
Package ‘timevarcorr’
November 7, 2023

Title Time Varying Correlation

Version 0.1.1

Description Computes how the correlation between 2 time-series changes over time.
To do so, the package follows the method from Choi & Shin (2021) <doi:10.1007/s42952-020-
00073-6>.
It performs a non-parametric kernel smoothing (using a common bandwidth) of all underly-
ing components required for the computation of a correlation coefficient (i.e., x, y, x^2, y^2, xy).
An automatic selection procedure for the bandwidth parameter is implemented.
Alternative kernels can be used (Epanechnikov, box and normal).
Both Pearson and Spearman correlation coefficients can be estimated and change in correla-
tion over time can be tested.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 2.10)

Imports lpridge

LazyData true

Suggests dplyr, ggplot2, spelling, testthat (>= 3.0.0)

Language en-US

URL https://courtiol.github.io/timevarcorr/,

https://github.com/courtiol/timevarcorr

BugReports https://github.com/courtiol/timevarcorr/issues

Config/testthat/edition 3

NeedsCompilation no

Author Alexandre Courtiol [aut, cre, cph]
(<https://orcid.org/0000-0003-0637-2959>),

François Rousset [aut] (<https://orcid.org/0000-0003-4670-0371>)

Maintainer Alexandre Courtiol <alexandre.courtiol@gmail.com>

Repository CRAN

Date/Publication 2023-11-07 18:20:02 UTC

1

https://doi.org/10.1007/s42952-020-00073-6
https://doi.org/10.1007/s42952-020-00073-6
https://courtiol.github.io/timevarcorr/
https://github.com/courtiol/timevarcorr
https://github.com/courtiol/timevarcorr/issues
https://orcid.org/0000-0003-0637-2959
https://orcid.org/0000-0003-4670-0371

2 CI

R topics documented:

.onAttach . 2
CI . 2
in_pkgdown . 5
kern_smooth . 6
stockprice . 8
tcor . 9
test_equality . 17
test_ref . 19

Index 21

.onAttach Display welcome message

Description

This function should not be called by the user. It displays a message when the package is being
loaded.

Usage

.onAttach(libname, pkgname)

Arguments

libname argument needed but automatically defined.

pkgname argument needed but automatically defined.

Value

nothing (invisible NULL).

CI Internal functions for the computation of confidence intervals

Description

These functions compute the different terms required for tcor() to compute the confidence interval
around the time-varying correlation coefficient. These terms are defined in Choi & Shin (2021).

CI 3

Usage

calc_H(smoothed_obj)

calc_e(smoothed_obj, H)

calc_Gamma(e, l)

calc_GammaINF(e, L)

calc_L_And(e, AR.method = c("yule-walker", "burg", "ols", "mle", "yw"))

calc_D(smoothed_obj)

calc_SE(
smoothed_obj,
h,
AR.method = c("yule-walker", "burg", "ols", "mle", "yw")

)

Arguments

smoothed_obj an object created with calc_rho.
H an object created with calc_H.
e an object created with calc_e.
l a scalar indicating a number of time points.
L a scalar indicating a bandwidth parameter.
AR.method character string specifying the method to fit the autoregressive model used to

compute γ̂1 in LAnd (see stats::ar for details).
h a scalar indicating the bandwidth used by the smoothing function.

Value

• calc_H() returns a 5 x 5 x t array of elements of class numeric, which corresponds to Ĥt in
Choi & Shin (2021).

• calc_e() returns a t x 5 matrix of elements of class numeric storing the residuals, which
corresponds to êt in Choi & Shin (2021).

• calc_Gamma() returns a 5 x 5 matrix of elements of class numeric, which corresponds to Γ̂l

in Choi & Shin (2021).
• calc_GammaINF() returns a 5 x 5 matrix of elements of class numeric, which corresponds to

Γ̂∞ in Choi & Shin (2021).
• calc_L_And() returns a scalar of class numeric, which corresponds to LAnd in Choi & Shin

(2021).
• calc_D() returns a t x 5 matrix of elements of class numeric storing the residuals, which

corresponds to Dt in Choi & Shin (2021).
• calc_SE() returns a vector of length t of elements of class numeric, which corresponds to
se(ρ̂t(h)) in Choi & Shin (2021).

