect to the present data.
arcoef	AR coefficients. arcoef[[m]][i,j,k] shows the value of <i>i</i> -th row, <i>j</i> -th column, k -th order of m -th model.
v	innovation variance.
eaic	equivalent AIC of Bayesian model.
init	start point of the data fitted to the current model.
end	end point of the data fitted to the current model.

References

G.Kitagawa and H.Akaike (1978) A Procedure for the Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike (1978) A Bayesian Extension of The Minimum AIC Procedure of Autoregressive Model Fitting. Research Memo. NO.126. The institute of Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

data(Amerikamaru)
blomar(Amerikamaru, max.order = 10, span = 300)

Blsallfood Blsallfood Data

Description

The BLSALLFOOD data. (the Bureau of Labor Statistics, all employees in food industries, January 1967 - December 1979)

Usage

data(Blsallfood)

bsubst

Format

A time series of 156 observations.

Source

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1984) *Computer Science Monographs, Timsac-84 Part 1*. The Institute of Statistical Mathematics.

bsubst

Bayesian Type All Subset Analysis

Description

Produce Bayesian estimates of time series models such as pure AR models, AR models with nonlinear terms, AR models with polynomial type mean value functions, etc. The goodness of fit of a model is checked by the analysis of several steps ahead prediction errors.

Usage

Arguments

У	a univariate time series.
mtype	model type. Allowed values are
	 autoregressive model, polynomial type non-linear model (lag's read in), polynomial type non-linear model (lag's automatically set), AR-model with polynomial mean value function, originally defined but omitted here.
lag	maximum time lag. Default is $2\sqrt{n}$, where n is the length of the time series y.
nreg	number of regressors.
reg	specification of regressor (mtype = 2). <i>i</i> -th regressor is defined by $z(n - L1(i)) \times z(n - L2(i)) \times z(n - L3(i))$, where L1(i) is reg(1,i), $L2(i)$ is reg(2,i) and $L3(i)$ is reg(3,i). 0-lag term $z(n - 0)$ is replaced by the constant 1.
term.lag	maximum time lag specify the regressors $(L1(i), L2(i), L3(i))$ (i=1,,nreg) (mtype = 3).
	term.lag[1]:maximum time lag of linear termterm.lag[2]:maximum time lag of squared termterm.lag[3]:maximum time lag of quadratic crosses term

	term.lag[4] : maximum time lag of cubic term term.lag[5] : maximum time lag of cubic cross term.
cstep	prediction errors checking (up to cstep-steps ahead) is requested. (mtype = 1, 2, 3).
plot	logical. If TRUE (default), daic, perr and peautcor are plotted.

Details

The AR model is given by (mtype = 2)

 $y(t) = a(1)y(t-1) + \dots + a(p)y(t-p) + u(t).$

The non-linear model is given by (mtype = 2, 3)

$$y(t) = a(1)z(t, 1) + a(2)z(t, 2) + \dots + a(p)z(t, p) + u(t).$$

Where p is AR order and u(t) is Gaussian white noise with mean 0 and variance v(p).

ymean	mean of y.
yvar	variance of y.
v	innovation variance.
aic	AIC(m), (m=0, nreg).
aicmin	minimum AIC.
daic	AIC(m)-aicmin (m=0, nreg).
order.maice	order of minimum AIC.
v.maice	innovation variance attained at order.maice.
arcoef.maice	AR coefficients attained at order.maice.
v.bay	residual variance of Bayesian model.
aic.bay	AIC of Bayesian model.
np.bay	equivalent number of parameters.
arcoef.bay	AR coefficients of Bayesian model.
ind.c	index of parcor2 in order of increasing magnitude.
parcor2	square of partial correlations (normalized by multiplying N).
damp	binomial type damper.
bweight	final Bayesian weights of partial correlations.
parcor.bay	partial correlations of the Bayesian model.
eicmin	minimum EIC.
esum	whole subset regression models.
npmean	mean of number of parameter.
npmean.nreg	= npmean / nreg.

Canadianlynx

perr	prediction error.
mean	mean.
var	variance.
skew	skewness.
peak	peakedness.
peautcor	autocorrelation function of 1-step ahead prediction error.
pspec	power spectrum (mtype = 1).

References

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

Canadianlynx Time series of Canadian lynx data

Description

A time series of Canadian lynx data for testing unimar, unibar, bsubst and exsar.

Usage

```
data(Canadianlynx)
```

Format

A time series of 114 observations.

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim-sac78.* The Institute of Statistical Mathematics.

canarm

Description

Fit an ARMA model to stationary scalar time series through the analysis of canonical correlations between the future and past sets of observations.

Usage

canarm(y, lag = NULL, max.order = NULL, plot = TRUE)

Arguments

У	a univariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the length of the time series y.
max.order	upper limit of AR order and MA order, must be less than or equal to lag. Default is lag.
plot	logical. If TRUE (default), parcor is plotted.

Details

The ARMA model of stationary scalar time series y(t)(t = 1, ..., n) is given by

$$y(t) - a(1)y(t-1) - \dots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \dots - b(q)u(t-q),$$

where p is AR order and q is MA order.

arinit	AR coefficients of initial AR model fitting by the minimum AIC procedure.
v	innovation vector.
aic	AIC.
aicmin	minimum AIC.
order.maice	order of minimum AIC.
parcor	partial autocorrelation.
nc	total number of case.
future	number of present and future variables.
past	number of present and past variables.
cweight	future set canonical weight.
canocoef	canonical R.
canocoef2	R-squared.
chisquar	chi-square.

canoca

ndf	N.D.F.
dic	DIC.
dicmin	minimum DIC.
order.dicmin	order of minimum DIC.
arcoef	AR coefficients $a(i)(i = 1,, p)$.
macoef	MA coefficients $b(i)(i = 1,, q)$.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y <- arima.sim(list(order=c(2,0,1), ar=c(0.64,-0.8), ma=c(-0.5)), n = 1000)
z <- canarm(y, max.order = 30)
z$arcoef
z$macoef</pre>
```

canoca

Canonical Correlation Analysis of Vector Time Series

Description

Analyze canonical correlation of a d-dimensional multivariate time series.

Usage

canoca(y)

Arguments

y

a multivariate time series.

Details

First AR model is fitted by the minimum AIC procedure. The results are used to ortho-normalize the present and past variables. The present and future variables are tested successively to decide on the dependence of their predictors. When the last DIC (=chi-square - 2.0*N.D.F.) is negative the predictor of the variable is decided to be linearly dependent on the antecedents.

canoca

Value

aic	AIC.
aicmin	minimum AIC.
order.maice	MAICE AR model order.
V	innovation variance.
arcoef	autoregressive coefficients. $arcoef[i,j,k]$ shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.
nc	number of cases.
future	number of variable in the future set.
past	number of variables in the past set.
cweight	future set canonical weight.
canocoef	canonical R.
canocoef2	R-squared.
chisquar	chi-square.
ndf	N.D.F.
dic	DIC.
dicmin	minimum DIC.
order.dicmin	order of minimum DIC.
matF	the transition matrix F.
vectH	structural characteristic vector H of the canonical Markovian representation.
matG	the estimate of the input matrix G .
vectF	matrix F in vector form.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

Examples

20

covgen

Description

Produce the Fourier transform of a power gain function in the form of an autocovariance sequence.

Usage

covgen(lag, f, gain, plot = TRUE)

Arguments

lag	desired maximum lag of covariance.
f	frequency $f[i]$ ($i = 1,, k$), where k is the number of data points. By definition $f[1] = 0.0$ and $f[k] = 0.5$, $f[i]$'s are arranged in increasing order.
gain	power gain of the filter at the frequency f[i].
plot	logical. If TRUE (default), autocorrelations are plotted.

Value

acov	autocovariance.
acor	autocovariance normalized.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

Examples

