Package ‘tidyclust’

January 28, 2025
Title A Common API to Clustering
Version 0.2.4

Description A common interface to specifying clustering models, in the
same style as 'parsnip’. Creates unified interface across different
functions and computational engines.

License MIT + file LICENSE

URL https://github.com/tidymodels/tidyclust,
https://tidyclust.tidymodels.org/

BugReports https://github.com/tidymodels/tidyclust/issues
Depends R (>=3.6)
Imports cli (>=3.0.0), dials (>= 1.3.0), dplyr (>= 1.0.9), flexclust
(>= 1.3-6), foreach, generics (>=0.1.2), glue (>=1.6.2),
hardhat (>= 1.0.0), modelenv (>= 0.2.0), parsnip (>= 1.0.2),
philentropy (>= 0.9.0), prettyunits (>= 1.1.0), rlang (>=
1.0.6), rsample (>= 1.0.0), stats, tibble (>= 3.1.0), tidyr (>=
1.2.0), tune (>= 1.0.0), utils, vctrs (>= 0.5.0)

Suggests cluster, ClusterR, clustMixType (>= 0.3-5), covr, klaR,
knitr, modeldata (>= 1.0.0), RcppHungarian, recipes (>= 1.0.0),
rmarkdown, testthat (>= 3.0.0), workflows (>=1.1.2)

Config/Needs/website pkgdown, tidymodels, tidyverse, palmerpenguins,
patchwork, ggforce, tidyverse/tidytemplate

Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Emil Hvitfeldt [aut, cre] (<https://orcid.org/0000-0002-0679-1945>),
Kelly Bodwin [aut],
Posit Software, PBC [cph, fnd]

Maintainer Emil Hvitfeldt <emil.hvitfeldt@posit.co>
Repository CRAN
Date/Publication 2025-01-27 23:20:02 UTC

https://github.com/tidymodels/tidyclust
https://tidyclust.tidymodels.org/
https://github.com/tidymodels/tidyclust/issues
https://orcid.org/0000-0002-0679-1945

2 augment.cluster_fit

Contents
augment.cluster_fit L 2
cluster_fit e 3
cluster_metric_set e e e e e e e e e e 4
CIUSIEI_SPEC o i e 5
control_cluster e e e 7
cut_height L 8
extract-tidyclust L 8
extract_centroids e e e 9
extract_cluster_assignment e e e e e e e 11
extract_fit_summary L e e e 12
finalize_model_tidyclust 13
fit.cluster_spec L e 14
get_centroid_dists 16
glance.cluster_fit L 16
hier_clust 17
komeans e e e 18
linkage_method 19
min_grid.cluster_spec e 20
new_cluster MetriC e e e e e 20
predict.cluster_fit e 21
prep_data_dist. 23
reconcile_clusterings_mapping e 24
set_args.CIUSter_SPec e e e e 25
set_engine.CluSter_SPeC i e e e e e e e e e e 25
set_mode.CluSter_Spec e e e e e 26
silhouette e e e e 26
silhouette_avg 27
SSE_TALIO .+ v v v v o e e e e e e e e e e e e 29
sse_total L e e 30
sse_within e e 31
sse_within_total 32
tidy.cluster_fit L 33
translate_tidyclust L. L 34
tune_CIUSTEr e e e 35
update.hier_clust L. 36

Index 39

augment.cluster_fit Augment data with predictions
Description

augment () will add column(s) for predictions to the given data.

cluster_fit 3

Usage
S3 method for class 'cluster_fit'
augment(x, new_data, ...)
Arguments
X A cluster_fit object produced by fit.cluster_spec() or fit_xy.cluster_spec()
new_data A data frame or matrix.

Not currently used.

Details

For partition models, a .pred_cluster column is added.

Value

A tibble::tibble() with containing new_data with columns added depending on the mode of
the model.

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

kmeans_fit %>%
augment (new_data = mtcars)

cluster_fit Model Fit Object Information

Description
An object with class "cluster_fit" is a container for information about a model that has been fit to
the data.

Details

The following model types are implemented in tidyclust:

¢ K-Means in k_means ()

* Hierarchical (Agglomerative) Clustering in hier_clust()
The main elements of the object are:

* spec: A cluster_spec object.

4 cluster_metric_set

* fit: The object produced by the fitting function.

* preproc: This contains any data-specific information required to process new a sample point
for prediction. For example, if the underlying model function requires arguments x and the
user passed a formula to fit, the preproc object would contain items such as the terms object
and so on. When no information is required, this is NA.

As discussed in the documentation for cluster_spec, the original arguments to the specification
are saved as quosures. These are evaluated for the cluster_fit object prior to fitting. If the
resulting model object prints its call, any user-defined options are shown in the call preceded by a
tilde (see the example below). This is a result of the use of quosures in the specification.

This class and structure is the basis for how tidyclust stores model objects after seeing the data and
applying a model.

cluster_metric_set Combine metric functions

Description

cluster_metric_set() allows you to combine multiple metric functions together into a new func-
tion that calculates all of them at once.

Usage

cluster_metric_set(...)

Arguments

The bare names of the functions to be included in the metric set. These functions
must be cluster metrics such as sse_total (), sse_ratio(), or silhouette_avg().

Details

All functions must be:

* Only cluster metrics

Value

A cluster_metric_set() object, combining the use of all input metrics.

cluster_spec 5

cluster_spec Model Specification Information

Description

An object with class "cluster_spec" is a container for information about a model that will be fit.

Details

The following model types are implemented in tidyclust:

K-Means in k_means ()

Hierarchical (Agglomerative) Clustering in hier_clust()

The main elements of the object are:

args: A vector of the main arguments for the model. The names of these arguments may
be different from their counterparts n the underlying model function. For example, for a
k_means() model, the argument name for the number of clusters are called "num_clusters"
instead of "k" to make it more general and usable across different types of models (and to not
be specific to a particular model function). The elements of args can tune() with the use in
tune_cluster().