4 CI

Functions

• calc_H(): computes the Ĥt array.
Ĥt is a component needed to compute confidence intervals; Ht is defined in eq. 6 from Choi
& Shin (2021).

• calc_e(): computes êt.
êt is defined in eq. 9 from Choi & Shin (2021).

• calc_Gamma(): computes Γ̂l.
Γ̂l is defined in eq. 9 from Choi & Shin (2021).

• calc_GammaINF(): computes Γ̂∞.
Γ̂∞ is the long run variance estimator, defined in eq. 9 from Choi & Shin (2021).

• calc_L_And(): computes LAnd.
LAnd is defined in Choi & Shin (2021, p 342). It also corresponds to S∗T , eq 5.3 in Andrews
(1991).

• calc_D(): computes Dt.
Dt is defined in Choi & Shin (2021, p 338).

• calc_SE(): computes se(ρ̂t(h)).
The standard deviation of the time-varying correlation (se(ρ̂t(h))) is defined in eq. 8 from
Choi & Shin (2021). It depends on DLt, DMt & DUt, themselves defined in Choi & Shin
(2021, p 337 & 339). The DXt terms are all computed within the function since they all rely
on the same components.

References

Choi, JE., Shin, D.W. Nonparametric estimation of time varying correlation coefficient. J. Korean
Stat. Soc. 50, 333–353 (2021). doi:10.1007/s42952020000736

Andrews, D. W. K. Heteroskedasticity and autocorrelation consistent covariance matrix estimation.
Econometrica: Journal of the Econometric Society, 817-858 (1991).

See Also

tcor()

Examples

rho_obj <- with(na.omit(stockprice),
calc_rho(x = SP500, y = FTSE100, t = DateID, h = 20, kernel = "box"))

head(rho_obj)

Computing \eqn{\hat{H_t}}

H <- calc_H(smoothed_obj = rho_obj)
H[, , 1:2] # H array for the first two time points

Computing \eqn{\hat{e}_t}

e <- calc_e(smoothed_obj = rho_obj, H = H)

https://doi.org/10.1007/s42952-020-00073-6

in_pkgdown 5

head(e) # e matrix for the first six time points

Computing \eqn{\hat{\Gamma}_l}

calc_Gamma(e = e, l = 3)

Computing \eqn{\hat{\Gamma}^\infty}

calc_GammaINF(e = e, L = 2)

Computing \eqn{L_{And}}

calc_L_And(e = e)
sapply(c("yule-walker", "burg", "ols", "mle", "yw"),

function(m) calc_L_And(e = e, AR.method = m)) ## comparing AR.methods

Computing \eqn{D_t}

D <- calc_D(smoothed_obj = rho_obj)
head(D) # D matrix for the first six time points

Computing \eqn{se(\hat{\rho}_t(h))}
nb: takes a few seconds to run

run <- FALSE ## change to TRUE to run the example
if (in_pkgdown() || run) {

SE <- calc_SE(smoothed_obj = rho_obj, h = 50)
head(SE) # SE vector for the first six time points

}

in_pkgdown Determine if the package is being used by pkgdown

Description

This function should not be called by the user. It allows to run some examples conditionally to
being used by pkgdown. Code copied from pkgdown::in_pkgdown().

Usage

in_pkgdown()

Value

a logical value (TRUE or FALSE).

6 kern_smooth

kern_smooth Smoothing by kernel regression

Description

The function perform the smoothing of a time-series by non-parametric kernel regression.

Usage

kern_smooth(
x,
t = seq_along(x),
h,
t.for.pred = t,
kernel = c("epanechnikov", "box", "normal"),
param_smoother = list(),
output = c("dataframe", "list")

)

Arguments

x a numeric vector of the series to be smoothed.

t a (numeric or Date) vector of time points. If missing, observations are consid-
ered to correspond to sequential time steps (i.e., 1, 2 ...).

h a scalar indicating the bandwidth used by the smoothing function.

t.for.pred a (numeric or Date) vector of time points at which to evaluate the smoothed fit.
If missing, t is used.

kernel a character string indicating which kernel to use: "epanechnikov" (the default),
"box", or "normal" (abbreviations also work).

param_smoother a list of additional parameters to provide to the internal smoothing function (see
Details).

output a character string indicating if the output should be a "dataframe" (default) or a
list (for faster computation when the function is called repeatedly).

