Package ‘timedeppar’

August 28, 2023
Type Package

Title Infer Constant and Stochastic, Time-Dependent Model Parameters
Version 1.0.3

Date 2023-08-28

Author Peter Reichert <peter.reichert@emeriti.eawag.ch>
Maintainer Peter Reichert <peter.reichert@emeriti.eawag.ch>

Description Infer constant and stochastic, time-dependent parameters to consider intrinsic stochastic-
ity of a dynamic model and/or to analyze model structure modifications that could re-
duce model deficits.
The concept is based on inferring time-dependent parameters as stochastic pro-
cesses in the form of Ornstein-Uhlenbeck processes jointly with inferring constant model param-
eters and parameters of the Ornstein-Uhlenbeck processes.
The package also contains functions to sample from and calculate densities of Ornstein-
Uhlenbeck processes.
References:
Tomassini, L., Reichert, P., Kuensch, H.-R. Buser, C., Knutti, R. and Bor-
suk, M.E. (2009), A smoothing algorithm for estimating stochastic, continuous-time model pa-
rameters and its application to a simple climate model, Journal of the Royal Statistical Soci-
ety: Series C (Applied Statistics) 58, 679-704, <doi:10.1111/j.1467-9876.2009.00678.x>
Reichert, P., and Mieleitner, J. (2009), Analyzing input and structural uncertainty of nonlin-
ear dynamic models with stochastic, time-dependent parameters. Water Resources Re-
search, 45, W10402, <doi:10.1029/2009WR007814>
Reichert, P., Ammann, L. and Fenicia, F. (2021), Potential and challenges of investigating intrin-
sic uncertainty of hydrological models with time-dependent, stochastic parameters. Water Re-
sources Research 57(8), e2020WR028311, <doi:10.1029/2020WR028311>
Reichert, P. (2022), timedeppar: An R package for inferring stochastic, time-
dependent model parameters, in preparation.

License GPL-3

Depends mvtnorm
URL https://gitlab.com/p.reichert/timedeppar

BugReports https://gitlab.com/p.reichert/timedeppar/-/issues
Encoding UTF-8

https://doi.org/10.1111/j.1467-9876.2009.00678.x
https://doi.org/10.1029/2009WR007814
https://doi.org/10.1029/2020WR028311
https://gitlab.com/p.reichert/timedeppar
https://gitlab.com/p.reichert/timedeppar/-/issues

2 calc.acceptfreq

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-08-28 10:50:02 UTC

R topics documented:

calcacceptfreq L e e e 2
calclogpdf e 3
getlabel L e e 3
GELPATAMML . . . o v v v i e 4
GELPATSAMD .+« o v v e 5
infer.timedeppar L. e e e 6
logpdfOU e e 14
plot.timedeppar e e e e e 15
randOU e 17
randsplit e e e e e 18
readres.timedeppar e e e e e 19

Index 20

calc.acceptfreq Calculate apparent acceptance frequency of time-dependent parame-
ter
Description

This function calculates the apparent acceptance frequency from a potentially thinned Markov chain
sample.

Usage

calc.acceptfreq(x, n.burnin)

Arguments

X results from the function infer. timedeppar of class timedeppar.

n.burnin number of (unthinned) burnin points of the Markov chain to omit from analysis.
Value

list two-column matrices with time and apparent acceptance frequencies

calc.logpdf 3

calc. logpdf Calculate log pdf values (prior, internal, posterior) from an object of
type timedeppar

Description
This function calculated log priors, log pdf of Ornstein-Uhlenbeck time dependent parameters, and
log posterior from an object of type timedeppar produced by the function infer.timedeppar.
Usage

calc.logpdf(x, param, verbose)

Arguments
X results from the function infer.timedeppar of class timedeppar.
param list of parameter lists and vectors extracted from an object of class timedeppar
using the function get.param.
verbose boolean indicator for writing the results to the console (default is not to do it).
Value

numeric vecctor of values of the different log pdfs.

get.label Construct a plot label from expressions for variables and units

Description

This function produces an expression to label plots from expressions for variables and units and
from character strings.

Usage

get.label(var.name, labels = NA, units = NA, t1 = "", t2 ="", t3 ="")
Arguments

var.name name of the variable.

labels named vector of expressions encoding variable names with greek letters, sub-

and superscripts.

units named vector of expressions encoding units with sub- and superscripts.

t1 optional text (see below).

t2 optional text (see below).

t3 optional text (see below).