For more information see https://www. tidymodels.org/start/tuning/. If left to their defaults
(NULL), the arguments will use the underlying model functions default value. As discussed below,
the arguments in args are captured as quosures and are not immediately executed.

.. .2 Optional model-function-specific parameters. As with args, these will be quosures and
can be tune().

mode: The type of model, such as "partition". Other modes will be added once the package
adds more functionality.

method: This is a slot that is filled in later by the model’s constructor function. It generally
contains lists of information that are used to create the fit and prediction code as well as
required packages and similar data.

engine: This character string declares exactly what software will be used. It can be a package
name or a technology type.

This class and structure is the basis for how tidyclust stores model objects prior to seeing the data.

Argument Details

An important detail to understand when creating model specifications is that they are intended to
be functionally independent of the data. While it is true that some tuning parameters are data
dependent, the model specification does not interact with the data at all.

For example, most R functions immediately evaluate their arguments. For example, when calling
mean(dat_vec), the object dat_vec is immediately evaluated inside of the function.

tidyclust model functions do not do this. For example, using

https://www.tidymodels.org/start/tuning/

cluster_spec

k_means(num_clusters = ncol(mtcars) / 5)
does not execute ncol (mtcars) / 5 when creating the specification. This can be seen in the output:

> k_means(num_clusters = ncol(mtcars) / 5)
K Means Cluster Specification (partition)

Main Arguments:
num_clusters = ncol(mtcars)/5

Computational engine: stats

The model functions save the argument expressions and their associated environments (a.k.a. a
quosure) to be evaluated later when either fit.cluster_spec() or fit_xy.cluster_spec() are
called with the actual data.

The consequence of this strategy is that any data required to get the parameter values must be
available when the model is fit. The two main ways that this can fail is if:

1. The data have been modified between the creation of the model specification and when the
model fit function is invoked.

2. If the model specification is saved and loaded into a new session where those same data objects
do not exist.

The best way to avoid these issues is to not reference any data objects in the global environment but
to use data descriptors such as . cols(). Another way of writing the previous specification is

k_means(num_clusters = .cols() / 5)

This is not dependent on any specific data object and is evaluated immediately before the model
fitting process begins.

One less advantageous approach to solving this issue is to use quasiquotation. This would insert
the actual R object into the model specification and might be the best idea when the data object is
small. For example, using

k_means(num_clusters = ncol(!!mtcars) - 1)

would work (and be reproducible between sessions) but embeds the entire mtcars data set into the
num_clusters expression:

> k_means(num_clusters = ncol(!!mtcars) / 5)
K Means Cluster Specification (partition)

Main Arguments:
num_clusters = ncol(structure(list(mpg = c(21, 21, 22.8, 21.4, 18.7,<snip>

Computational engine: stats

However, if there were an object with the number of columns in it, this wouldn’t be too bad:

control cluster 7

> num_clusters_val <- ncol(mtcars) / 5

> num_clusters_val

[1]1 10

> k_means(num_clusters = !!num_clusters_val)
K Means Cluster Specification (partition)

Main Arguments:
num_clusters = 2.2

More information on quosures and quasiquotation can be found at https://adv-r.hadley.nz/
quasiquotation.html.

control_cluster Control the fit function

Description
Options can be passed to the fit.cluster_spec() function that control the output and computa-
tions.

Usage

control_cluster(verbosity = 1L, catch = FALSE)

Arguments
verbosity An integer where a value of zero indicates that no messages or output should be
shown when packages are loaded or when the model is fit. A value of 1 means
that package loading is quiet but model fits can produce output to the screen
(depending on if they contain their own verbose-type argument). A value of 2
or more indicates that any output should be seen.
catch A logical where a value of TRUE will evaluate the model inside of try(, silent
= TRUE). If the model fails, an object is still returned (without an error) that
inherits the class "try-error".
Value

An S3 object with class "control_cluster" that is a named list with the results of the function call

Examples

control_cluster()

control_cluster(catch = TRUE)

https://adv-r.hadley.nz/quasiquotation.html
https://adv-r.hadley.nz/quasiquotation.html

8 extract-tidyclust

cut_height Cut Height

Description

Used in most tidyclust: :hier_clust() models.

Usage

cut_height(range = c(0@, dials::unknown()), trans = NULL)

Arguments
range A two-element vector holding the defaults for the smallest and largest possible
values, respectively. If a transformation is specified, these values should be in
the transformed units.
trans A trans object from the scales package, such as scales: : transform_log1@()
or scales::transform_reciprocal(). If not provided, the default is used
which matches the units used in range. If no transformation, NULL.
Examples

cut_height()

extract-tidyclust Extract elements of a tidyclust model object

Description

These functions extract various elements from a clustering object. If they do not exist yet, an error
is thrown.

* extract_fit_engine() returns the engine specific fit embedded within a tidyclust model fit.
For example, when using k_means () with the "1m" engine, this returns the underlying kmeans
object.

* extract_parameter_set_dials() returns a set of dials parameter objects.

Usage
S3 method for class 'cluster_fit'

extract_fit_engine(x, ...)

S3 method for class 'cluster_spec'
extract_parameter_set_dials(x, ...)

extract_centroids 9

Arguments
X A cluster_fit object or a cluster_spec object.
Not currently used.
Details

Extracting the underlying engine fit can be helpful for describing the model (via print(), summary(),
plot(), etc.) or for variable importance/explainers.

However, users should not invoke the predict() method on an extracted model. There may be
preprocessing operations that tidyclust has executed on the data prior to giving it to the model.
Bypassing these can lead to errors or silently generating incorrect predictions.

Good:
tidyclust_fit %>% predict(new_data)
Bad:

tidyclust_fit %>% extract_fit_engine() %>% predict(new_data)

Value

The extracted value from the tidyclust object, x, as described in the description section.