```
spec <- raspec(h = 100, var = 1, arcoef = c(0.64,-0.8), plot = FALSE)
covgen(lag = 100, f = 0:100/200, gain = spec)</pre>
```

decomp	Time Series Decomposition (Seasonal Adjustment) by Square-Root
	Filter

Description

Decompose a nonstationary time series into several possible components by square-root filter.

Usage

```
decomp(y, trend.order = 2, ar.order = 2, seasonal.order = 1,
    period = 1, log = FALSE, trade = FALSE, diff = 1,
    miss = 0, omax = 99999.9, plot = TRUE, ...)
```

Arguments

У	a univariate time series with or without the tsp attribute.
trend.order	trend order (1, 2 or 3).
ar.order	AR order (less than 11, try 2 first).
seasonal.order	seasonal order (0, 1 or 2).
period	number of seasons in one period. If the tsp attribute of y is not NULL, frequency(y).
log	logical; if TRUE, a log scale is in use.
trade	logical; if TRUE, the model including trading day effect component is concidered, where tsp(y) is not null and frequency(y) is 4 or 12.
diff	numerical differencing (1 sided or 2 sided).
miss	missing value flag.
= 0 : > 0 : < 0 :	no consideration values which are greater than omax are treated as missing data values which are less than omax are treated as missing data
omax	maximum or minimum data value (if miss > 0 or miss < 0).
plot	logical. If TRUE (default), trend, seasonal, ar and trad are plotted.
	graphical arguments passed to plot.decomp.

Details

The Basic Model

y(t) = T(t) + AR(t) + S(t) + TD(t) + W(t)

where T(t) is trend component, AR(t) is AR process, S(t) is seasonal component, TD(t) is trading day factor and W(t) is observational noise.

Component Models

- Trend component (trend.order m1)
 - $$\begin{split} m1 &= 1: T(t) = T(t-1) + v1(t) \\ m1 &= 2: T(t) = 2T(t-1) T(t-2) + v1(t) \\ m1 &= 3: T(t) = 3T(t-1) 3T(t-2) + T(t-2) + v1(t) \end{split}$$
- AR component (ar.order m2) AR(t) = a(1)AR(t-1) + ... + a(m2)AR(t-m2) + v2(t)

decomp

• Seasonal component (seasonal.order k, frequency f)

 $k = 1: S(t) = -S(t-1) - \dots - S(t-f+1) + v3(t)$ $k = 2: S(t) = -2S(t-1) - \dots - f S(t-f+1) - \dots - S(t-2f+2) + v3(t)$

· Trading day effect

 $TD(t) = b(1)TRADE(t, 1) + \ldots + b(7)TRADE(t, 7)$ where TRADE(t, i) is the number of *i*-th days of the week in *t*-th data and $b(1) + \ldots + b(7) = 0$.

Value

An object of class "decomp", which is a list with the following components:

trend	trend component.
seasonal	seasonal component.
ar	AR process.
trad	trading day factor.
noise	observational noise.
aic	AIC.
lkhd	likelihood.
sigma2	sigma^2.
tau1	system noise variances v1.
tau2	system noise variances $v2$ or $v3$.
tau3	system noise variances v3.
arcoef	vector of AR coefficients.
tdf	trading day factor. tdf(i) (i=1,7) are from Sunday to Saturday sequentially.
conv.y	Missing values are replaced by NA after the specified logarithmic transforma- tion

References

G.Kitagawa (1981) A Nonstationary Time Series Model and Its Fitting by a Recursive Filter Journal of Time Series Analysis, Vol.2, 103-116.

W.Gersch and G.Kitagawa (1983) *The prediction of time series with Trends and Seasonalities* Journal of Business and Economic Statistics, Vol.1, 253-264.

G.Kitagawa (1984) A smoothness priors-state space modeling of Time Series with Trend and Seasonality Journal of American Statistical Association, VOL.79, NO.386, 378-389.

Examples

```
data(Blsallfood)
y <- ts(Blsallfood, start=c(1967,1), frequency=12)
z <- decomp(y, trade = TRUE)
z$aic</pre>
```

z\$lkhd z\$sigma2 z\$tau1 z\$tau2 z\$tau3

avear	
exsai	

Exact Maximum Likelihood Method of Scalar AR Model Fitting

Description

Produce exact maximum likelihood estimates of the parameters of a scalar AR model.

Usage

exsar(y, max.order = NULL, plot = FALSE)

Arguments

У	a univariate time series.
max.order	upper limit of AR order. Default is $2\sqrt{n}$, where n is the length of the time series
	у.
plot	logical. If TRUE, daic is plotted.

Details

The AR model is given by

$$y(t) = a(1)y(t-1) + \dots + a(p)y(t-p) + u(t)$$

where p is AR order and u(t) is a zero mean white noise.

mean	mean.
var	variance.
v	innovation variance.
aic	AIC.
aicmin	minimum AIC.
daic	AIC-aicmin.
order.maice	order of minimum AIC.
v.maice	MAICE innovation variance.
arcoef.maice	MAICE AR coefficients.
v.mle	maximum likelihood estimates of innovation variance.
arcoef.mle	maximum likelihood estimates of AR coefficients.

fftcor

References

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
z <- exsar(Canadianlynx, max.order = 14)
z$arcoef.maice
z$arcoef.mle</pre>
```

fftcor

Auto And/Or Cross Correlations via FFT

Description

Compute auto and/or cross covariances and correlations via FFT.

Usage

fftcor(y, lag = NULL, isw = 4, plot = TRUE, lag_axis = TRUE)

Arguments

data of channel X and Y (data of channel Y is given for $isw = 2$ or 4 only).	
maximum lag. Default is $2\sqrt{n}$, where n is the length of the time series y.	
numerical flag giving the type of computation.	
 auto-correlation of X (one-channel) auto-correlations of X and Y (two-channel) auto- and cross- correlations of X and Y (two-channel) 	
logical. If TRUE (default), cross-correlations are plotted. logical. If TRUE (default) with plot=TRUE, <i>x</i> -axis is drawn.	

acov	auto-covariance.
ccov12	cross-covariance.
ccov21	cross-covariance.
acor	auto-correlation.
ccor12	cross-correlation.
ccor21	cross-correlation.
mean	mean.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
# Example 1
x <- rnorm(200)
y <- rnorm(200)
xy <- array(c(x,y), dim = c(200,2))
fftcor(xy, lag_axis = FALSE)
# Example 2
xorg <- rnorm(1003)
x <- matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- xorg[1:1000]
x[, 2] <- xorg[4:1003] + 0.5*rnorm(1000)
fftcor(x, lag = 20)</pre>
```

fpeaut

FPE Auto

Description

Perform FPE(Final Prediction Error) computation for one-dimensional AR model.

Usage