4 get.param

Value

expression of a label of the form: t1 label t2 [unit] t3
label and unit are extracted from the vectors labels and units by using the compontents named

var.name
get.param Extract parameter list and process parameter vectors from an object
of type timedeppar
Description

This function extracts an element of the stored Markov chain from an object of type timedeppar
produced by the function infer. timedeppar and converts it to a format that facilitates re-evaluation
of the posterior, evaluation of the underlying model, and sampling from the Ornstein-Uhlenbeck
process. In particular, the constant and time-dependent parameters are provided in the same list
format as supplied as param. ini to the function infer.timedeppar. In addition, the parameters
of the Ornstein-Uhlenbeck process(es) of the time-dependent parameters are provided in different
formats (see details below under Value.

Usage

get.param(x, ind.sample)

Arguments
X results from the function infer. timedeppar of class timedeppar.
ind.sample index of the stored (potentially thinned) Markov chain defining which param-
eters to reconstruct. Default is to extract the parameters corresponding to the
maximum posterior solution.
Value

list with the following elements:

param: list of constant and time-dependent model parameters,

param.ou.estim: vector of estimated process parameters of all time-dependent parameters,
param.ou. fixed: vector of fixed process parameters of all time-dependent parameters,

param.ou: matrix of Ornstein-Uhlenbeck parameters for all time-dependent parameters; columns
are mean, sd and gamma of the processes, rows are the time-dependent parameter(s).

logpdf: corresponding lopdf values (posterior, intermediate densities, and priors),

ind. timedeppar: indices of param at which parameters are time-dependent.

ind.sample: sample index.

ind.chain: corresponding index of the Markov chain.

get.parsamp 5

get.parsamp Get a sample of lists of constant and time-dependent parameters from
inference results of infer.timedeppar

Description

This function produces a sample of parameter sets for past and potentially future time points based

on the results of class timedeppar generated by Bayesian inference with the function infer. timedeppar.
For time points used for inference, the sample is a sub-samble of the Markov chain, for future time
points of time-dependent parameters it is a random sample based on the corresponding Ornstein-
Uhlenbeck parameters and constrained at there initial point to the end point of the sub-sample.

Usage

get.parsamp(x, samp.size = 1000, n.burnin = @, times.new = numeric(@))

Arguments
X results from the function infer. timedeppar of class timedeppar.
samp.size size of the produced sample constructed from the Markov chain stored in the
object of class timedeppar omitting the adaptation and burnin phases.
n.burnin number of Markov chain points to omit for density and pairs plots (number of
omitted points is max(control$n.adapt,n.burnin)).
times.new vector of time points to predict for. If no time points are provided, sampling is
only from the inference Markov chain; if time points are provided, they need to
be increasing and start with a larger value than the time points used for inference.
In the latter case, time-dependent parameters are sampled for the future points
and appended to the inferred part of the time-dependend parameter.
Value
list of

param.maxpost: list of constant and time-dependent parameters corresponding to the maximum
posterior solution for inference (no extrapolation to the future).

param.maxlikeli: list of constant and time-dependent parameters corresponding to the solution
with maximum observation likelihood found so far.

param.list: list of length samp.size containing lists of constant and time-dependent parameters;
for time-dependent parameters sub-sample of the Markov chain for past time points, sample from
Ornstein-Uhlenbeck processes conditioned at the initial point for future time points (see argument
times.new).

param.const: sub-sample of constant parameters.

param.timedep: list of sub-samples of time-dependent parameters.

param.ou: sub-sample of Ornstein-Uhlebeck parameters of the time-dependent parameter(s).

ind. timedeppar: indices of time-dependent parameters in the parameter lists.

ind.sample: indices of the stored, thinned sample defining the sub-sample.

ind.chain: indices of the original non-thinned Markov chain defining the sub-sample.

6 infer.timedeppar

dot.args: ... arguments passed to infer. timedeppar; to be re-used for new model evaluations.

infer.timedeppar Jointly infer constant and time-dependent parameters of a dynamic
model given time-series data

Description

This function draws a Markov Chain from the posterior of constant and time-dependent parameters
(following Ornstein-Uhlenbeck processes) of a dynamic model. The dynamic model is specified
by a function that calculates the log likelihood for given time-series data. The Ornstein-Uhlenbeck
processes of time-dependent processes are characterized by there mean (mean), standard deviation
(sd), and a rate parameter (gamma) that quantifies temporal correlation.