Examples

kmeans_spec <- k_means(num_clusters = 2)
kmeans_fit <- fit(kmeans_spec, ~., data = mtcars)

extract_fit_engine(kmeans_fit)

extract_centroids Extract clusters from model

Description

When applied to a fitted cluster specification, returns a tibble with cluster location. When such
locations doesn’t make sense for the model, a mean location is used.

Usage
extract_centroids(object, ...)
Arguments
object An fitted cluster_spec object.

Other arguments passed to methods. Using the prefix allows you to change the
prefix in the levels of the factor levels.

10 extract_centroids

Details

Some model types such as K-means as seen in k_means() stores the centroid in the object itself.
leading the use of this function to act as an simple extract. Other model types such as Hierarchical
(Agglomerative) Clustering as seen in hier_clust(), are fit in such a way that the number of
clusters can be determined at any time after the fit. Setting the num_clusters or cut_height in
this function will be used to determine the clustering when reported.

Further more, some models like hier_clust(), doesn’t have a notion of "centroids". The mean of
the observation within each cluster assignment is returned as the centroid.

The ordering of the clusters is such that the first observation in the training data set will be in cluster
1, the next observation that doesn’t belong to cluster 1 will be in cluster 2, and so on and forth. As
the ordering of clustering doesn’t matter, this is done to avoid identical sets of clustering having
different labels if fit multiple times.

Related functions:
extract_centroids() is a part of a trio of functions doing similar things:
e extract_cluster_assignment() returns the cluster assignments of the training observa-
tions
e extract_centroids() returns the location of the centroids
* predict() returns the cluster a new observation belongs to

Value

A tibble::tibble() with 1 row for each centroid and their position. . cluster denotes the cluster
name for the centroid. The remaining variables match variables passed into model.

See Also

extract_cluster_assignment() predict.cluster_fit()

Examples

set.seed(1234)
kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

kmeans_fit %>%
extract_centroids()

Some models such as “hier_clust()™ fits in such a way that you can specify
the number of clusters after the model is fit.
A Hierarchical (Agglomerative) Clustering method doesn't technically have
clusters, so the center of the observation within each cluster is returned
instead.
hclust_spec <- hier_clust() %>%

set_engine("stats")

hclust_fit <- fit(hclust_spec, ~., mtcars)

extract_cluster_assignment 11

hclust_fit %>%
extract_centroids(num_clusters = 2)

hclust_fit %>%
extract_centroids(cut_height = 250)

extract_cluster_assignment
Extract cluster assignments from model

Description

When applied to a fitted cluster specification, returns a tibble with cluster assignments of the data
used to train the model.

Usage
extract_cluster_assignment(object, ...)
Arguments
object An fitted cluster_spec object.
Other arguments passed to methods. Using the prefix allows you to change the
prefix in the levels of the factor levels.
Details

Some model types such as K-means as seen in k_means() stores the cluster assignments in the
object itself. leading the use of this function to act as an simple extract. Other model types such
as Hierarchical (Agglomerative) Clustering as seen in hier_clust(), are fit in such a way that
the number of clusters can be determined at any time after the fit. Setting the num_clusters or
cut_height in this function will be used to determine the clustering when reported.

The ordering of the clusters is such that the first observation in the training data set will be in cluster
1, the next observation that doesn’t belong to cluster 1 will be in cluster 2, and so on and forth. As
the ordering of clustering doesn’t matter, this is done to avoid identical sets of clustering having
different labels if fit multiple times.

Related functions:
extract_cluster_assignment() is a part of a trio of functions doing similar things:
e extract_cluster_assignment() returns the cluster assignments of the training observa-
tions
e extract_centroids() returns the location of the centroids

e predict() returns the cluster a new observation belongs to

12 extract_fit_summary

Value
A tibble: :tibble() with 1 column named .cluster. This tibble will correspond the the training
data set.

See Also

extract_centroids() predict.cluster_fit()

Examples
kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

kmeans_fit %>%
extract_cluster_assignment()

kmeans_fit %>%
extract_cluster_assignment(prefix = "C_")

Some models such as “hier_clust()™ fits in such a way that you can specify
the number of clusters after the model is fit
hclust_spec <- hier_clust() %>%

set_engine("stats")

hclust_fit <- fit(hclust_spec, ~., mtcars)

hclust_fit %>%
extract_cluster_assignment(num_clusters = 2)

hclust_fit %>%
extract_cluster_assignment(cut_height = 250)

extract_fit_summary S3 method to get fitted model summary info depending on engine

Description

S3 method to get fitted model summary info depending on engine

Usage

extract_fit_summary(object, ...)
Arguments

object a fitted cluster_spec object

other arguments passed to methods

finalize_model_tidyclust 13

Details

The elements cluster_names and cluster_assignments will be factors.

Value

A list with various summary elements

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

kmeans_fit %>%
extract_fit_summary()

finalize_model_tidyclust
Splice final parameters into objects

Description

The finalize_x functions take a list or tibble of tuning parameter values and update objects with
those values.

Usage

finalize_model_tidyclust(x, parameters)

finalize_workflow_tidyclust(x, parameters)

Arguments
X A recipe, parsnip model specification, or workflow.
parameters A list or 1-row tibble of parameter values. Note that the column names of the
tibble should be the id fields attached to tune (). For example, in the Examples
section below, the model has tune("K"). In this case, the parameter tibble
should be "K" and not "neighbors".
Value

An updated version of x.

14

Examples

fit.cluster_spec

kmeans_spec <- k_means(num_clusters = tune())

kmeans_spec

best_params <- data.frame(num_clusters = 5)

best_params

finalize_model_tidyclust(kmeans_spec, best_params)

fit.cluster_spec

Fit a Model Specification to a Data Set

Description

fit() and fit_xy() take a model specification, translate_tidyclust the required code by substitut-
ing arguments, and execute the model fit routine.