```
fpeaut(y, max.order = NULL)
```

Arguments

У	a univariate time series.
max.order	upper limit of model order. Default is $2\sqrt{n}$, where <i>n</i> is the length of the time series y.

Details

The AR model is given by

$$y(t) = a(1)y(t-1) + \dots + a(p)y(t-p) + u(t)$$

where p is AR order and u(t) is a zero mean white noise.

26

fpec

Value

ordermin	order of minimum FPE.
best.ar	AR coefficients with minimum FPE.
sigma2m	= sigma2(ordermin).
fpemin	minimum FPE.
rfpemin	minimum RFPE.
ofpe	OFPE.
arcoef	AR coefficients.
sigma2	σ^2 .
fpe	FPE (Final Prediction Error).
rfpe	RFPE.
parcor	partial correlation.
chi2	chi-squared.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

y <- arima.sim(list(order=c(2,0,0), ar=c(0.64,-0.8)), n = 200)
fpeaut(y, max.order = 20)</pre>

C		-	
-ti	n	ρ	C
	~	~	-

AR model Fitting for Control

Description

Perform AR model fitting for control.

Usage

```
fpec(y, max.order = NULL, control = NULL, manip = NULL)
```

Arguments

У	a multivariate time series.
max.order	upper limit of model order. Default is $2\sqrt{n}$, where <i>n</i> is the length of time series y.
control	controlled variables. Default is $c(1:d)$, where d is the dimension of the time series y.
manip	manipulated variables. Default number of manipulated variable is 0.

Value

COV	covariance matrix rearrangement.
fpec	FPEC (AR model fitting for control).
rfpec	RFPEC.
aic	AIC.
ordermin	order of minimum FPEC.
fpecmin	minimum FPEC.
rfpecmin	minimum RFPEC.
aicmin	minimum AIC.
perr	prediction error covariance matrix.
arcoef	a set of coefficient matrices. arcoef[i,j,k] shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

LaborData l

Labor force Data

Description

Labor force U.S. unemployed 16 years or over (1972-1978) data.

Usage

data(LaborData)

Format

A time series of 72 observations.

28

locarData

Source

H.Akaike, T.Ozaki, M.Ishiguro, Y.Ogata, G.Kitagawa, Y-H.Tamura, E.Arahata, K.Katsura and Y.Tamura (1985) *Computer Science Monograph, No.22, Timsac84 Part 1.* The Institute of Statistical Mathematics.

locarData

Non-stationary Test Data

Description

A non-stationary data for testing mlocar and blocar.

Usage

data(locarData)

Format

A time series of 1000 observations.

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

markov

Maximum Likelihood Computation of Markovian Model

Description

Compute maximum likelihood estimates of Markovian model.

Usage

markov(y)

Arguments

у

a multivariate time series.

Details

This function is usually used with simcon.

Value

id	id[i] = 1 means that the <i>i</i> -th row of F contains free parameters.
ir	ir[i] denotes the position of the last non-zero element within the <i>i</i> -th row of F .
ij	ij[i] denotes the position of the <i>i</i> -th non-trivial row within F .
ik	ik[i] denotes the number of free parameters within the <i>i</i> -th non-trivial row of F .
grad	gradient vector.
matFi	initial estimate of the transition matrix F .
matF	transition matrix F.
matG	input matrix G.
davvar	DAVIDON variance.
arcoef	AR coefficient matrices. $arcoef[i, j, k]$ shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.
impulse	impulse response matrices.
macoef	MA coefficient matrices. $macoef[i, j, k]$ shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.
v	innovation variance.
aic	AIC.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1).* The Institute of Statistical Mathematics.

Examples

```
x <- matrix(rnorm(1000*2), nrow = 1000, ncol = 2)</pre>
ma <- array(0, dim = c(2,2,2))
ma[, , 1] <- matrix(c( -1.0, 0.0,</pre>
                         0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ma[, , 2] <- matrix(c( -0.2,  0.0,</pre>
                        -0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")</pre>
ar <- array(0, dim = c(2,2,3))
ar[, , 1] <- matrix(c( -1.0, 0.0,
                         0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 2] <- matrix(c( -0.5, -0.2,
                        -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 3] <- matrix(c( -0.3, -0.05,
                        -0.1, -0.30), nrow = 2, ncol = 2, byrow = TRUE)
z <- mfilter(y, ar, "recursive")</pre>
markov(z)
```

mfilter

Description

Applies linear filtering to a multivariate time series.

Usage

```
mfilter(x, filter, method = c("convolution","recursive"), init)
```

Arguments

x	a multivariate (<i>m</i> -dimensional, <i>n</i> length) time series $x[n, m]$.
filter	an array of filter coefficients. filter[i,j,k] shows the value of i -th row, j -th column, k -th order
method	either "convolution" or "recursive" (and can be abbreviated). If "convolution" a moving average is used: if "recursive" an autoregression is used. For convolution filters, the filter coefficients are for past value only.
init	specifies the initial values of the time series just prior to the start value, in reverse time order. The default is a set of zeros.

Details

This is a multivariate version of "filter" function. Missing values are allowed in 'x' but not in 'filter' (where they would lead to missing values everywhere in the output). Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

$$y[i,]' = x[, i]' + f[, 1] \times y[i-1,]' + \dots + f[, p] \times y[i-p,]',$$

No check is made to see if recursive filter is invertible: the output may diverge if it is not. The convolution filter is

$$y[i,]' = f[,,1] \times x[i,]' + \dots + f[,,p] \times x[i-p+1,]'.$$

Value

mfilter returns a time series object.

Note

'convolve(, type="filter")' uses the FFT for computations and so may be faster for long filters on univariate time series (and so the time alignment is unclear), nor does it handle missing values. 'filter' is faster for a filter of length 100 on a series 1000, for examples.

See Also

convolve, arima.sim

Examples

```
#AR model simulation
ar <- array(0, dim = c(3,3,2))
ar[, , 1] <- matrix(c(0.4, 0,
                                   0.3,
                       0.2, -0.1, -0.5,
                       0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[, , 2] <- matrix(c(0, -0.3, 0.5,
                       0.7, -0.4, 1,
                       0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x <- matrix(rnorm(100*3), nrow = 100, ncol = 3)</pre>
y <- mfilter(x, ar, "recursive")</pre>
#Back to white noise
ma <- array(0, dim = c(3,3,3))
ma[, , 1] <- diag(3)</pre>
ma[, , 2] <- -ar[, , 1]</pre>
ma[, , 3] <- -ar[, , 2]</pre>
z <- mfilter(y, ma, "convolution")</pre>
mulcor(z)
#AR-MA model simulation
x <- matrix(rnorm(1000*2), nrow = 1000, ncol = 2)</pre>
ma <- array(0, dim = c(2,2,2))
ma[, , 1] <- matrix(c( -1.0, 0.0,</pre>
                         0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ma[, , 2] <- matrix(c( -0.2,  0.0,</pre>
                        -0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")</pre>
ar <- array(0, dim = c(2,2,3))
ar[, , 1] <- matrix(c( -1.0, 0.0,
                         0.0, -1.0, nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 2] <- matrix(c( -0.5, -0.2,
                        -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 3] <- matrix(c( -0.3, -0.05,
                        -0.1, -0.30), nrow = 2, ncol = 2, byrow = TRUE)
z <- mfilter(y, ar, "recursive")</pre>
```

mlocar	Minimum AIC Method of Locally Stationary AR Model Fitting; Scalar
	Case

Description

Locally fit autoregressive models to non-stationary time series by minimum AIC procedure.

Usage