Usage

infer.timedeppar (
loglikeli = NULL,
loglikeli.keepstate = FALSE,
param.ini = list(),
param.range = list(),
param.log = logical(0),
param.logprior = NULL,
param.ou.ini = numeric(Q),
param.ou.fixed = numeric(Q),
param.ou.logprior = NULL,
task = c("start”, "continue", "restart"),
n.iter = NA,
cov.prop.const.ini = NA,
cov.prop.ou.ini = NA,
scale.prop.const.ini = NA,
scale.prop.ou.ini = NA,
control = list(),
res.infer.timedeppar = list(),
verbose = 0,

nn

file.save = ,

Arguments

loglikeli function that calculates the log likelihood of the model for given constant or
time-dependent parameters and given observational data.

infer.timedeppar 7

The parameters are passed as a named list in the first argument of the func-
tion. The list elements are either scalar values representing constant parame-
ters or two-column matrices with columns for time points and values for time-
dependent parameters. If the argument loglikeli.keepstate is FALSE no fur-
ther arguments are needed (but can be provided, see below). In this case, the
function should return the log likelihood as a single double value.
If the argument loglikeli.keepstate is TRUE, the second argument provides
the time range over which a time-dependent parameter was changed or NA if
the full simulation time has to be evaluated, and the third argument provides
the state of the functon at the last successful call. This allows the function to
only calculate and return modifications to that previous state. In this case, the
function has to return a list with the log likelihood value as its first element and
the current state of the function as the second argument. This state can be an R
variable of an arbitrary data type. The version from the last accepted MCMC
step will be returnde at the next call.
Further arguments provided to infer. timedeppar will be passed to this func-
tion.

loglikeli.keepstate
boolean to indicate which kind of interface to the likelihood function is used.
See argument loglikeli for details.

param.ini named list of initial vallues of parameters to be estimated. scalar initial values
for constant parameters, two-column matrices for time and parameter values for
time-dependent parameters (values of time-dependent parameters may be NA
and are then drawn from the Ornstein-Uhlenbeck process). The list param.ini
needs to be a legal and complete first element of the function passed by the
argument loglikeli. For each time-dependent parameter with name <name>
initial values or fixed value of the parameters <name>_mean, <name>_sd and
<name>_gamma must be provided in the arguments param.ou. ini or param.ou. fixed,
respectively. These parameters represent the mean, the asymptotic standard de-
viation, and the rate parameter of the Ornstein-Uhlenbeck process. If these
parameters are given in the argument param.ou.ini, they are used as initial
condition of the inference process and the parameters are estimated, if they are
given in the argument param.ou.fixed, they are assumed to be given and are
kept fixed.

param.range named list of ranges (2 element vectors with minimum and maximum) of pa-
rameters that are constrained (non-logarithmic for all parameters)

param.log named vector of logicals indicating if inference should be done on the log scale
(parameters are still given and returned on non-log scales). For time-dependent
parameters, selecting this option implies the use of a lognormal marginal for
the Ornstein-Uhlenbeck process. This means that the parameter is modelled as
exp(Ornstein-Uhlenbeck), but mean and standard devistion of the process are
still on non-log scales.

param.logprior function to calculate the (joint) log prior of all estimaged constant parameters
of the model. The function gets as its argument a named vector of the values
of the estimaged constant parameters to allow the function to identify for which
parameters a joint prior is required in the current setting).

param.ou.ini named vector of initial values of parameters of the Ornstein-Uhlenbeck pro-
cesses of time-dependent parameters; see description of argument param.ini.

infer.timedeppar

param.ou.fixed named vector of values of parameters of the Ornstein-Uhlenbeck processes of
time-dependent parameters that are kept fixed rather than being extimated. If all
process parameters are kept fixed, these names are <name>_mean, <name>_sd
and <name>_gamma for each time-dependent parameter with name <name>; see
description of the argument param.ini. The values specified in param. fixed
are ignored if the parameter is also given in the argument param.ini; in this
case it is estimated.

param.ou.logprior
function to calculate the (joint) log prior of all estimated parameters of the
Ornstein-Uhlenbeck processes of a single time-dependent parameter. The func-
tion gets as its argument a named vector of the values of the process parame-
ters to estimated. These names are a subset of <name>_mean, <name>_sd and
<name>_gamma; see description of the argument param.ini. The function has
to work for each time-dependent parameter by being sensitive to the parameter
names.

task Which task to perform (default value: "start"):
"start”: start an inference process from scratch based on the arguments of the
function. The argument res.infer.timedeppar is ignored.
"continue”: continue a Markov chain from a previous call to infer. timedeppar.
The results of a previous call have to be provided as the argument res. infer. timedeppar
in the form of an object of type timedeppar. To guarantee convergence of the
chain, all numerical specifications including the final state of the chain are taken
from the object provided by res.infer.timedeppar and the actual arguments
of the function are ignored except n.iter which specifies the number of itera-
tions to be added to the chain.
"restart”: A new chain is started from the last point of a previous chain except
if the argument param. ini is provided. The results of a previous call have to be
provided as the argument res.infer.timedeppar in the form of an object of
type timedeppar. Likelihood, prior pdf functions, initial proposal covariance
matrices, scales and control parameters are taken from the previous chain unless
explicitly provided.