Usage

S3 method for class 'cluster_spec'
fit(object, formula, data, control = control_cluster(), ...)

S3 method for class 'cluster_spec'

fit_xy(object, x, case_weights = NULL, control = control_cluster(), ...)
Arguments

object An object of class cluster_spec that has a chosen engine (via set_engine()).

formula An object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted.

data Optional, depending on the interface (see Details below). A data frame con-
taining all relevant variables (e.g. predictors, case weights, etc). Note: when
needed, a named argument should be used.

control A named list with elements verbosity and catch. See control_cluster().
Not currently used; values passed here will be ignored. Other options required
to fit the model should be passed using set_engine().

X A matrix, sparse matrix, or data frame of predictors. Only some models have

case_weights

support for sparse matrix input. See modelenv: :get_encoding() for details. x
should have column names.

An optional classed vector of numeric case weights. This must return TRUE when
hardhat::is_case_weights() isrunonit. See hardhat: : frequency_weights()
and hardhat: : importance_weights() for examples.

fit.cluster_spec 15

Details

fit() and fit_xy() substitute the current arguments in the model specification into the compu-
tational engine’s code, check them for validity, then fit the model using the data and the engine-
specific code. Different model functions have different interfaces (e.g. formula or x/y) and these
functions translate_tidyclust between the interface used when fit() or fit_xy() was invoked and
the one required by the underlying model.

When possible, these functions attempt to avoid making copies of the data. For example, if the
underlying model uses a formula and fit() is invoked, the original data are references when the
model is fit. However, if the underlying model uses something else, such as x/y, the formula is
evaluated and the data are converted to the required format. In this case, any calls in the resulting
model objects reference the temporary objects used to fit the model.

If the model engine has not been set, the model’s default engine will be used (as discussed on each
model page). If the verbosity option of control_cluster() is greater than zero, a warning will
be produced.

If you would like to use an alternative method for generating contrasts when supplying a formula to
fit(), set the global option contrasts to your preferred method. For example, you might set it to:
options(contrasts = c(unordered = "contr.helmert"”, ordered = "contr.poly”)). See the
help page for stats: :contr.treatment() for more possible contrast types.

Value
A cluster_fit object that contains several elements:

* spec: The model specification object (object in the call to fit)

e fit: when the model is executed without error, this is the model object. Otherwise, it is a
try-error object with the error message.

* preproc: any objects needed to convert between a formula and non-formula interface (such
as the terms object)

The return value will also have a class related to the fitted model (e.g. "_kmeans") before the base
class of "cluster_fit".

A fitted cluster_fit object.

See Also

set_engine(), control_cluster(), cluster_spec, cluster_fit

Examples

library(dplyr)
kmeans_mod <- k_means(num_clusters = 5)

using_formula <-
kmeans_mod %>%
set_engine("stats") %>%
fit(~., data = mtcars)

16 glance.cluster_fit

using_x <-
kmeans_mod %>%
set_engine("stats") %>%
fit_xy(x = mtcars)

using_formula
using_x

get_centroid_dists Computes distance from observations to centroids

Description

Computes distance from observations to centroids

Usage

get_centroid_dists(
new_data,
centroids,
dist_fun = function(x, y) {
philentropy::dist_many_many(x, y, method =
"euclidean”)

}
)
Arguments
new_data A data frame
centroids A data frame where each row is a centroid.
dist_fun A function for computing matrix-to-matrix distances. Defaults to function(x,
y) philentropy::dist_many_many(x, y, method = "euclidean").
glance.cluster_fit Construct a single row summary "glance"” of a model, fit, or other
object
Description

This method glances the model in a tidyclust model object, if it exists.

Usage

S3 method for class 'cluster_fit'
glance(x, ...)

hier clust 17

Arguments
X model or other R object to convert to single-row data frame
other arguments passed to methods
Value
a tibble
hier_clust Hierarchical (Agglomerative) Clustering
Description

hier_clust() defines a model that fits clusters based on a distance-based dendrogram

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

e stats

Usage
hier_clust(
mode = "partition”,
engine = "stats”,

num_clusters = NULL,
cut_height = NULL,

linkage_method = "complete”
)
Arguments
mode A single character string for the type of model. The only possible value for this

model is "partition”.

engine A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "stats".

num_clusters Positive integer, number of clusters in model (optional).

cut_height Positive double, height at which to cut dendrogram to obtain cluster assignments
(only used if num_clusters is NULL)

linkage_method the agglomeration method to be used. This should be (an unambiguous abbrevi-
ation of) one of "ward.D", "ward.D2", "single”, "complete”, "average" (=
UPGMA), "mcquitty” (= WPGMA), "median” (= WPGMC) or "centroid”

(= UPGMC).

18

Details

k _means

What does it mean to predict?:

To predict the cluster assignment for a new observation, we find the closest cluster. How we
measure “closeness” is dependent on the specified type of linkage in the model:

Value

single linkage: The new observation is assigned to the same cluster as its nearest observation
from the training data.

complete linkage: The new observation is assigned to the cluster with the smallest maximum
distances between training observations and the new observation.

average linkage: The new observation is assigned to the cluster with the smallest average
distances between training observations and the new observation.

centroid method: The new observation is assigned to the cluster with the closest centroid, as
in prediction for k_means.

Ward’s method: The new observation is assigned to the cluster with the smallest increase in
error sum of squares (ESS) due to the new addition. The ESS is computed as the sum of
squared distances between observations in a cluster, and the centroid of the cluster.

A hier_clust cluster specification.

Examples

Show all engines
modelenv::get_from_env("hier_clust")

hier_clust()

k_means K-Means

Description

k_means() defines a model that fits clusters based on distances to a number of centers. This defini-
tion doesn’t just include K-means, but includes models like K-prototypes.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

e stats: Classical K-means

¢ ClusterR: Classical K-means
¢ klaR: K-Modes
¢ clustMixType: K-prototypes

Usage

k_means(mode = "partition”, engine = "stats"”, num_clusters = NULL)

linkage_method 19

Arguments
mode A single character string for the type of model. The only possible value for this
model is "partition”.
engine A single character string specifying what computational engine to use for fitting.