```
mlocar(y, max.order = NULL, span, const = 0, plot = TRUE)
```

mlocar

Arguments

У	a univariate time series.
max.order	upper limit of the order of AR model. Default is $2\sqrt{n}$, where <i>n</i> is the length of the time series y.
span	length of the basic local span.
const	integer. 0 denotes constant vector is not included as a regressor and 1 denotes constant vector is included as the first regressor.
plot	logical. If TRUE (default), spectrums pspec are plotted.

Details

The data of length n are divided into k locally stationary spans,

$$|\langle -n_1 - - \rangle| \langle -n_2 - - \rangle| \langle -n_3 - - \rangle|....| \langle -n_k - - \rangle|$$

where n_i (i = 1, ..., k) denotes the number of basic spans, each of length span, which constitute the *i*-th locally stationary span. At each local span, the process is represented by a stationary autoregressive model.

mean	mean.
var	variance.
ns	the number of local spans.
order	order of the current model.
arcoef	AR coefficients of current model.
v	innovation variance of the current model.
init	initial point of the data fitted to the current model.
end	end point of the data fitted to the current model.
pspec	power spectrum.
npre	data length of the preceding stationary block.
nnew	data length of the new block.
order.mov	order of the moving model.
v.mov	innovation variance of the moving model.
aic.mov	AIC of the moving model.
order.const	order of the constant model.
v.const	innovation variance of the constant model.
aic.const	AIC of the constant model.

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

```
data(locarData)
z <- mlocar(locarData, max.order = 10, span = 300, const = 0)
z$arcoef</pre>
```

mlomar	Minimum AIC Method of Locally Stationary Multivariate AR Model
	Fitting

Description

Locally fit multivariate autoregressive models to non-stationary time series by the minimum AIC procedure using the householder transformation.

Usage

mlomar(y, max.order = NULL, span, const = 0)

Arguments

У	a multivariate time series.
max.order	upper limit of the order of AR model, less than or equal to $n/2d$ where n is the length and d is the dimension of the time series y. Default is $min(2\sqrt{n}, n/2d)$.
span	length of basic local span. Let m denote max.order, if $n - m - 1$ is less than or equal to span or $n - m - 1$ -span is less than $2md$ +const, span is $n - m$.
const	integer. '0' denotes constant vector is not included as a regressor and '1' denotes constant vector is included as the first regressor.

Details

The data of length n are divided into k locally stationary spans,

 $|\langle -n_1 - \rangle |\langle -n_2 - \rangle |\langle -n_3 - \rangle |....| \langle -n_k - \rangle |$

where n_i (i = 1, ..., k) denoted the number of basic spans, each of length span, which constitute the *i*-th locally stationary span. At each local span, the process is represented by a stationary autoregressive model.

mulbar

Value

mean	mean.
var	variance.
ns	the number of local spans.
order	order of the current model.
aic	AIC of the current model.
arcoef	AR coefficient matrices of the current model. $arcoef[[m]][i,j,k]$ shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order of <i>m</i> -th model.
v	innovation variance of the current model.
init	initial point of the data fitted to the current model.
end	end point of the data fitted to the current model.
npre	data length of the preceding stationary block.
nnew	data length of the new block.
order.mov	order of the moving model.
aic.mov	AIC of the moving model.
order.const	order of the constant model.
aic.const	AIC of the constant model.

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

```
data(Amerikamaru)
mlomar(Amerikamaru, max.order = 10, span = 300, const = 0)
```

```
mulbar
```

Multivariate Bayesian Method of AR Model Fitting

Description

Determine multivariate autoregressive models by a Bayesian procedure. The basic least squares estimates of the parameters are obtained by the householder transformation.

Usage

mulbar(y, max.order = NULL, plot = FALSE)

mulbar

Arguments

У	a multivariate time series.
max.order	upper limit of the order of AR model, less than or equal to $n/2d$ where n is the length and d is the dimension of the time series y. Default is $min(2\sqrt{n}, n/2d)$.
plot	logical. If TRUE, daic is plotted.

Details

The statistic AIC is defined by

$$AIC = n\log(det(v)) + 2k,$$

where n is the number of data, v is the estimate of innovation variance matrix, det is the determinant and k is the number of free parameters.

Bayesian weight of the *m*-th order model is defined by

$$W(n) = const \times \frac{C(m)}{m+1},$$

where *const* is the normalizing constant and $C(m) = \exp(-0.5AIC(m))$. The Bayesian estimates of partial autoregression coefficient matrices of forward and backward models are obtained by (m = 1, ..., lag)

$$G(m) = G(m)D(m),$$

$$H(m) = H(m)D(m),$$

where the original G(m) and H(m) are the (conditional) maximum likelihood estimates of the highest order coefficient matrices of forward and backward AR models of order m and D(m) is defined by

$$D(m) = W(m) + \ldots + W(lag).$$

The equivalent number of parameters for the Bayesian model is defined by

$$ek = \{D(1)^2 + \ldots + D(lag)^2\}id + \frac{id(id+1)}{2}$$

where *id* denotes dimension of the process.

mean	mean.
var	variance.
v	innovation variance.
aic	AIC.
aicmin	minimum AIC.
daic	AIC-aicmin.
order.maice	order of minimum AIC.
v.maice	MAICE innovation variance.
mulcor

integra.bweight	
THEEB GENELENCE	
integrated Bayesian Weights.	
arcoef.for AR coefficients (forward model). arcoef.for[i,j,k] shows the value of row, <i>j</i> -th column, <i>k</i> -th order.	<i>i</i> -th
arcoef.back AR coefficients (backward model). arcoef.back[i,j,k] shows the valu <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.	e of
pacoef.for partial autoregression coefficients (forward model).	
pacoef.back partial autoregression coefficients (backward model).	
v.bay innovation variance of the Bayesian model.	
aic.bay equivalent AIC of the Bayesian (forward) model.	

References

H.Akaike (1978) A Bayesian Extension of The Minimum AIC Procedure of Autoregressive Model Fitting. Research Memo. NO.126, The Institute of Statistical Mathematics.

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

data(Powerplant)
z <- mulbar(Powerplant, max.order = 10)
z\$pacoef.for
z\$pacoef.back</pre>

mulcor

Multiple Correlation

Description

Estimate multiple correlation.

Usage

mulcor(y, lag = NULL, plot = TRUE, lag_axis = TRUE)

У	a multivariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the length of the time series y.
plot	logical. If TRUE (default), correlations cor are plotted.
lag_axis	logical. If TRUE (default) with plot=TRUE, x-axis is drawn.

mulfrf

Value

COV	covariances.
cor	correlations (normalized covariances).
mean	mean.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
# Example 1
y <- rnorm(1000)
dim(y) <- c(500,2)
mulcor(y, lag_axis = FALSE)</pre>
```

```
# Example 2
xorg <- rnorm(1003)
x <- matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- xorg[1:1000]
x[, 2] <- xorg[4:1003] + 0.5*rnorm(1000)
mulcor(x, lag = 20)</pre>
```

mulfrf

Frequency Response Function (Multiple Channel)

Description

Compute multiple frequency response function, gain, phase, multiple coherency, partial coherency and relative error statistics.