n.iter number of iterations of the Markov chain to be performed (default value: 10000).

cov.prop.const.ini
scaled covariance matrix of the proposal distribution for the Metropolis step of
constant parameters. The proposal distribution of the Metropolis step is a normal
distribution centered at the last point of the chain with a covariance matrix equal
to scale.prop.const”2 * cov.prop.const. Note that if param.log is TRUE
for a parameter, then the proposal is evaluated at the log scale of the parameter.
During the adaptation phase, the covariance matrix is periodically adapted to
the covariance matrix of the current sample and the scale to get a reasonable
acceptance rate. After the adaptation phase, both variables are kept constant to
guarantee convergence.

cov.prop.ou.ini
list of scaled covariance matrices of the proposal distributions for the Metropolis
step of the parameters of the Ornstein-Uhlenbeck processes of time-dependent
parameters. The proposal distribution of the Metropolis step for the process pa-
rameters of the time-dependent parameter i is a normal distribution centered at
the last point of the chain with a covariance matrix equal to cov.prop.ou[[i]]

infer.timedeppar

* scale.prop.ouli]*2. Note that if param.log is TRUE for a parameter, then
the proposal for the mean is evaluated at the log scale of the parameter. This
is anyway the case for the standard deviation and the rate parameter of the
Ornstein-Uhlenbeck process. During the adaptation phase, the covariance ma-
trices are periodically adapted to the covariance matrix of the current sample
and the scale to get a reasonable acceptance rate. After the adaptation phase,
both variables are kept constant to guarantee convergence.

scale.prop.const.ini

scale.prop.ou.ini

vector of scale factors for the covariance matrices of the Metropolis step for
parameters of Ornstein-Uhlenbeck processes with a proposal distribution equal
to a normal distribution centered at the previous point of the chain and a co-
variance matrix for the time dependent parameter i equal to cov.prop.ou[[i]]
* scale.prop.ouli]*2. During the adaptation phase, the covariance matrix is
periodically adapted to the covariance matrix of the current sample and the scale
to get a reasonable acceptance rate. After the adaptation phase, both variables
are kept constant to guarantee convergence.

control

scale factor for the covariance matrix of the Metropolis step for constant param-
eters with a proposal distribution equal to a normal distribution centered at the
previous point of the chain and a covariance matrix equal to scale.prop.const*2
* cov.prop.const. During the adaptation phase, the covariance matrix is peri-
odically adapted to the covariance matrix of the current sample and the scale to
get a reasonable acceptance rate. After the adaptation phase, both variables are
kept constant to guarantee convergence.

list of control parameters of the algorithm:

* n.interval: number of sub-intervals into which the time domain is splitted

to infer the time-dependent parameters; either scalar for universal choice
for all parameters or named vector for parameter-specific choices (default
value: 50; this number must be increased if the acceptance rates of the time-
dependent parameters are very low, it can be decreased if they are high);
min.internal: minimum number of internal points in an interval (default
value: 1; may be increased if time resolution is high).

splitmethod: method used for random splitting of time domain into sub-
intervals. Possible values: "modunif”: modification of uniform intervals;
"random”: random split (higher variability in inverval lengths); "weighted":
weighted random split leading to shorter intervals where the acceptance
frequency is low; "autoweights”: use weighted random split but adjusts
weights adaptively. (default value: "modunif™).

interval.weights: numerical vector or named list of numerical vectors
(by time-dependent parameter) of weights for sampling interval boundaries
(the length(s) of the vector(s) must be equal to the time series length in the
parameter specification). The weight vectors do not have to be normalized.
The weights are used if the parameter splitmethod is equal to "weighted”
or as optional initial weights if splitmethod is equal to "autoweights”.

n.autoweighting: number of past iterations to consider for weight calcu-
lation for splitmethod "autoweights” (default value: 1000). Note that
the calculation of weights only starts after n.autoweights iterations and

10

infer.timedeppar

that only stored points are considerd so that the number of points consid-
ered is equal to n.autoweighting/thin.

* offset.weighting: offset used to caluclate weights from apparent accep-
tance frequencies for splitmethod "autoweights” (default value: 0.05).

* n.widening: number grid points used to widen areas of high weight for
splitmethod "autoweights” (default value: 10).

* n.timedep.perstep: number of updates of the time-dependent parame-
ter(s) before updating the constant parameters (default value: 1).

* n.const.perstep: number of Markov chain steps for the constant param-
eters to be performed between updating the time-dependent parameters (de-
fault value: 1).