Details

The function is essentially a wrapper that calls different underlying functions depending on the
kernel that is selected:

• lpridge::lpepa() for "epanechnikov".

• stats::ksmooth() for "normal" and "box". The argument param_smoother can be used to
pass additional arguments to these functions.

Value

a dataframe of time points (t.for.pred) and corresponding fitted values.

kern_smooth 7

References

A short post we found useful: http://users.stat.umn.edu/~helwig/notes/smooth-notes.
html

See Also

tcor

Examples

Smooth 10 first values of a vector

kern_smooth(stockprice$DAX[1:20], h = 5)

Prediction at time step 2 and 3

kern_smooth(stockprice$DAX, h = 1, t.for.pred = c(2, 3))

Smoothing using a vector of dates for time

kern_smooth(x = stockprice$DAX[1:10], t = stockprice$DateID[1:10], h = 5)

Smoothing conserves original order

kern_smooth(x = stockprice$DAX[10:1], t = stockprice$DateID[10:1], h = 5)

Effect of the bandwidth

plot(stockprice$DAX[1:100] ~ stockprice$DateID[1:100],
las = 1, ylab = "DAX index", xlab = "Date")

points(kern_smooth(stockprice$DAX[1:100], stockprice$DateID[1:100], h = 1),
type = "l", col = "grey")

points(kern_smooth(stockprice$DAX[1:100], stockprice$DateID[1:100], h = 3),
type = "l", col = "blue")

points(kern_smooth(stockprice$DAX[1:100], stockprice$DateID[1:100], h = 10),
type = "l", col = "red")

legend("topright", fill = c("grey", "blue", "red"),
legend = c("1", "3", "10"), bty = "n", title = "Bandwidth (h)")

Effect of the kernel

plot(stockprice$DAX[1:100] ~ stockprice$DateID[1:100],
las = 1, ylab = "DAX index", xlab = "Date")

points(kern_smooth(stockprice$DAX[1:100], stockprice$DateID[1:100], h = 10),
type = "l", col = "orange")

points(kern_smooth(stockprice$DAX[1:100], stockprice$DateID[1:100], h = 10, kernel = "box"),

http://users.stat.umn.edu/~helwig/notes/smooth-notes.html
http://users.stat.umn.edu/~helwig/notes/smooth-notes.html

8 stockprice

type = "l", col = "blue")
points(kern_smooth(stockprice$DAX[1:100], stockprice$DateID[1:100], h = 10, kernel = "norm"),

type = "l", col = "red")
legend("topright", fill = c("orange", "blue", "red"),

legend = c("epanechnikov", "box", "normal"), bty = "n", title = "Kernel method")

stockprice Daily Closing Prices of Major European Stock Indices, April 2000–
December 2017

Description

A dataset containing the stockmarket returns between 2000-04-03 and 2017-12-05. This dataset
is very close to the one used by Choi & Shin (2021), although not strictly identical. It has been
produced by the Oxford-Man Institute of Quantitative Finance.

Usage

stockprice

Format

A data frame with 4618 rows and 7 variables:

DateID a vector of Date.
SP500 a numeric vector of the stockmarket return for the S&P 500 Index.
FTSE100 a numeric vector of the stockmarket return for the FTSE 100.
Nikkei a numeric vector of the stockmarket return for the Nikkei 225.
DAX a numeric vector of the stockmarket return for the German stock index.
NASDAQ a numeric vector of the stockmarket return for the Nasdaq Stock Market.
Event a character string of particular events that have impacted the stockmarket, as in Choi & Shin

(2021).

Source

The file was downloaded from the "Oxford-Man Institute’s realized library", which no longer exists.
At the time, the raw data file was named "oxfordmanrealizedvolatilityindices-0.2-final.zip".