Usage

mulfrf(y, lag = NULL, iovar = NULL)

Arguments

У	a multivariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the number of rows in y.
iovar	input variables iovar[i] $(i = 1, k)$ and output variable iovar[k+1] $(1 \le k \le d)$, where d is the number of columns in y. Default is $c(1 : d)$.

38

mulmar

Value

cospec	spectrum (complex).
freqr	frequency response function : real part.
freqi	frequency response function : imaginary part.
gain	gain.
phase	phase.
pcoh	partial coherency.
errstat	relative error statistics.
mcoh	multiple coherency.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
mulmar
```

Multivariate Case of Minimum AIC Method of AR Model Fitting

Description

Fit a multivariate autoregressive model by the minimum AIC procedure. Only the possibilities of zero coefficients at the beginning and end of the model are considered. The least squares estimates of the parameters are obtained by the householder transformation.

Usage

mulmar(y, max.order = NULL, plot = FALSE)

У	a multivariate time series.
max.order	upper limit of the order of AR model, less than or equal to $n/2d$ where n is the
	length and d is the dimension of the time series y. Default is $min(2\sqrt{n}, n/2d)$.
plot	logical. If TRUE, daic[[1]],,daic[[d]] are plotted.

Details

Multivariate autoregressive model is defined by

$$y(t) = A(1)y(t-1) + A(2)y(t-2) + \ldots + A(p)y(t-p) + u(t),$$

where p is order of the model and u(t) is Gaussian white noise with mean 0 and variance matrix matv. AIC is defined by

$$AIC = n\log(det(v)) + 2k,$$

where n is the number of data, v is the estimate of innovation variance matrix, det is the determinant and k is the number of free parameters.

Value

mean	mean.
var	variance.
v	innovation variance.
aic	AIC.
aicmin	minimum AIC.
daic	AIC-aicmin.
order.maice	order of minimum AIC.
v.maice	MAICE innovation variance.
np	number of parameters.
jnd	specification of <i>i</i> -th regressor.
subregcoef	subset regression coefficients.
rvar	residual variance.
aicf	final estimate of AIC (= $n \log(rvar) + 2np$).
respns	instantaneous response.
regcoef	regression coefficients matrix.
matv	innovation variance matrix.
morder	order of the MAICE model.
arcoef	AR coefficients. arcoef[i,j,k] shows the value of <i>i</i> -th row, <i>j</i> -th column, k -th order.
aicsum	the sum of aicf.

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

mulnos

Examples

```
# Example 1
data(Powerplant)
z <- mulmar(Powerplant, max.order = 10)</pre>
z$arcoef
# Example 2
ar <- array(0, dim = c(3,3,2))
ar[, , 1] <- matrix(c(0.4, 0,
                                  0.3,
                       0.2, -0.1, -0.5,
                       0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[, , 2] <- matrix(c(0, -0.3, 0.5,
                       0.7, -0.4, 1,
                       0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x <- matrix(rnorm(200*3), nrow = 200, ncol = 3)</pre>
y <- mfilter(x, ar, "recursive")</pre>
z <- mulmar(y, max.order = 10)</pre>
z$arcoef
```

```
mulnos
```

Relative Power Contribution

Description

Compute relative power contributions in differential and integrated form, assuming the orthogonality between noise sources.

Usage

```
mulnos(y, max.order = NULL, control = NULL, manip = NULL, h)
```

Arguments

У	a multivariate time series.
max.order	upper limit of model order. Default is $2\sqrt{n}$, where <i>n</i> is the length of time series y.
control	controlled variables. Default is $c(1:d)$, where d is the dimension of the time series y.
manip	manipulated variables. Default number of manipulated variable is '0'.
h	specify frequencies $i/2h$ ($i = 0,, h$).

Value

nperr	a normalized prediction error covariance matrix.
diffr	differential relative power contribution.
integr	integrated relative power contribution.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
mulrsp
```

Multiple Rational Spectrum

Description

Compute rational spectrum for d-dimensional ARMA process.

Usage

mulrsp(h, d, cov, ar = NULL, ma = NULL, log = FALSE, plot = TRUE, ...)

Arguments

h	specify frequencies $i/2h$ ($i = 0, 1,, h$).
d	dimension of the observation vector.
cov	covariance matrix.
ar	coefficient matrix of autoregressive model. $ar[i,j,k]$ shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.
ma	coefficient matrix of moving average model. ma[i,j,k] shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.
log	logical. If TRUE, rational spectrums rspec are plotted as $log(rspec)$.
plot	logical. If TRUE, rational spectrums rspec are plotted.
	graphical arguments passed to plot.specmx.

Details

ARMA process :

$$y(t) - A(1)y(t-1) - \dots - A(p)y(t-p) = u(t) - B(1)u(t-1) - \dots - B(q)u(t-q)$$

where u(t) is a white noise with zero mean vector and covariance matrix cov.

mulspe

Value

rspec	rational spectrum. An object of class "specmx".
scoh	simple coherence.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
# Example 1 for the normal distribution
xorg <- rnorm(1003)</pre>
x <- matrix(0, nrow = 1000, ncol = 2)</pre>
x[, 1] <- xorg[1:1000]
x[, 2] <- xorg[4:1003] + 0.5*rnorm(1000)
aaa <- ar(x)
mulrsp(h = 20, d = 2, cov = aaa$var.pred, ar = aaa$ar)
# Example 2 for the AR model
ar <- array(0, dim = c(3,3,2))
ar[, , 1] <- matrix(c(0.4, 0,
                                  0.3,
                       0.2, -0.1, -0.5,
                       0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[, , 2] <- matrix(c(0, -0.3, 0.5,
                       0.7, -0.4, 1,
                       0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x <- matrix(rnorm(200*3), nrow = 200, ncol = 3)</pre>
y <- mfilter(x, ar, "recursive")</pre>
z \leftarrow fpec(y, max.order = 10)
mulrsp(h = 20, d = 3, cov = z$perr, ar = z$arcoef)
```

mulspe

Multiple Spectrum

Description

Compute multiple spectrum estimates using Akaike window or Hanning window.

Usage

mulspe(y, lag = NULL, window = "Akaike", plot = TRUE, ...)

У	a multivariate time series with d variables and n observations.
lag	maximum lag. Default is $2\sqrt{n}$, where <i>n</i> is the number of observations.

window	character string giving the definition of smoothing window. Allowed strings are
	"Akaike" (default) or "Hanning".
plot	logical. If TRUE (default) spectrums are plotted as (d, d) matrix.

nonst

Diagonal parts :	Auto spectrums for each series.
Lower triangular parts :	Amplitude spectrums.
Upper triangular part :	Phase spectrums.

graphical arguments passed to plot.specmx.

Details

. . .

Hanning Window :	a1(0)=0.5,	a1(1)=a1(-1)=0.25,	a1(2)=a1(-2)=0
Akaike Window :	a2(0)=0.625,	a2(1)=a2(-1)=0.25,	a2(2)=a2(-2)=-0.0625

Value

spec	spectrum smoothing by 'window	w'.
specmx	spectrum matrix. An object of class "specmx".	
	On and lower diagonal : Upper diagonal :	Real parts Imaginary parts
stat	test statistics.	
coh	simple coherence by 'window'.	

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
sgnl <- rnorm(1003)
x <- matrix(0, nrow = 1000, ncol = 2)
x[, 1] <- sgnl[4:1003]
# x[i,2] = 0.9*x[i-3,1] + 0.2*N(0,1)
x[, 2] <- 0.9*sgnl[1:1000] + 0.2*rnorm(1000)
mulspe(x, lag = 100, window = "Hanning")</pre>
```

```
nonst
```

Non-stationary Power Spectrum Analysis

Description

Locally fit autoregressive models to non-stationary time series by AIC criterion.

nonst

Usage

nonst(y, span, max.order = NULL, plot = TRUE)

Arguments

У	a univariate time series.
span	length of the basic local span.
max.order	highest order of AR model. Default is $2\sqrt{n}$, where <i>n</i> is the length of the time series y.
plot	logical. If TRUE (the default), spectrums are plotted.