* n.adapt: number of iterations of the Markov chain during which adapta-
tion is made (default value: 2000; only during this phase, the covariance
matrix and the scaling factors are adapted).

* n.adapt.scale: number of iterations after which the acceptance rate is
checked for potentially adapting the scaling factor (default value: 30).

e n.adapt.cov: number of iterations of the Markov chain, after which the
covariance matrix of the proposal distribution is adapted (default value:
900; 0 means no adaptation of the covariance matrix; note that after control$n. adapt
iterations adaptation is turned off; for this reason, after the last multiple of
n.adapt.cov below n.adapt there should be sufficient iterations left to
adapt the scaling factors).

* f.reduce.cor: factor by which sample correlations are reduced when con-
structing the covariance matrix of the proposal distribution (default value:
0.90).

e f.accept.decscale: acceptance rate below which the proposal scaling
factor is decreased during the adaptation phase (default value: 0.05).

* f.accept.incscale: acceptance rate above which the proposal scaling
factor is increased during the adaptation phase (default value: 0.30).

* f.max.scalechange: max. factor for changing proposal distribution scale
from reference (default value: 10; reference is either initial value or modi-
fied value when the covariance matrix was adapted).

* f.sample.cov.restart: fraction of previous samples to be used to calcu-
late the covariance matrix of proposal distribution when restarting inference
(default value: 0.3; the last part of the samples is used).

* thin: thinning for storing Markov chain results (default value: 1).

* n.save: number of iterations after which the results are (periodically) saved
(default value: 1000).

* save.diag: save diagnostic information about acceptance ratio, accep-
tance, and interval lengths for inference of the time-dependent parameters.

res.infer.timedeppar

verbose

results of a previous call to this function. These results are ignored if the argu-
ment task is equal to "start”, but it is needed for the tasks "continue” and
"restart”.

integer parameter indicating the level of progress reporting:
0: no reporting;

infer.timedeppar 11

1: reporting of thinned and accepted Markov Chain steps and of adapted pro-
posal covariance matrices;
2: reporting of proposals and accepted steps before thinning.

file.save if non-empty string, the intermediate results are saved to this file as variable res
in a workspace after every control$n.save iterations (the extension .RData
will be appended to the file name).

additional parameters passed to the function loglikeli.

Value
class of type timedeppar with the following elements:

* package: package timedeppar: version and date,
» func: function called (infer.timedeppar),
e date: date of call,

* dot.args: arguments passed to the likelihood function (included for reproducibility of re-
sults),

* task: task that was performed (start, restart or continue),

e file: name of file to which output was written,

e param.ini: initial values of likelihood parameters (constant and time-dependent),

* param.ou.ini: initial values of Ornstein-Uhlenbeck process parameters that are estimated,
e param.ou. fixed: values of Ornstein-Uhlenbeck process parameters that are not estimated,
* loglikeli: function that was passed to calculate the log likelihood of the observations,

* loglikeli.keepstate: boolean indicating whether or not the state from the previous run
should be kept (this allows only partial time evaluation when only part of the input was re-
placed),

* param.logprior: function that was passed to calculate the joint log prior of the constant
likelihood parameters,

* param.ou.logprior: function that was passed to calculate the joint log prior of the estimated
Ornstein-Uhlenbeck process parameters (in case of multiple Ornstein-Uhlenbeck processes
the function has to return the prior for the correct process; this can be identified by the names
of the argument),

* param.range: parameter ranges,

* param.log: named logical vector of indicators for log inference,

e control: named list of control parameters as passed to the call (or read from a previous call),

* n.iter: number of iterations peformed (note that the size of the sample will be n.iter/control$thin),

* sample.diag: list of samples of proposals, log acceptance ratios, and interval lengths of time-
dependent parameters (only available if the control variable save.diag is set to TRUE),

* sample.param.timedep: list of samples of time dependent parameters (first row contains
time points),

* sample.param.ou: sample of Ornstein-Uhlenbeck process parameters,

* sample.param.const: sample of constant parameters,

12

infer.timedeppar

sample. logpdf: sample of prior, Ornstein-Uhlenbeck and posterior pdf,
acceptfreq.constpar: acceptance frequency of constant parameters after adaptation phase,

acceptfreq.oupar: acceptance frequencies of Ornstein-Uhlenbeck process parameters after
adaptation phase,

acceptfreq.timedeppar: acceptance frequencies of time-depenent parameters,

param.maxpost: parameters at the maximum posterior (constant and time-dependent param-
eters),

param.ou.maxpost: Ornstein-Uhlenbeck process parameters at the maximum posterior,

cov.prop.const: final covariance matrix used for proposal distribution of constant parame-
ters,

cov.prop.ou: list of final covariance matrices used for proposal distribution of Ornstein-
Uhlenbeck process paramemters,

scale.prop.const: final scale of proposal distribution of constant parameters,

scale.prop.ou: final scale of proposal distribution of Ornstein-Uhlenbeck process parame-
ters,

sys.time: run time used for the previous inference job.