References

Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard (2009) "Oxford-Man Institute’s
realized library", Oxford-Man Institute, University of Oxford.
Choi, JE., Shin, D.W. Nonparametric estimation of time varying correlation coefficient. J. Korean
Stat. Soc. 50, 333–353 (2021). doi:10.1007/s42952020000736

See Also

datasets::EuStockMarkets for a similar dataset, albeit formatted differently.

https://doi.org/10.1007/s42952-020-00073-6

tcor 9

tcor Compute time varying correlation coefficients

Description

The function tcor() implements (together with its helper function calc_rho()) the nonparametric
estimation of the time varying correlation coefficient proposed by Choi & Shin (2021). The general
idea is to compute a (Pearson) correlation coefficient (r(x, y) = x̂y−x̂×ŷ√

x̂2−x̂2×
√

ŷ2−ŷ2
), but instead

of using the means required for such a computation, each component (i.e., x, y, x2, y2, x × y) is
smoothed and the smoothed terms are considered in place the original means. The intensity of the
smoothing depends on a unique parameter: the bandwidth (h). If h = Inf, the method produces the
original (i.e., time-invariant) correlation value. The smaller the parameter h, the more variation in
time is being captured. The parameter h can be provided by the user; otherwise it is automatically
estimated by the internal helper functions select_h() and calc_RMSE() (see Details).

Usage

tcor(
x,
y,
t = seq_along(x),
h = NULL,
cor.method = c("pearson", "spearman"),
kernel = c("epanechnikov", "box", "normal"),
CI = FALSE,
CI.level = 0.95,
param_smoother = list(),
keep.missing = FALSE,
verbose = FALSE

)

calc_rho(
x,
y,
t = seq_along(x),
t.for.pred = t,
h,
cor.method = c("pearson", "spearman"),
kernel = c("epanechnikov", "box", "normal"),
param_smoother = list()

)

calc_RMSE(
h,
x,
y,

10 tcor

t = seq_along(x),
cor.method = c("pearson", "spearman"),
kernel = c("epanechnikov", "box", "normal"),
param_smoother = list(),
verbose = FALSE

)

select_h(
x,
y,
t = seq_along(x),
cor.method = c("pearson", "spearman"),
kernel = c("epanechnikov", "box", "normal"),
param_smoother = list(),
verbose = FALSE

)

Arguments

x a numeric vector.

y a numeric vector of to be correlated with x.

t a (numeric or Date) vector of time points. If missing, observations are consid-
ered to correspond to sequential time steps (i.e., 1, 2 ...).

h a scalar indicating the bandwidth used by the smoothing function.

cor.method a character string indicating which correlation coefficient is to be computed
("pearson", the default; or "spearman").

kernel a character string indicating which kernel to use: "epanechnikov" (the default),
"box", or "normal" (abbreviations also work).

CI a logical specifying if a confidence interval should be computed or not (default
= FALSE).

CI.level a scalar defining the level for CI (default = 0.95 for 95% CI).

param_smoother a list of additional parameters to provide to the internal smoothing function (see
Details).

keep.missing a logical specifying if time points associated with missing information should
be kept in the output (default = FALSE to facilitate plotting).

verbose a logical specifying if information should be displayed to monitor the progress
of the cross validation (default = FALSE).

t.for.pred a (numeric or Date) vector of time points at which to evaluate the smoothed fit.
If missing, t is used.

Details

• Smoothing: the smoothing of each component is performed by kernel regression. The default
is to use the Epanechnikov kernel following Choi & Shin (2021), but other kernels have also
been implemented and can thus alternatively be used (see kern_smooth() for details). The
normal kernel seems to sometimes lead to very small bandwidth being selected, but the default

tcor 11

kernel can lead to numerical issues (see next point). We thus recommend always comparing
the results from different kernel methods.

• Numerical issues: some numerical issues can happen because the smoothing is performed
independently on each component of the correlation coefficient. As a consequence, some
relationship between components may become violated for some time points. For instance, if
the square of the smoothed x term gets larger than the smoothed x2 term, the variance of x
would become negative. In such cases, coefficient values returned are NA.