Possible engines are listed below. The default for this model is "stats".

num_clusters Positive integer, number of clusters in model.

Details

What does it mean to predict?:
For a K-means model, each cluster is defined by a location in the predictor space. Therefore,

prediction in tidyclust is defined by calculating which cluster centroid an observation is closest
too.

Value

A k_means cluster specification.

Examples

Show all engines
modelenv: :get_from_env("k_means")

k_means ()

linkage_method The agglomeration Linkage method

Description

The agglomeration Linkage method

Usage
linkage_method(values = values_linkage_method)
values_linkage_method

Arguments

values A character string of possible values. See 1inkage_methods in examples below.

Format

An object of class character of length 8.

20 new_cluster _metric

Details

This parameter is used in tidyclust models for hier_clust().

Examples

values_linkage_method
linkage_method()

min_grid.cluster_spec Determine the minimum set of model fits

Description

Determine the minimum set of model fits

Usage
S3 method for class 'cluster_spec'
min_grid(x, grid, ...)
Arguments
X A cluster specification.
grid A tibble with tuning parameter combinations.

Not currently used.

Value

A tibble with the minimum tuning parameters to fit and an additional list column with the parameter
combinations used for prediction.

new_cluster_metric Construct a new clustering metric function

Description

These functions provide convenient wrappers to create the one type of metric functions in celrry:
clustering metrics. They add a metric-specific class to fn. These features are used by cluster_metric_set()
and by tune_cluster () when tuning.

Usage

new_cluster_metric(fn, direction)

predict.cluster_fit 21

Arguments
fn A function.
direction A string. One of:
* "maximize”
e "minimize”
° "Zel’"O"
Value

A cluster_metric object.

predict.cluster_fit Model predictions

Description

Apply to a model to create different types of predictions. predict() can be used for all types of
models and uses the "type" argument for more specificity.

Usage

S3 method for class 'cluster_fit'
predict(object, new_data, type = NULL, opts = list(), ...)

S3 method for class 'cluster_fit'

predict_raw(object, new_data, opts = list(), ...)
Arguments
object An object of class cluster_fit.
new_data A rectangular data object, such as a data frame.
type A single character value or NULL. Possible values are "cluster", or "raw". When

NULL, predict () will choose an appropriate value based on the model’s mode.

opts A list of optional arguments to the underlying predict function that will be used
when type = "raw". The list should not include options for the model object or
the new data being predicted.

Arguments to the underlying model’s prediction function cannot be passed here
(see opts).

22 predict.cluster_fit

Details
If "type" is not supplied to predict(), then a choice is made:
* type = "cluster” for clustering models

predict() is designed to provide a tidy result (see "Value" section below) in a tibble output format.

The ordering of the clusters is such that the first observation in the training data set will be in cluster
1, the next observation that doesn’t belong to cluster 1 will be in cluster 2, and so on and forth. As
the ordering of clustering doesn’t matter, this is done to avoid identical sets of clustering having
different labels if fit multiple times.

What does it mean to predict?:

Prediction is not always formally defined for clustering models. Therefore, each cluster_spec
method will have their own section on how "prediction” is interpreted, and done if implemented.

Related functions:
predict() when used with tidyclust objects is a part of a trio of functions doing similar things:

e extract_cluster_assignment() returns the cluster assignments of the training observa-
tions

e extract_centroids() returns the location of the centroids
e predict() returns the cluster a new observation belongs to

Value

With the exception of type = "raw", the results of predict.cluster_fit() will be a tibble as
many rows in the output as there are rows in new_data and the column names will be predictable.

For clustering results the tibble will have a .pred_cluster column.

Using type = "raw” with predict.cluster_fit() will return the unadulterated results of the pre-
diction function.

When the model fit failed and the error was captured, the predict () function will return the same
structure as above but filled with missing values. This does not currently work for multivariate
models.

See Also

extract_cluster_assignment() extract_centroids()

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

kmeans_fit %>%
predict(new_data = mtcars)

Some models such as “hier_clust()™ fits in such a way that you can specify

prep_data_dist 23

the number of clusters after the model is fit
hclust_spec <- hier_clust() %>%
set_engine("stats")

hclust_fit <- fit(hclust_spec, ~., mtcars)

hclust_fit %>%
predict(new_data = mtcars[4:6,], num_clusters = 2)

hclust_fit %>%
predict(new_data = mtcars[4:6,], cut_height = 250)

prep_data_dist Prepares data and distance matrices for metric calculation

Description

Prepares data and distance matrices for metric calculation

Usage
prep_data_dist(
object,
new_data = NULL,
dists = NULL,
dist_fun = philentropy::distance
)
Arguments
object A fitted cluster_spec object.
new_data A dataset to calculate predictions on. If NULL, the trained cluster assignments
from the fitted object are used.
dists A distance matrix for the data. If NULL, distance is computed on new_data using
the stats: :dist() function.
dist_fun A custom distance functions.
Value

A list

24 reconcile_clusterings_mapping

reconcile_clusterings_mapping
Relabels clusters to match another cluster assignment

Description
When forcing one-to-one, the user needs to decide what to prioritize:

* "accuracy": optimize raw count of all observations with the same label across the two assign-
ments

 "precision": optimize the average percent of each alt cluster that matches the corresponding
primary cluster

Usage
reconcile_clusterings_mapping(
primary,
alternative,
one_to_one = TRUE,
optimize = "accuracy”
)
Arguments
primary A vector containing cluster labels, to be matched
alternative Another vector containing cluster labels, to be changed
one_to_one Boolean; should each alt cluster match only one primary cluster?
optimize One of "accuracy" or "precision”; see description.
Details

Retains the cluster labels of the primary assignment, and relabel the alternate assignment to match
as closely as possible. The user must decide whether clusters are forced to be "one-to-one"; that is,
are we allowed to assign multiple labels from the alternate assignment to the same primary label?