References

Reichert, P. timedeppar: An R package for inferring stochastic, time-dependent model parameters
in preparation, 2020.

Reichert, P., Ammann, L. and Fenicia, F. Potential and challenges of investigating intrinsic un-
certainty of hydrological models with time-dependent, stochastic parameters. Water Resources
Research 57(8), e2020WR028311, 2021. doi:10.1029/2020WR028311

Reichert, P. and Mieleitner, J. Analyzing input and structural uncertainty of nonlinear dynamic
models with stochastic, time-dependent parameters. Water Resources Research, 45, W10402, 2009.
doi:10.1029/2009WR007814

Tomassini, L., Reichert, P., Kuensch, H.-R. Buser, C., Knutti, R. and Borsuk, M.E. A smooth-
ing algorithm for estimating stochastic, continuous-time model parameters and its application to a
simple climate model. Journal of the Royal Statistical Society: Series C (Applied Statistics) 58,
679-704, 2009. doi:10.1111/5.14679876.2009.00678.x

See Also

plot.timedeppar for visualizing results.

calc.acceptfreq for calculating (apparent) acceptance frequencies.

calc.logpdf for calculating log pdf values (prior, internal, posterior) from the results.
get.param for extracting individual parameters from the Markov chain.

get.parsamp for extracting subsamples of the Markov chain.

readres.timedeppar for reading saved results from a previous run.

randOU for sampling from an Ornstein-Uhlenbeck process.

logpdfOU for calculating the probability density of a sample from an Ornstein-Uhlenbeck process.

https://doi.org/10.1029/2020WR028311
https://doi.org/10.1029/2009WR007814
https://doi.org/10.1111/j.1467-9876.2009.00678.x

infer.timedeppar 13

Examples

Simple example for re-inferring parameters of an Ornstein-Uhlenbeck process
with observational noise from synthetically generated data

load package:
if (!require("timedeppar”)) { install.packages("timedeppar"); library(timedeppar) }

choose model parameters:

y_mean <- 0

y_sd <- 1

y_gamma <- 10

obs_sd <- 0.2

choose control parameters of numerical algorithm:

n.iter <- 100 # this is just to demonstrate how it works and is compatible
with the computation time requirements for examples in CRAN

n.iter <- 50000 # please go for a sample size like this

for getting a reasonable sample

n.interval <- 25 # increase if rejection frequency of stoch. par. too high
fract.adapt <- 0.4

n.adapt <- floor(fract.adapt*n.iter)

synthetically generate data:

set.seed(123)

data <- randOU(mean=y_mean, sd=y_sd, gamma=y_gamma, t=seq(from=0,to=2,length.out=101))
data$yobs <- data$y + rnorm(nrow(data),mean=0,sd=obs_sd)

define observational likelihood:

loglikeli <- function(param,data)
{

get parameter y at time points of observations::

y <- param$y

if (is.matrix(y) | is.data.frame(y)) y <- approx(x=y[,1]1,y=y[,2]1,xout=datal,1]1)$y
calculate likelihood:

loglikeli <- sum(dnorm(datal,"yobs"],mean=y, sd=param$obs_sd,log=TRUE))

return result:

return(loglikeli)
3
sample from the posterior of y, mu_y, sd_y and sd_obs assuming a uniform prior:
res <- infer.timedeppar(loglikeli = loglikeli,
param.ini = list(y=randOU(mean=y_mean, sd=y_sd, gamma=y_gamma,

t=seq(from=0,to=2,length.out=501)),
obs_sd=obs_sd),

param.log = c(y=FALSE,obs_sd=TRUE),

param.ou.ini = c(y_mean=0,y_sd=1),

param.ou.fixed = c(y_gamma=10),

n.iter = n.iter,

control = list(n.interval = n.interval,
n.adapt = n.adapt),

data = data)