• Bandwidth selection: when the value used to define the bandwidth (h) in tcor() is set to
NULL (the default), the internal function select_h() is used to to select the optimal value for
h. It is first estimated by leave-one-out cross validation (using internally calc_RMSE()). If
the cross validation error (RMSE) is minimal for the maximal value of h considered (8

√
N),

rather than taking this as the optimal h value, the bandwidth becomes estimated using the so-
called elbow criterion. This latter method identifies the value h after which the cross validation
error decreasing very little. The procedure is detailed in section 2.1 in Choi & Shin (2021).

• Parallel computation: if h is not provided, an automatic bandwidth selection occurs (see
above). For large datasets, this step can be computationally demanding. The current im-
plementation thus relies on parallel::mclapply() and is thus only effective for Linux and
MacOS. Relying on parallel processing also implies that you call options("mc.cores" = XX)
beforehand, replacing XX by the relevant number of CPU cores you want to use (see Exam-
ples). For debugging, do use options("mc.cores" = 1), otherwise you may not be able to
see the error messages generated in child nodes.

• Confidence interval: if CI is set to TRUE, a confidence interval is calculated as described in
Choi & Shin (2021). This is also necessary for using test_equality() to test differences
between correlations at two time points. The computation of the confidence intervals involves
multiple internal functions (see CI for details).

Value

—Output for tcor()—
A 2 x t dataframe containing:

• the time points (t).

• the estimates of the correlation value (r).

Or, if CI = TRUE, a 5 x t dataframe containing:

• the time points (t).

• the estimates of the correlation value (r).

• the Standard Error (SE).

• the lower boundary of the confidence intervals (lwr).

• the upper boundary of the confidence intervals (upr).

Some metadata are also attached to the dataframe (as attributes):

• the call to the function (call).

• the argument CI.

• the bandwidth parameter (h).

12 tcor

• the method used to select h (h_selection).

• the minimal root mean square error when h is selected (RMSE).

• the computing time (in seconds) spent to select the bandwidth parameter (h_selection_duration)
if h automatically selected.

—Output for calc_rho()—
A 14 x t dataframe with:

• the six raw components of correlation (x, y, x2, y2, xy).

• the time points (t).

• the six raw components of correlation after smoothing (x_smoothed, y_smoothed, x2_smoothed,
y2_smoothed, xy_smoothed).

• the standard deviation around x and y (sd_x_smoothed, sd_y_smoothed).

• the smoothed correlation coefficient (rho_smoothed).

—Output for calc_RMSE()—
A scalar of class numeric corresponding to the RMSE.

—Output for select_h()—
A list with the following components:

• the selected bandwidth parameter (h).

• the method used to select h (h_selection).

• the minimal root mean square error when h is selected (RMSE).

• the computing time (in seconds) spent to select the bandwidth parameter (time).

Functions

• tcor(): the user-level function to be used.

• calc_rho(): computes the correlation for a given bandwidth.
The function calls the kernel smoothing procedure on each component required to compute
the time-varying correlation.

• calc_RMSE(): Internal function computing the root mean square error (RMSE) for a given
bandwidth.
The function removes each time point one by one and predicts the correlation at the missing
time point based on the other time points. It then computes and returns the RMSE between
this predicted correlation and the one predicted using the full dataset. See also Bandwidth
selection and Parallel computation in Details.

• select_h(): Internal function selecting the optimal bandwidth parameter h.
The function selects and returns the optimal bandwidth parameter h using an optimizer (stats::optimize())
which searches the h value associated with the smallest RMSE returned by calc_RMSE(). See
also Bandwidth selection in Details.

References

Choi, JE., Shin, D.W. Nonparametric estimation of time varying correlation coefficient. J. Korean
Stat. Soc. 50, 333–353 (2021). doi:10.1007/s42952020000736

https://doi.org/10.1007/s42952-020-00073-6

tcor 13

See Also

test_equality, kern_smooth, CI

Examples

###
Examples for the user-level function to be used
###

Effect of the bandwidth

res_h50 <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 50))
res_h100 <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 100))
res_h200 <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 200))
plot(res_h50, type = "l", ylab = "Cor", xlab = "Time", las = 1, col = "grey")
points(res_h100, type = "l", col = "blue")
points(res_h200, type = "l", col = "red")
legend("bottom", horiz = TRUE, fill = c("grey", "blue", "red"),

legend = c("50", "100", "200"), bty = "n", title = "Bandwidth (h)")