Value

A tibble with 3 columns; primary, alt, alt_recoded

Examples

factorl <- c("Apple”, "Apple”, "Carrot”, "Carrot”, "Banana”, "Banana")
factor2 <- c("Dog", "Dog", "Cat", "Dog", "Fish", "Fish")
reconcile_clusterings_mapping(factorl, factor2)

factorl <- c("Apple”, "Apple"”, "Carrot”, "Carrot”, "Banana", "Banana")
factor2 <- c("Dog"”, "Dog", "Cat", "Dog", "Fish"”, "Parrot")

set_args.cluster_spec 25

reconcile_clusterings_mapping(factorl, factor2, one_to_one = FALSE)

set_args.cluster_spec Change arguments of a cluster specification

Description

Change arguments of a cluster specification

Usage
S3 method for class 'cluster_spec'
set_args(object, ...)

Arguments
object A model specification.

One or more named model arguments.

Value

An updated cluster_spec object.

set_engine.cluster_spec
Change engine of a cluster specification

Description

Change engine of a cluster specification

Usage
S3 method for class 'cluster_spec'
set_engine(object, engine, ...)
Arguments
object A model specification.
engine A character string for the software that should be used to fit the model. This is
highly dependent on the type of model (e.g. linear regression, random forest,
etc.).

Any optional arguments associated with the chosen computational engine. These
are captured as quosures and can be tuned with tune().

26 silhouette

Value

An updated cluster_spec object.

set_mode.cluster_spec Change mode of a cluster specification

Description

Change mode of a cluster specification

Usage
S3 method for class 'cluster_spec'
set_mode(object, mode, ...)
Arguments
object A model specification.
mode A character string for the model type (e.g. "classification" or "regression")

One or more named model arguments.

Value

An updated cluster_spec object.

silhouette Measures silhouette between clusters

Description

Measures silhouette between clusters

Usage
silhouette(
object,
new_data = NULL,
dists = NULL,

dist_fun = philentropy::distance
)

silhouette_avg

Arguments
object A fitted tidyclust model
new_data A dataset to predict on. If NULL, uses trained clustering.
dists A distance matrix. Used if new_data is NULL.
dist_fun A function for calculating distances between observations.
clidean distance on processed data.
Details

silhouette_avg() is the corresponding cluster metric function that returns the average of the

values given by silhouette().

Value

A tibble giving the silhouette for each observation.

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)
dists <- mtcars %>%
as.matrix() %>%

dist()

silhouette(kmeans_fit, dists = dists)

Defaults to Eu-

silhouette_avg Measures average silhouette across all observations

Description

Measures average silhouette across all observations
Usage
silhouette_avg(object, ...)

S3 method for class 'cluster_spec'
silhouette_avg(object, ...)

S3 method for class 'cluster_fit'
silhouette_avg(object, new_data = NULL, dists = NULL, dist_fun =

S3 method for class 'workflow'

NULL,

.)

28 silhouette_avg

silhouette_avg(object, new_data = NULL, dists = NULL, dist_fun = NULL, ...)

silhouette_avg_vec(

object,
new_data = NULL,
dists = NULL,

dist_fun = philentropy::distance,

)
Arguments
object A fitted kmeans tidyclust model
Other arguments passed to methods.
new_data A dataset to predict on. If NULL, uses trained clustering.
dists A distance matrix. Used if new_data is NULL.
dist_fun A function for calculating distances between observations. Defaults to Eu-
clidean distance on processed data.
Details

Not to be confused with silhouette() that returns a tibble with silhouette for each observation.

Value

A double; the average silhouette.

See Also

Other cluster metric: sse_ratio(), sse_total(), sse_within_total()

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)
dists <- mtcars %>%

as.matrix() %>%

dist()

silhouette_avg(kmeans_fit, dists = dists)

silhouette_avg_vec(kmeans_fit, dists = dists)

sse_ratio

29

sse_ratio Compute the ratio of the WSS to the total SSE

Description

Compute the ratio of the WSS to the total SSE

Usage

sse_ratio(object, ...)

S3 method for class 'cluster_spec'
sse_ratio(object, ...)

S3 method for class 'cluster_fit'
sse_ratio(object, new_data = NULL, dist_fun =

S3 method for class 'workflow'
sse_ratio(object, new_data = NULL, dist_fun =

sse_ratio_vec(
object,
new_data = NULL,
dist_fun = function(x, y) {
philentropy::dist_many_many(x, y, method
"euclidean")

b

Arguments

object A fitted kmeans tidyclust model

Other arguments passed to methods.

NULL,

NULL,

.2

)

new_data A dataset to predict on. If NULL, uses trained clustering.

dist_fun A function for calculating distances to centroids. Defaults to Euclidean distance

on processed data.

Value

A tibble with 3 columns; .metric, .estimator, and .estimate.

See Also

Other cluster metric: silhouette_avg(), sse_total(), sse_within_total()

30

Examples

sse_total

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

sse_ratio(kmeans_fit)

sse_ratio_vec(kmeans_fit)

sse_total

Compute the total sum of squares

Description

Compute the total sum of squares

Usage

sse_total(object, ...)

S3 method for class 'cluster_spec'
sse_total(object, ...)

S3 method for class 'cluster_fit'

sse_total(object, new_data = NULL, dist_fun = NULL, ...)
S3 method for class 'workflow'
sse_total(object, new_data = NULL, dist_fun = NULL, ...)

sse_total_vec(
object,

new_data = NULL,
dist_fun = function(x, y) {

philentropy: :dist_many_many(x, y, method

"euclidean”)

b

Arguments

object

new_data
dist_fun

A fitted kmeans tidyclust model
Other arguments passed to methods.
A dataset to predict on. If NULL, uses trained clustering.