Details

The basic AR model is given by

$$y(t) = A(1)y(t-1) + A(2)y(t-2) + \dots + A(p)y(t-p) + u(t),$$

where p is order of the AR model and u(t) is innovation variance. AIC is defined by

$$AIC = n\log(det(sd)) + 2k,$$

where n is the length of data, sd is the estimates of the innovation variance and k is the number of parameter.

Value

ns	the number of local spans.
arcoef	AR coefficients.
V	innovation variance.
aic	AIC.
daic21	= AIC2 - AIC1.
daic	= daic21/ n (n is the length of the current model).
init	start point of the data fitted to the current model.
end	end point of the data fitted to the current model.
pspec	power spectrum.

References

H.Akaike, E.Arahata and T.Ozaki (1976) *Computer Science Monograph, No.6, Timsac74 A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

Examples

```
# Non-stationary Test Data
data(nonstData)
nonst(nonstData, span = 700, max.order = 49)
```

46

nonstData

Description

A non-stationary data for testing nonst.

Usage

data(nonstData)

Format

A time series of 2100 observations.

Source

H.Akaike, E.Arahata and T.Ozaki (1976) *Computer Science Monograph, No.6, Timsac74 A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

optdes

Optimal Controller Design

Description

Compute optimal controller gain matrix for a quadratic criterion defined by two positive definite matrices Q and R.

Usage

```
optdes(y, max.order = NULL, ns, q, r)
```

У	a multivariate time series.
max.order	upper limit of model order. Default is $2\sqrt{n}$, where <i>n</i> is the length of the time series y.
ns	number of D.P. stages.
q	positive definite (m,m) matrix Q , where m is the number of controlled variables. A quadratic criterion is defined by Q and R .
r	positive definite (l, l) matrix R , where l is the number of manipulated variables.

optsim

Value

perr	prediction error covariance matrix.
trans	first m columns of transition matrix, where m is the number of controlled variables.
gamma	gamma matrix.
gain	gain matrix.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
optsim
```

Optimal Control Simulation

Description

Perform optimal control simulation and evaluate the means and variances of the controlled and manipulated variables X and Y.

Usage

```
optsim(y, max.order = NULL, ns, q, r, noise = NULL, len, plot = TRUE)
```

У	a multivariate time series.
max.order	upper limit of model order. Default is $2\sqrt{n}$, where <i>n</i> is the length of the time series y.
ns	number of steps of simulation.

optsim

q	positive definite matrix Q .
r	positive definite matrix R.
noise	noise. If not provided, Gaussian vector white noise with the length len is generated.
len	length of white noise record.
plot	logical. If TRUE (default), controlled variables X and manipulated variables Y are plotted.

Value

trans	first m columns of transition matrix, where m is the number of controlled variables.
gamma	gamma matrix.
gain	gain matrix.
convar	controlled variables X.
manvar	manipulated variables Y.
xmean	mean of X.
ymean	mean of Y.
xvar	variance of X.
yvar	variance of Y.
x2sum	sum of X^2 .
y2sum	sum of Y^2 .
x2mean	mean of X^2 .
y2mean	mean of Y^2 .

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

perars

Description

This is the program for the fitting of periodic autoregressive models by the method of least squares realized through householder transformation.

Usage

perars(y, ni, lag = NULL, ksw = 0)

Arguments

У	a univariate time series.
ni	number of instants in one period.
lag	maximum lag of periods. Default is $2\sqrt{ni}$.
ksw	integer. '0' denotes constant vector is not included as a regressor and '1' denotes constant vector is included as the first regressor.

Details

Periodic autoregressive model (i = 1, ..., nd, j = 1, ..., ni) is defined by

z(i,j) = y(ni(i-1)+j), $z(i,j) = c(j) + A(1,j,0)z(i,1) + \ldots + A(j-1,j,0)z(i,j-1) + A(1,j,1)z(i-1,1) + \ldots + A(ni,j,1)z(i-1,ni) + \ldots + u(i,j),$

where nd is the number of periods, ni is the number of instants in one period and u(i, j) is the Gaussian white noise. When ksw is set to '0', the constant term c(j) is excluded.

The statistics AIC is defined by $AIC = n \log(det(v)) + 2k$, where n is the length of data, v is the estimate of the innovation variance matrix and k is the number of parameters. The outputs are the estimates of the regression coefficients and innovation variance of the periodic AR model for each instant.

Value

mean	mean.
var	variance.
subset	specification of i-th regressor ($i = 1,, ni$).
regcoef	regression coefficients.
rvar	residual variances.
np	number of parameters.
aic	AIC.
v	innovation variance matrix.

plot.decomp

arcoef	AR coefficient matrices. arcoef[i,,k] shows <i>i</i> -th regressand of k -th period former.
const	constant vector.
morder	order of the MAICE model.

References

M.Pagano (1978) On Periodic and Multiple Autoregressions. Ann. Statist., 6, 1310–1317.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

data(Airpollution)
perars(Airpollution, ni = 6, lag = 2, ksw = 1)

plot.decomp

Plot Trend, Seasonal, AR Components and Trading Day Factor

Description

Plot trend component, seasonal component, AR component, noise and trading day factor returned by decomp.

Usage

```
## S3 method for class 'decomp'
plot(x, ...)
```

х	an object of class "decomp".
	further graphical parameters may also be supplied as arguments.

plot.specmx

Description

Plot spectrum returned by mulspe and mulrsp. On and lower diagonal are real parts, and upper diagonal are imaginary parts.

Usage

```
## S3 method for class 'specmx'
plot(x, plot.scale = TRUE, ...)
```

Arguments

Х	An object of class "specmx".
plot.scale	logical. IF TRUE, the common range of the y-axis is used.
	further graphical parameters may also be supplied as arguments.

Powerplant	Power Plant Data		
------------	------------------	--	--

Description

A Power plant data for testing mulbar and mulmar.

Usage

```
data(Powerplant)
```

Format

A 2-dimensional array with 500 observations on 3 variables.

- [, 1] command
- [, 2] temperature
- [, 3] fuel

Source

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics. prdctr

Description

Operate on a real record of a vector process and compute predicted values.

Usage