Effect of the correlation method

res_pearson <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 150))
res_spearman <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 150,

cor.method = "spearman"))
plot(res_pearson, type = "l", ylab = "Cor", xlab = "Time", las = 1)
points(res_spearman, type = "l", col = "blue")
legend("bottom", horiz = TRUE, fill = c("black", "blue"),

legend = c("pearson", "spearman"), bty = "n", title = "cor.method")

Infinite bandwidth should match fixed correlation coefficients
nb: `h = Inf` is not supported by default kernel (`kernel = 'epanechnikov'`)

res_pearson_hInf <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = Inf,
kernel = "normal"))

res_spearman_hInf <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = Inf,
kernel = "normal", cor.method = "spearman"))

r <- cor(stockprice$SP500, stockprice$FTSE100, use = "pairwise.complete.obs")
rho <- cor(stockprice$SP500, stockprice$FTSE100, method = "spearman", use = "pairwise.complete.obs")
round(unique(res_pearson_hInf$r) - r, digits = 3) ## 0 indicates near equality
round(unique(res_spearman_hInf$r) - rho, digits = 3) ## 0 indicates near equality

Computing and plotting the confidence interval

res_withCI <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 200, CI = TRUE))
with(res_withCI, {

plot(r ~ t, type = "l", ylab = "Cor", xlab = "Time", las = 1, ylim = c(0, 1))
points(lwr ~ t, type = "l", lty = 2)

14 tcor

points(upr ~ t, type = "l", lty = 2)})

Same using tidyverse packages (dplyr and ggplot2 must be installed)
see https://github.com/courtiol/timevarcorr for more examples of this kind

if (require("dplyr", warn.conflicts = FALSE)) {

stockprice |>
reframe(tcor(x = SP500, y = FTSE100, t = DateID,

h = 200, CI = TRUE)) -> res_tidy
res_tidy

}

if (require("ggplot2")) {

ggplot(res_tidy) +
aes(x = t, y = r, ymin = lwr, ymax = upr) +
geom_ribbon(fill = "grey") +
geom_line() +
labs(title = "SP500 vs FTSE100", x = "Time", y = "Correlation") +
theme_classic()

}

Automatic selection of the bandwidth using parallel processing and comparison
of the 3 alternative kernels on the first 500 time points of the dataset
nb: takes a few seconds to run, so not run by default

run <- in_pkgdown() || FALSE ## change to TRUE to run the example
if (run) {

options("mc.cores" = 2L) ## CPU cores to be used for parallel processing

res_hauto_epanech <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID, kernel = "epanechnikov")
)

res_hauto_box <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID, kernel = "box")
)

res_hauto_norm <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID, kernel = "norm")
)

plot(res_hauto_epanech, type = "l", col = "red",
ylab = "Cor", xlab = "Time", las = 1, ylim = c(0, 1))

points(res_hauto_box, type = "l", col = "grey")
points(res_hauto_norm, type = "l", col = "orange")
legend("top", horiz = TRUE, fill = c("red", "grey", "orange"),

legend = c("epanechnikov", "box", "normal"), bty = "n",

tcor 15

title = "Kernel")

}

Comparison of the 3 alternative kernels under same bandwidth
nb: it requires to have run the previous example

if (run) {

res_epanech <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID,
kernel = "epanechnikov", h = attr(res_hauto_epanech, "h"))
)

res_box <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID,
kernel = "box", h = attr(res_hauto_epanech, "h"))
)

res_norm <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID,
kernel = "norm", h = attr(res_hauto_epanech, "h"))
)

plot(res_epanech, type = "l", col = "red", ylab = "Cor", xlab = "Time",
las = 1, ylim = c(0, 1))

points(res_box, type = "l", col = "grey")
points(res_norm, type = "l", col = "orange")
legend("top", horiz = TRUE, fill = c("red", "grey", "orange"),

legend = c("epanechnikov", "box", "normal"), bty = "n",
title = "Kernel")