A function for calculating distances to centroids. Defaults to Euclidean distance
on processed data.

sse_within 31

Value

A tibble with 3 columns; .metric, .estimator, and .estimate.

See Also

Other cluster metric: silhouette_avg(), sse_ratio(), sse_within_total()

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)
sse_total (kmeans_fit)

sse_total_vec(kmeans_fit)

sse_within Calculates Sum of Squared Error in each cluster

Description

Calculates Sum of Squared Error in each cluster

Usage

sse_within(
object,
new_data = NULL,
dist_fun = function(x, y) {
philentropy: :dist_many_many(x, y, method =
"euclidean”)

}
)
Arguments
object A fitted kmeans tidyclust model
new_data A dataset to predict on. If NULL, uses trained clustering.
dist_fun A function for calculating distances to centroids. Defaults to Euclidean distance
on processed data.
Details

sse_within_total() is the corresponding cluster metric function that returns the sum of the values
given by sse_within().

32 sse_within_total

Value

A tibble with two columns, the cluster name and the SSE within that cluster.

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)

sse_within(kmeans_fit)

sse_within_total Compute the sum of within-cluster SSE

Description

Compute the sum of within-cluster SSE

Usage

sse_within_total(object, ...)

S3 method for class 'cluster_spec'
sse_within_total(object, ...)

S3 method for class 'cluster_fit'

sse_within_total(object, new_data = NULL, dist_fun = NULL, ...)
S3 method for class 'workflow'
sse_within_total(object, new_data = NULL, dist_fun = NULL, ...)

sse_within_total_vec(
object,
new_data = NULL,
dist_fun = function(x, y) {
philentropy::dist_many_many(x, y, method =
"euclidean")

3

Arguments

object A fitted kmeans tidyclust model
Other arguments passed to methods.

new_data A dataset to predict on. If NULL, uses trained clustering.

tidy.cluster._fit 33

dist_fun A function for calculating distances to centroids. Defaults to Euclidean distance
on processed data.

Details

Not to be confused with sse_within() that returns a tibble with within-cluster SSE, one row for
each cluster.

Value

A tibble with 3 columns; .metric, .estimator, and .estimate.

See Also

Other cluster metric: silhouette_avg(), sse_ratio(), sse_total()

Examples

kmeans_spec <- k_means(num_clusters = 5) %>%
set_engine("stats")

kmeans_fit <- fit(kmeans_spec, ~., mtcars)
sse_within_total(kmeans_fit)

sse_within_total_vec(kmeans_fit)

tidy.cluster_fit Turn a tidyclust model object into a tidy tibble

Description

This method tidies the model in a tidyclust model object, if it exists.

Usage
S3 method for class 'cluster_fit'
tidy(x, ...)
Arguments
X An object to be converted into a tidy tibble::tibble().
Additional arguments to tidying method.
Value

a tibble

34 translate_tidyclust

translate_tidyclust Resolve a Model Specification for a Computational Engine

Description

translate_tidyclust() will translate_tidyclust a model specification into a code object that is
specific to a particular engine (e.g. R package). It translate tidyclust generic parameters to their
counterparts.

Usage

translate_tidyclust(x, ...)

Default S3 method:

translate_tidyclust(x, engine = x$engine, ...)
Arguments
X A model specification.

Not currently used.

engine The computational engine for the model (see ?set_engine).

Details

translate_tidyclust() produces a template call that lacks the specific argument values (such
as data, etc). These are filled in once fit() is called with the specifics of the data for the
model. The call may also include tune() arguments if these are in the specification. To han-
dle the tune() arguments, you need to use the tune package. For more information see https:
//www.tidymodels.org/start/tuning/

It does contain the resolved argument names that are specific to the model fitting function/engine.

This function can be useful when you need to understand how tidyclust goes from a generic
model specific to a model fitting function.

Note: this function is used internally and users should only use it to understand what the underlying
syntax would be. It should not be used to modify the cluster specification.

Value

Prints translated code.

https://tune.tidymodels.org/
https://www.tidymodels.org/start/tuning/
https://www.tidymodels.org/start/tuning/

tune_cluster 35

tune_cluster Model tuning via grid search

Description

tune_cluster () computes a set of performance metrics (e.g. accuracy or RMSE) for a pre-defined
set of tuning parameters that correspond to a model or recipe across one or more resamples of the
data.

Usage

tune_cluster(object, ...)

S3 method for class 'cluster_spec'
tune_cluster(

object,

preprocessor,

resamples,

param_info = NULL,

grid = 10,

metrics = NULL,

control = tune::control_grid()

S3 method for class 'workflow'
tune_cluster(

object,

resamples,

param_info = NULL,

grid = 10,

metrics = NULL,

control = tune::control_grid()

Arguments

object A tidyclust model specification or a workflows: :workflow().

Not currently used.
preprocessor A traditional model formula or a recipe created using recipes: :recipe().
resamples An rset() object.

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

36 update.hier_clust

grid A data frame of tuning combinations or a positive integer. The data frame should
have columns for each parameter being tuned and rows for tuning parameter
candidates. An integer denotes the number of candidate parameter sets to be
created automatically.

metrics A cluster_metric_set() or NULL.
control An object used to modify the tuning process. Defaults to tune: :control_grid().
Value

An updated version of resamples with extra list columns for .metrics and .notes (optional
columns are .predictions and .extracts). .notes contains warnings and errors that occur dur-
ing execution.