```
prdctr(y, r, s, h, arcoef, macoef = NULL, impulse = NULL, v, plot = TRUE)
```

Arguments

У	a univariate time series or a multivariate time series.
r	one step ahead prediction starting position R .
S	long range forecast starting position S.
h	maximum span of long range forecast H.
arcoef	AR coefficient matrices.
macoef	MA coefficient matrices.
impulse	impulse response matrices.
V	innovation variance.
plot	logical. If TRUE (default), the real data and predicted values are plotted.

Details

One step ahead Prediction starts at time R and ends at time S. Prediction is continued without new observations until time S + H. Basic model is the autoregressive moving average model of y(t) which is given by

$$y(t) - A(t)y(t-1) - \dots - A(p)y(t-p) = u(t) - B(1)u(t-1) - \dots - B(q)u(t-q),$$

where p is AR order and q is MA order.

Value

predct	predicted values : predct[i] ($r \le i \le s+h$).
ys	$predct[i] - y[i] (r \le i \le n).$
pstd	predct[i] + (standard deviation) (s $\leq i \leq$ s+h).
p2std	predct[i] + 2*(standard deviation) (s $\leq i \leq$ s+h).
p3std	predct[i] + 3*(standard deviation) (s $\leq i \leq$ s+h).
mstd	predct[i] - (standard deviation) (s $\leq i \leq$ s+h).
m2std	predct[i] - 2*(standard deviation) (s $\leq i \leq$ s+h).
m3std	predct[i] - $3^{(standard deviation)}$ (s $\leq i \leq s+h$).

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
y <- arima.sim(list(order=c(2,0,1), ar=c(0.64,-0.8), ma=c(-0.5)), n = 1000)
y1 <- y[1:900]
z <- autoarmafit(y1)
ar <- z$model[[1]]$arcoef
ma <- z$model[[1]]$macoef
var <- z$model[[1]]$macoef
var <- z$model[[1]]$v
y2 <- y[901:990]
prdctr(y2, r = 50, s = 90, h = 10, arcoef = ar, macoef = ma, v = var)
```

```
raspec
```

Rational Spectrum

Description

Compute power spectrum of ARMA process.

Usage

```
raspec(h, var, arcoef = NULL, macoef = NULL, log = FALSE, plot = TRUE)
```

Arguments

h	specify frequencies $i/2h$ ($i = 0, 1,, h$).
var	variance.
arcoef	AR coefficients.
macoef	MA coefficients.
log	logical. If TRUE, the spectrum is plotted as log(raspec).
plot	logical. If TRUE (default), the spectrum is plotted.

Details

ARMA process :

$$y(t) - a(1)y(t-1) - \dots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \dots - b(q)u(t-q)$$

where p is AR order, q is MA order and u(t) is a white noise with zero mean and variance equal to var.

sglfre

Value

raspec gives the rational spectrum.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

```
# Example 1 for the AR model
raspec(h = 100, var = 1, arcoef = c(0.64,-0.8))
# Example 2 for the MA model
raspec(h = 20, var = 1, macoef = c(0.64,-0.8))
```

```
sglfre
```

Frequency Response Function (Single Channel)

Description

Compute 1-input,1-output frequency response function, gain, phase, coherency and relative error statistics.

Usage

sglfre(y, lag = NULL, invar, outvar)

Arguments

У	a multivariate time series.
lag	maximum lag. Default $2\sqrt{n}$, where n is the length of the time series y.
invar	within d variables of the spectrum, invar-th variable is taken as an input variable.
outvar	within d variables of the spectrum, outvar-th variable is taken as an output variable .

Value

inspec	power spectrum (input).
outspec	power spectrum (output).
cspec	co-spectrum.
qspec	quad-spectrum.
gain	gain.
coh	coherency.

simcon

freqr	frequency response function : real part.
freqi	frequency response function : imaginary part.
errstat	relative error statistics.
phase	phase.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

simcon

Optimal Controller Design and Simulation

Description

Produce optimal controller gain and simulate the controlled process.

Usage

```
simcon(span, len, r, arcoef, impulse, v, weight)
```

span	span of control performance evaluation.
len	length of experimental observation.
r	dimension of control input, less than or equal to d (dimension of a vector).
arcoef	matrices of autoregressive coefficients. $arcoef[i,j,k]$ shows the value of <i>i</i> -th row, <i>j</i> -th column, <i>k</i> -th order.
impulse	impulse response matrices.
v	covariance matrix of innovation.
weight	weighting matrix of performance.

simcon

Details

The basic state space model is obtained from the autoregressive moving average model of a vector process y(t);

$$y(t) - A(1)y(t-1) - \dots - A(p)y(t-p) = u(t) - B(1)u(t-1) - \dots - B(p-1)u(t-p+1),$$

where A(i) (i = 1, ..., p) are the autoregressive coefficients of the ARMA representation of y(t).

Value

gain	controller gain.
ave	average value of i-th component of y.
var	variance.
std	standard deviation.
bc	sub matrices (pd, r) of impulse response matrices, where p is the order of the process, d is the dimension of the vector and r is the dimension of the control input.
bd	sub matrices $(pd, d - r)$ of impulse response matrices.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

Examples

```
x <- matrix(rnorm(1000*2), nrow = 1000, ncol = 2)</pre>
ma <- array(0, dim = c(2,2,2))
ma[, , 1] <- matrix(c( -1.0, 0.0,</pre>
                        0.0, -1.0, nrow = 2, ncol = 2, byrow = TRUE)
ma[, , 2] <- matrix(c( -0.2,  0.0,</pre>
                        -0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")</pre>
ar <- array(0, dim = c(2,2,3))
ar[, , 1] <- matrix(c( -1.0, 0.0,
                        0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 2] <- matrix(c( -0.5, -0.2,
                       -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 3] <- matrix(c( -0.3, -0.05,
                        -0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(y, ar, "recursive")</pre>
z <- markov(y)
weight <- matrix(c(0.0002, 0.0,
                    0.0,
                             2.9 ), nrow = 2, ncol = 2, byrow = TRUE)
simcon(span = 50, len = 700, r = 1, z$arcoef, z$impulse, z$v, weight)
```

thirmo

Description

Compute the third order moments.

Usage

thirmo(y, lag = NULL, plot = TRUE)

Arguments

У	a univariate time series.
lag	maximum lag. Default is $2\sqrt{n}$, where n is the length of the time series y.
plot	logical. If TRUE (default), autocovariance acor is plotted.

Value

mean	mean.
acov	autocovariance.
acor	normalized covariance.
tmomnt	third order moments.

References

H.Akaike, E.Arahata and T.Ozaki (1975) *Computer Science Monograph, No.6, Timsac74, A Time Series Analysis and Control Program Package (2).* The Institute of Statistical Mathematics.

Examples

```
data(bispecData)
z <- thirmo(bispecData, lag = 30)
z$tmomnt</pre>
```

unibar

Description

This program fits an autoregressive model by a Bayesian procedure. The least squares estimates of the parameters are obtained by the householder transformation.

Usage

unibar(y, ar.order = NULL, plot = TRUE)

Arguments

У	a univariate time series.
ar.order	order of the AR model. Default is $2\sqrt{n}$, where <i>n</i> is the length of the time series y.
plot	logical. If TRUE (default), daic, pacoef and pspec are plotted.

Details

The AR model is given by

$$y(t) = a(1)y(t-1) + \ldots + a(p)y(t-p) + u(t),$$

where p is AR order and u(t) is Gaussian white noise with mean 0 and variance v(p). The basic statistic AIC is defined by

$$AIC = n\log(det(v)) + 2m,$$

where n is the length of data, v is the estimate of innovation variance, and m is the order of the model.