}

Automatic selection of the bandwidth using parallel processing with CI
nb: takes a few seconds to run, so not run by default

run <- in_pkgdown() || FALSE ## change to TRUE to run the example
if (run) {

res_hauto_epanechCI <- with(stockprice[1:500,],
tcor(x = SP500, y = FTSE100, t = DateID, CI = TRUE)
)

plot(res_hauto_epanechCI[, c("t", "r")], type = "l", col = "red",
ylab = "Cor", xlab = "Time", las = 1, ylim = c(0, 1))

points(res_hauto_epanechCI[, c("t", "lwr")], type = "l", col = "red", lty = 2)
points(res_hauto_epanechCI[, c("t", "upr")], type = "l", col = "red", lty = 2)

}

16 tcor

Not all kernels work well in all situations
Here the default kernell estimation leads to issues for last time points
nb1: EuStockMarkets is a time-series object provided with R
nb2: takes a few minutes to run, so not run by default

run <- in_pkgdown() || FALSE ## change to TRUE to run the example
if (run) {

EuStock_epanech <- tcor(EuStockMarkets[1:500, "DAX"], EuStockMarkets[1:500, "SMI"])
EuStock_norm <- tcor(EuStockMarkets[1:500, "DAX"], EuStockMarkets[1:500, "SMI"], kernel = "normal")

plot(EuStock_epanech, type = "l", col = "red", las = 1, ylim = c(-1, 1))
points(EuStock_norm, type = "l", col = "orange", lty = 2)
legend("bottom", horiz = TRUE, fill = c("red", "orange"),

legend = c("epanechnikov", "normal"), bty = "n",
title = "Kernel")

}

##
Examples for the internal function computing the correlation
##

Computing the correlation and its component for the first six time points

with(head(stockprice), calc_rho(x = SP500, y = FTSE100, t = DateID, h = 20))

Predicting the correlation and its component at a specific time point

with(head(stockprice), calc_rho(x = SP500, y = FTSE100, t = DateID, h = 20,
t.for.pred = DateID[1]))

The function can handle non consecutive time points

set.seed(1)
calc_rho(x = rnorm(10), y = rnorm(10), t = c(1:5, 26:30), h = 3, kernel = "box")

The function can handle non-ordered time series

with(head(stockprice)[c(1, 3, 6, 2, 4, 5),], calc_rho(x = SP500, y = FTSE100, t = DateID, h = 20))

Note: the function does not handle missing data (by design)

calc_rho(x = c(NA, rnorm(9)), y = rnorm(10), t = c(1:2, 23:30), h = 2) ## should err (if ran)

test_equality 17

###
Examples for the internal function computing the RMSE
###

Compute the RMSE on the correlation estimate
nb: takes a few seconds to run, so not run by default

run <- in_pkgdown() || FALSE ## change to TRUE to run the example
if (run) {

small_clean_dataset <- head(na.omit(stockprice), n = 200)
with(small_clean_dataset, calc_RMSE(x = SP500, y = FTSE100, t = DateID, h = 10))

}

##
Examples for the internal function selecting the bandwidth
##

Automatic selection of the bandwidth using parallel processing
nb: takes a few seconds to run, so not run by default

run <- in_pkgdown() || FALSE ## change to TRUE to run the example
if (run) {

small_clean_dataset <- head(na.omit(stockprice), n = 200)
with(small_clean_dataset, select_h(x = SP500, y = FTSE100, t = DateID))

}

test_equality Compute equality test between correlation coefficient estimates at two
time points

Description

This function tests whether smoothed correlation values at two time points are equal (H0) or not.
The test is described page 341 in Choi & Shin (2021).

Usage

test_equality(
tcor_obj,
t1 = 1,
t2 = nrow(tcor_obj),
test = c("student", "chi2")

)

18 test_equality

Arguments

tcor_obj the output of a call to tcor() with CI = TRUE.

t1 the first time point used by the test (by default, the first time point in the time
series).

t2 the second time point used by the test (by default, the last time point in the time
series).

test a character string indicating which test to use ("student", the default; or "chi2").

Details

Two different test statistics can be used, one is asymptotically Student-t distributed under H0 and
one is chi-square distributed. In practice, it seems to give very similar results.

Value

a data.frame with the result of the test, including the effect size (delta_r = r[t2] - r[t1]).