14 logpdfOU

plot results using pre-defined options:

pdf(paste@("infer_OU_",n.iter,”_",n.adapt,"”_original.pdf”),width=8,height=12)
plot(res,
labels=expression(y =y,
y_mean = muly],
y_sd = sigmaly],

y_gamma = gammaly]))

dev.off()

plot time series and data:
pdf(paste@(”infer_OU_",n.iter,”_",6n.adapt,"”_comparison.pdf”),width=8,height=6)
t <- res$sample.param.timedep$y[1,]
sample <- res$sample.param.timedep$y[(1+n.adapt+1):nrow(res$sample.param.timedeps$y),]
g <- apply(sample,2,quantile,probs=c(0.025,0.5,0.975))
plot(numeric(@),numeric(@),type="n",6xaxs="i", yaxs="1i",
xlim=range(t),ylim=2.5xc(-1,1),xlab="t",ylab="y")
polygon(c(t,rev(t),t[1]1),c(ql1,],rev(ql3,]1),ql1,1]1),
col="grey80" ,border=NA)
lines(t,ql2,1)
lines(data$t,data$y,col="red")
points(data$t,datasyobs,pch=19,cex=0.8)
legend("bottomright”,
legend=c("original process”,"noisy data"”,"inferred median"”,"inferred 95% range"),
lwd=c(1,NA,1,5),1ty=c("solid"”,NA,"solid", "solid"),col=c("red"”, "black”,"black”,"grey80"),
pch=c(NA,19,NA,NA), cex=0.8)
dev.off ()

logpdfou Calculate log pdf of an Ornstein-Uhlenbeck process

Description

This function calculates the log pdf of a realization of an Ornstein-Uhlenbeck process with given
parameters. The calculation can be done for an Ornstein-Uhlenbeck process with a random start
value, for a process conditional on the start value, or for a process conditional on start and end
values. The function includes the option of performing the calculation for lognormal marginal
generated by exponential tranformation.

Usage

logpdfOU(t, y, mean = @, sd = 1, gamma = 1, cond = @, log = FALSE)

Arguments
t vector of time points at which the OU process is available.
y vector of y-values corresponing to the t-values (note that t and y need to be of

the same length).

mean asymptotic mean of the process.

plot.timedeppar

sd
gamma

cond

log

Value

15

asymptotic standard deviation of the process.
rate coefficient for return to the mean

conditioning: 0 indicates no conditioning, 1 conditioning to start value, and 2
conditioning to start and end value

if true, the log pdf of the log of y is calculated (mean and sd are interpreted in y,
not in log(y) units)

the function returns the log pdf

Examples

OU <- randOU(mean=0,sd=1,gamma=1,t=0:1000/1000)
logpdfOU(OU$t,0US$y, mean=0, sd=1,gamma=1)

plot.timedeppar

Plot results of time-dependent parameter estimation

Description

This function plot Markov chains and marginal densities of constant parameters, distributions of
time dependent parameters, and Markov chains and marginal densities of time-dependent parame-
ters at selected points in time.

Usage

S3 method for class 'timedeppar'

plot(
X,
type = c("traces”, "marginals”, "summary”, "pairs"”, "time-series”, "accept”),
chains.at = numeric(0),
labels = NA,
units = NA,

prob.band = 0.9,
max.diag.plots = 100,
xlim.ts = numeric(0),
n.burnin = 0,

nrow = 4,
nrow.constpar = NA,
nrow.timedeppar = NA,
nrow.diagnostics = NA,

16 plot.timedeppar

Arguments

X results from the function infer. timedeppar of class timedeppar or list of such
results for comparing multiple chains (in the latter case you have to call explic-
itly plot. timedeppar rather than being able to do the generic call plot as the
list of results is not an object of class timedeppar).

type vector of plot types:
"traces” or "marginals”: traces and 1d marginals of Markov chains of con-
stant parameters, of time-dependent parameters at certain time points (see argu-
ment chains. at), chains of log posterior and log observational likelihood val-
ues. For selected outputs only, specify traces. constpar, traces. timedeppar,
traces.logposterior.
"summary": print summary of acceptance rates and maximum log posterior and
log likelihood values.
"pairs”: scatterplot matrix of posterior sample of constant parameters.
"time-series”: uncertainty range and median time series of time-dependent
parameters.
"accept”: time series of apparent acceptance frequencies (at the level of thin-
ning).
"realizations”: realizations of time-dependent parameters to check for burnin..
"diagnostics": plot diagnostics for inference of time-dependent parameters
(note that the plot file could become very large to follow the inference steps).
chains.at vector of time points at which chains and marginals of time-dependent param-
eters should be plotted if "traces” or "marginals” is contained in the vector
argument type (default: none [numeric(0)]).

labels optional named vector of expressions to label variables in the plots (names of the
expression have to correspond to the variable names as used by the program, ex-
pressions can have special symbols, e.g. expression(a=alpha,b=beta,cl=gammal1])).

units optional named vector of expressions to add units to variables in the plots (names
of the expression have to correspond to the variable names as used by the pro-
gram, expressions can have special symbols, e.g. expression(a=m*3/s,b=h*-1,c1=m)).