Bayesian weight of the *m*-th order model is defined by

$$W(m) = CONST \times \frac{C(m)}{m+1},$$

where CONST is the normalizing constant and $C(m) = \exp(-0.5AIC(m))$. The equivalent number of free parameter for the Bayesian model is defined by

$$ek = D(1)^2 + \ldots + D(k)^2 + 1,$$

where D(j) is defined by D(j) = W(j) + ... + W(k). *m* in the definition of AIC is replaced by *ek* to be define an equivalent AIC for a Bayesian model.

unibar

Value

mean	mean.
var	variance.
v	innovation variance.
aic	AIC.
aicmin	minimum AIC.
daic	AIC-aicmin.
order.maice	order of minimum AIC.
v.maice	innovation variance attained at m=order.maice.
pacoef	partial autocorrelation coefficients (least squares estimate).
bweight	Bayesian Weight.
integra.bweight	
	integrated Bayesian weights.
v.bay	innovation variance of Bayesian model.
aic.bay	AIC of Bayesian model.
np	equivalent number of parameters.
pacoef.bay	partial autocorrelation coefficients of Bayesian model.
arcoef	AR coefficients of Bayesian model.
pspec	power spectrum.

References

H.Akaike (1978) A Bayesian Extension of The Minimum AIC Procedure of Autoregressive model Fitting. Research memo. No.126. The Institute of Statistical Mathematics.

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Timsac78.* The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
z <- unibar(Canadianlynx, ar.order = 20)
z$arcoef</pre>
```

unimar

Description

This is the basic program for the fitting of autoregressive models of successively higher by the method of least squares realized through householder transformation.

Usage

```
unimar(y, max.order = NULL, plot = FALSE)
```

Arguments

У	a univariate time series.
max.order	upper limit of AR order. Default is $2\sqrt{n}$, where n is the length of the time series
	y.
plot	logical. If TRUE, daic is plotted.

Details

The AR model is given by

$$y(t) = a(1)y(t-1) + \ldots + a(p)y(t-p) + u(t),$$

where p is AR order and u(t) is Gaussian white noise with mean 0 and variance v. AIC is defined by

$$AIC = n \log(det(v)) + 2k$$

where n is the length of data, v is the estimates of the innovation variance and k is the number of parameter.

Value

mean	mean.
var	variance.
v	innovation variance.
aic	AIC.
aicmin	minimum AIC.
daic	AIC-aicmin.
order.maice	order of minimum AIC.
v.maice	innovation variance attained at order.maice.
arcoef	AR coefficients.

References

G.Kitagawa and H.Akaike (1978) A Procedure For The Modeling of Non-Stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351–363.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

```
data(Canadianlynx)
z <- unimar(Canadianlynx, max.order = 20)
z$arcoef</pre>
```

wnoise

White Noise Generator

Description

Generate approximately Gaussian vector white noise.

Usage

wnoise(len, perr, plot = TRUE)

Arguments

len	length of white noise record.
perr	prediction error.
plot	logical. If TRUE (default), white noises are plotted.

Value

wnoise gives white noises.

References

H.Akaike and T.Nakagawa (1988) *Statistical Analysis and Control of Dynamic Systems*. Kluwer Academic publishers.

Examples

62

xsarma

Description

Produce exact maximum likelihood estimates of the parameters of a scalar ARMA model.

Usage

```
xsarma(y, arcoefi, macoefi)
```

Arguments

У	a univariate time series.
arcoefi	initial estimates of AR coefficients.
macoefi	initial estimates of MA coefficients.

Details

The ARMA model is given by

$$y(t) - a(1)y(t-1) - \dots - a(p)y(t-p) = u(t) - b(1)u(t-1) - \dots - b(q)u(t-q),$$

where p is AR order, q is MA order and u(t) is a zero mean white noise.

Value

gradi	initial gradient.
lkhoodi	initial (-2)log likelihood.
arcoef	final estimates of AR coefficients.
macoef	final estimates of MA coefficients.
grad	final gradient.
alph.ar	final ALPH (AR part) at subroutine ARCHCK.
alph.ma	final ALPH (MA part) at subroutine ARCHCK.
lkhood	final (-2)log likelihood.
wnoise.var	white noise variance.

References

H.Akaike (1978) Covariance matrix computation of the state variable of a stationary Gaussian process. Research Memo. No.139. The Institute of Statistical Mathematics.

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) *Computer Science Monograph, No.11, Tim*sac78. The Institute of Statistical Mathematics.

Examples

```
# "arima.sim" is a function in "stats".
# Note that the sign of MA coefficient is opposite from that in "timsac".
arcoef <- c(1.45, -0.9)
macoef <- c(-0.5)
y <- arima.sim(list(order=c(2,0,1), ar=arcoef, ma=macoef), n = 100)
arcoefi <- c(1.5, -0.8)
macoefi <- c(0.0)
z <- xsarma(y, arcoefi, macoefi)
z$arcoef
z$macoef
```

64

Index

* datasets Airpollution, 3 Amerikamaru, 4 bispecData, 11 Blsallfood, 14 Canadianlynx, 17 LaborData, 28 locarData, 29 nonstData, 47 Powerplant, 52 * package timsac-package, 2 * ts armafit,4 auspec, 5 autcor, 6 autoarmafit, 7 baysea, 8 bispec, 10blocar, 12 blomar, 13 bsubst, 15 canarm, 18 canoca, 19 covgen, 21 decomp, 21 exsar, 24 fftcor, 25 fpeaut, 26 fpec, 27 markov, 29 mfilter, 31 mlocar, 32mlomar, 34 mulbar, 35 mulcor, 37 mulfrf, 38 mulmar, 39 mulnos, 41

mulrsp, 42 mulspe, 43 nonst, 45 optdes, 47 optsim, 48 perars, 50 plot.decomp, 51 plot.specmx, 52 prdctr, 53 raspec, 54 sglfre, 55 simcon, 56 thirmo, 58 unibar, 59 unimar, 61 wnoise, 62 xsarma, 63 Airpollution, 3 Amerikamaru, 4 arima.sim, 31 armafit,4 auspec, 5 autcor, 6autoarmafit, 7 baysea, 8 bispec, 10, 11 bispecData, 11 blocar, 12, 29 blomar, 4, 13 Blsallfood, 14 bsubst, 15, 17 Canadianlynx, 17 canarm, 18 canoca, 19 convolve, 31 covgen, 21 decomp, 21, 51

INDEX

exsar, 17, 24 fftcor, 25 fpeaut, 26 fpec, 27 LaborData, 28 locarData, 29 markov, 29 mfilter, 31 mlocar, 29, 32 mlomar, 34 mulbar, 35, 52 mulcor, 37 mulfrf, 38 mulmar, 39, 52 mulnos, 41 mulrsp, 42, 52 mulspe, 43, 52 nonst, 45, 47 nonstData, 47 optdes, 47 optsim, 48 perars, *3*, 50 plot.decomp, 22, 51 plot.specmx, 42, 45, 52 Powerplant, 52 prdctr, 53 print.autoarmafit(autoarmafit), 7 print.blomar(blomar), 13 print.fpec(fpec), 27 print.mlomar(mlomar), 34 print.mulcor(mulcor), 37 print.perars (perars), 50 print.prdctr (prdctr), 53 ptint.mulspe (mulspe), 43 raspec, 54 sglfre, 55 simcon, 29, 56 thirmo, *11*, 58 timsac(timsac-package), 2 timsac-package, 2 unibar, 17, 59

unimar, *17*, 61 wnoise, 62 xsarma, 63

66