See Also

test_ref(), tcor()

Examples

Simple example

res <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 50, CI = TRUE))
test_equality(res)

Chi2 instead of Student's t-test

test_equality(res, test = "chi2")

Time point can be dates or indices (mixing possible) but output as in input data

test_equality(res, t1 = "2000-04-04", t2 = 1000)
res[1000, "t"] ## t2 matches with date in `res`
stockprice[1000, "DateID"] ## t2 does not match with date `stockprice` due to missing values

It could be useful to use `keep.missing = TRUE` for index to match original data despite NAs

res2 <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID,
h = 50, CI = TRUE, keep.missing = TRUE))

test_equality(res2, t1 = "2000-04-04", t2 = 1000)
res[1000, "t"] ## t2 matches with date in `res`
stockprice[1000, "DateID"] ## t2 does match with date `stockprice` despite missing values

test_ref 19

test_ref Test difference between correlation coefficient estimates and a value
of reference

Description

This function tests whether smoothed correlation values are equal (H0) or not to a reference value
(default = 0). The test is not described in Choi & Shin, 2021, but it is based on the idea behind
test_equality().

Usage

test_ref(
tcor_obj,
t = tcor_obj$t,
r_ref = 0,
test = c("student", "chi2"),
p.adjust.methods = c("none", "bonferroni", "holm", "hochberg", "hommel", "BH", "BY",

"fdr")
)

Arguments

tcor_obj the output of a call to tcor() with CI = TRUE.

t a vector of time point(s) used by the test (by default, all time points are consid-
ered).

r_ref a scalar indicating the reference value for the correlation coefficient to be used
in the test (default = 0).

test a character string indicating which test to use ("student", the default; or "chi2").
p.adjust.methods

a character string indicating the method used to adjust p-values for multiple
testing (see p.adjust(); default = "none").

Details

Two different test statistics can be used, one is asymptotically Student-t distributed under H0 and
one is chi-square distributed. In practice, it seems to give very similar results.

Value

a data.frame with the result of the test, including the effect size (delta_r = r[t] - r_ref).

See Also

test_equality(), tcor()

20 test_ref

Examples

Comparison of all correlation values to reference of 0.5

res <- with(stockprice, tcor(x = SP500, y = FTSE100, t = DateID, h = 300, CI = TRUE))
ref <- 0.5
test_against_ref <- test_ref(res, r_ref = ref)
head(test_against_ref)

Plot to illustrate the correspondance with confidence intervals

plot(res$r ~ res$t, type = "l", ylim = c(0, 1), col = NULL)
abline(v = test_against_ref$t[test_against_ref$p > 0.05], col = "lightgreen")
abline(v = test_against_ref$t[test_against_ref$p < 0.05], col = "red")
points(res$r ~ res$t, type = "l")
points(res$upr ~ res$t, type = "l", lty = 2)
points(res$lwr ~ res$t, type = "l", lty = 2)
abline(h = ref, col = "blue")

Test correlation of 0 a specific time points (using index or dates)

test_ref(res, t = c(100, 150))
test_ref(res, t = c("2000-08-18", "2000-10-27"))

Index

∗ datasets
stockprice, 8

.onAttach, 2

calc_D (CI), 2
calc_e (CI), 2
calc_Gamma (CI), 2
calc_GammaINF (CI), 2
calc_H (CI), 2
calc_L_And (CI), 2
calc_rho, 3
calc_rho (tcor), 9
calc_RMSE (tcor), 9
calc_RMSE(), 12
calc_SE (CI), 2
CI, 2, 11, 13

datasets::EuStockMarkets, 8

in_pkgdown, 5

kern_smooth, 6, 13
kern_smooth(), 10

lpridge::lpepa(), 6

p.adjust(), 19
parallel::mclapply(), 11
pkgdown::in_pkgdown(), 5

select_h (tcor), 9
stats::ar, 3
stats::ksmooth(), 6
stats::optimize(), 12
stockprice, 8

tcor, 7, 9
tcor(), 2, 4, 18, 19
test_equality, 13, 17
test_equality(), 11, 19
test_ref, 19
test_ref(), 18

21

	.onAttach
	CI
	in_pkgdown
	kern_smooth
	stockprice
	tcor
	test_equality
	test_ref
	Index