prob.band probability defining the width of the uncertainty bands plotted for output vari-
ables (default value: 0.9)

max.diag.plots maximum number of diagnostic plots of inference steps
xlim.ts optional range of time values for time-series plot

n.burnin number of Markov chain points to omit for density and pairs plots (number of
omitted points is max(control$n.adapt,n.burnin)).

nrow number of plot rows per page (except for pairs plot).
nrow.constpar number of plot rows per page for traces and marginals (default is nrow).
nrow.timedeppar

number of plot rows per page for time-dependent parameters (default is nrow).
nrow.diagnostics

number of plot rows per page for diagnostics plots (default is nrow).

additional arguments passed to the plotting function.

randOU

17

randou

Draw from an Ornstein-Uhlenbeck process

Description

This function draws a realization of an Ornstein-Uhlenbeck process with a random start value
(drawn from the marginal distribution), conditional of the start value, or conditional on both start
and end values. The function includes the option of obtaining a lognormal marginal by exponential

tranformation.
Usage
randou(
mean = 0,
sd =1,
gamma = 1,
t = 0:1000/1000,
yini = NA,
yend = NA,
log = FALSE
)
Arguments
mean asymptotic mean of the process.
sd asymptotic standard deviation of the process
gamma rate coefficient for return to the mean
t vector of time points at which the process should be sampled (note: the value at
t[1] will be the starting value yini, the value at t[length(t)] the end value yend if
these are specified)
yini start value of the process (NA indicates random with asymptotic mean and sd)
yend end value of the process (NA indicates no conditioning at the end)
log indicator whether the log of the variable should be an Ornstein-Uhlenbeck pro-
cess (log=TRUE) rather than the variable itself (mean and sd are interpreted in
original units also for log=TRUE)
Value

a data frame with t and y columns for time and for the realization of the Ornstein-Uhlenbeck process

Examples

plot(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000),type="1",ylim=2.5%c(-1,1))

abline(h=0)

lines(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000),col="red")
lines(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000),col="blue")

18 randsplit

lines(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000),col="green")

plot(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000,yini=0,yend=0),type="1",ylim=2.5%c(-1,1))
abline(h=0)

lines(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000,yini=0,yend=0),col="red")
lines(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000,yini=0,yend=0),col="blue")
lines(randOU(mean=0,sd=1,gamma=1,t=0:1000/1000,yini=0,yend=0),col="green")

randsplit Draw indices for a random split of a vector into intervals of the same
mean length

Description

This function draws indices for a random split of a vector into sub-vectors.

Usage
randsplit(
n.grid,
n.interval,
method = c("modunif”, "random”, "weighted"),
weights = numeric(9),
offset = 0,
min.internal = 2
)
Arguments
n.grid number of grid points to divide into intervals
n.interval number of intervals
method method for random splitting:
modunif modification of uniform intervals
random random split (higher variability in inverval lengths)
weighted random split with weights; non-normalized weights must be specified
by the argument weights
weights weights for choosing interval boundaries for method weighted; vector of length
i2-i1+1 (does not need to be normalized and will be ignored for all methods
except for method weighted)
offset offset to shift subset of potential interval boundaries to draw from. To guar-

antee different intervals on subsequent calls, offset should be increased by one
between subsequent calls for the same variable.

min.internal minimum number of internal points between interval boundary points

readres.timedeppar 19

Value

the function returns an index vector of length n+1 with the endpoint indices of the random intervals.

Examples

randsplit(100,10)

randsplit(100,10)

randsplit (100,10, method="random")

randsplit(100,10,method="weighted" ,weights=1:100)

for (i in 1:10) print(randsplit(100,10,method="weighted”,weights=1:100,0ffset=1))

readres.timedeppar Reads an object of type timedeppar saved to a file by
infer.timedeppar

Description
This function read a workspace stored by the function infer. timedeppar and returns the object of
type timedeppar that contains the intermediate or final results of the inference process

Usage

readres.timedeppar(file)

Arguments

file file name of the workspace to be read.

Value

object of type timedeppar containing the intermediate or final results of the inference process or a
list of length zero if the file was not found of no object called res of type timedeppar was found
in the workspace.

Index

calc.acceptfreq, 2, 12
calc.logpdf, 3, 12

get.label, 3
get.param, 3,4, 12
get.parsamp, 5, 12

infer.timedeppar, 3, 4, 6,6, 8, 16, 19
logpdfou, 12, 14
plot.timedeppar, 12, 15

randou, 72, 17
randsplit, 18
readres.timedeppar, 12, 19

20

	calc.acceptfreq
	calc.logpdf
	get.label
	get.param
	get.parsamp
	infer.timedeppar
	logpdfOU
	plot.timedeppar
	randOU
	randsplit
	readres.timedeppar
	Index