Examples

library(recipes)
library(rsample)
library(workflows)
library(tune)

rec_spec <- recipe(~., data = mtcars) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

kmeans_spec <- k_means(num_clusters = tune())
wflow <- workflow() %>%

add_recipe(rec_spec) %>%

add_model (kmeans_spec)

grid <- tibble(num_clusters = 1:3)

set.seed(4400)
folds <- vfold_cv(mtcars, v

2)

res <- tune_cluster(

wflow,
resamples = folds,
grid = grid

)

res

collect_metrics(res)

update.hier_clust Update a cluster specification

update.hier_clust 37

Description

If parameters of a cluster specification need to be modified, update() can be used in lieu of recre-
ating the object from scratch.

Usage

S3 method for class 'hier_clust'
update(

object,

parameters = NULL,

num_clusters = NULL,

cut_height = NULL,

linkage_method = NULL,

fresh = FALSE,

)

S3 method for class 'k_means'

update(object, parameters = NULL, num_clusters = NULL, fresh = FALSE, ...)
Arguments

object A cluster specification.

parameters A 1-row tibble or named list with main parameters to update. Use either parameters

or the main arguments directly when updating. If the main arguments are used,
these will supersede the values in parameters. Also, using engine arguments in
this object will result in an error.

num_clusters Positive integer, number of clusters in model.

cut_height Positive double, height at which to cut dendrogram to obtain cluster assignments
(only used if num_clusters is NULL)

linkage_method the agglomeration method to be used. This should be (an unambiguous abbrevi-

n on n on

ation of) one of "ward.D", "ward.D2", "single”, "complete”, "average" (=
UPGMA), "mcquitty” (= WPGMA), "median” (= WPGMC) or "centroid”
(= UPGMC).

fresh A logical for whether the arguments should be modified in-place or replaced
wholesale.

Not used for update().

Value

An updated cluster specification.

Examples

kmeans_spec <- k_means(num_clusters = 5)
kmeans_spec
update(kmeans_spec, num_clusters = 1)

38

update(kmeans_spec, num_clusters = 1, fresh
param_values <- tibble::tibble(num_clusters

kmeans_spec %>% update(param_values)

TRUE)

10)

update.hier_clust

Index

* cluster metric
silhouette_avg, 27
sse_ratio, 29
sse_total, 30
sse_within_total, 32

+ datasets
linkage_method, 19

augment.cluster_fit, 2

cluster_fit, 3,3, 9, 15,21

cluster_metric_set, 4

cluster_metric_set(), 20, 36

cluster_spec, 3,4,5,9,11, 12, 14, 15, 22
23,25, 26

ClusterR, I8

clustMixType, I8

control_cluster, 7

control_cluster(), 14, 15

cut_height, 8

dials::parameters(), 35

extract-tidyclust, 8
extract_centroids, 9
extract_centroids(), 10-12, 22
extract_cluster_assignment, 11
extract_cluster_assignment(), 10, 11, 22
extract_fit_engine.cluster_fit
(extract-tidyclust), 8
extract_fit_summary, 12
extract_parameter_set_dials.cluster_spec
(extract-tidyclust), 8

finalize_model_tidyclust, 13

finalize_workflow_tidyclust
(finalize_model_tidyclust), 13

fit.cluster_spec, 14

fit.cluster_spec(), 3,6, 7

fit_xy.cluster_spec (fit.cluster_spec),
14

39

fit_xy.cluster_spec(), 3,6

get_centroid_dists, 16
glance.cluster_fit, 16

hardhat: : frequency_weights(), 14
hardhat: : importance_weights(), /4
hardhat::is_case_weights(), 14
hier_clust, 17
hier_clust(), 3, 5, 10, 11

k_means, 18
k_means(), 3,5, 8, 10, 11
klaR, 18

linkage_method, 19
min_grid.cluster_spec, 20
new_cluster_metric, 20

predict(), 9-11, 22
predict.cluster_fit, 21
predict.cluster_fit(), 10, 12
predict_raw.cluster_fit
(predict.cluster_fit), 21
prep_data_dist, 23

recipes: :recipe(), 35
reconcile_clusterings_mapping, 24

set_args.cluster_spec, 25
set_engine(), 14, 15
set_engine.cluster_spec, 25
set_mode.cluster_spec, 26
silhouette, 26

silhouette(), 28
silhouette_avg, 27, 29, 31, 33
silhouette_avg(), 4, 27
silhouette_avg_vec (silhouette_avg), 27
sse_ratio, 28, 29, 31, 33

40

sse_ratio(), 4
sse_ratio_vec (sse_ratio), 29
sse_total, 28, 29, 30, 33
sse_total(), 4
sse_total_vec (sse_total), 30
sse_within, 31
sse_within(), 33
sse_within_total, 28, 29, 31, 32
sse_within_total(), 31
sse_within_total_vec
(sse_within_total), 32
stats, 17, 18
stats::contr.treatment(), 15

tibble::tibble(), 33
tidy.cluster_fit, 33

tidyclust_update (update.hier_clust), 36

translate_tidyclust, 34
tune_cluster, 35
tune_cluster(), 5, 20, 35

update.hier_clust, 36

update.k_means (update.hier_clust), 36

values_linkage_method (linkage_method),

19

workflows: :workflow(), 35

INDEX

	augment.cluster_fit
	cluster_fit
	cluster_metric_set
	cluster_spec
	control_cluster
	cut_height
	extract-tidyclust
	extract_centroids
	extract_cluster_assignment
	extract_fit_summary
	finalize_model_tidyclust
	fit.cluster_spec
	get_centroid_dists
	glance.cluster_fit
	hier_clust
	k_means
	linkage_method
	min_grid.cluster_spec
	new_cluster_metric
	predict.cluster_fit
	prep_data_dist
	reconcile_clusterings_mapping
	set_args.cluster_spec
	set_engine.cluster_spec
	set_mode.cluster_spec
	silhouette
	silhouette_avg
	sse_ratio
	sse_total
	sse_within
	sse_within_total
	tidy.cluster_fit
	translate_tidyclust
	tune_cluster
	update.hier_clust
	Index

