Package ‘tictoc’
March 18, 2024

Title Functions for Timing R Scripts, as Well as Implementations of
“*Stack" and “*StackList" Structures

Version 1.2.1

Author Sergei [zrailev

Maintainer Sergei [zrailev <sizrailev@jabiruventures.com>

Description Code execution timing functions 'tic' and 'toc' that
can be nested. One can record all timings while a complex script is
running, and examine the values later. It is also possible to instrument
the timing calls with custom callbacks. In addition, this package provides
class 'Stack’, implemented as a vector, and class 'StackList', which is a
stack implemented as a
list, both of which support operations 'push’, 'pop’, 'first_element',
'last_element' and 'clear’.

URL https://github.com/jabiru/tictoc

Depends R (>=2.15), methods

License Apache License (== 2.0) | file LICENSE

Copyright Copyright (C) Collective, Inc. | file inst/ COPYRIGHTS

Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-03-18 05:10:02 UTC

R topics documented:

Stack and StackList e
T o o e e
HCLOC . . v o e e e e e

Index

https://github.com/jabiru/tictoc

2 Stack and StackList

Stack and StackList Stack and StackList classes and methods

Description

push - Append an element.

pop - Remove and return the last element.
clear - Remove all elements.

shift - Remove and return the first element.

first_element - Return the first element. We can’t use first because it’s taken by the dplyr
package and is not an S3 method.

last_element - Return the last element. We can’t use 1last because it’s taken by the dplyr package
and is not an S3 method.

size - Return the number of elements.
as.Stack - Creates a new Stack from (typically, vector) s.
as.StackList - Creates a new StackList from (typically, list) s.

Stack() - Creates and keeps a stack of items of the same type, implemented as an R vector. The
type is determined by the first push operation.

StackList() - Creates and keeps a list of items of the same type, implemented as an R list. The
type is determined by the first push operation.

Usage

push(x, value)
pop(x)

clear(x)
shift(x)
first_element(x)
last_element(x)
size(x)
as.Stack(s)
as.StackList(s)
Stack()

StackList ()

tic 3

Arguments
X A Stack or StackList object.
value Value to append.
s A structure to be converted to a Stack or StackList.
tic Timing utilities.
Description

tic - Starts the timer and stores the start time and the message on the stack.

toc - Notes the current timer and computes elapsed time since the matching call to tic(). When
quiet is FALSE, prints the associated message and the elapsed time.

toc.outmsg - Formats a message for pretty printing. Redefine this for different formatting.
tic.clearlog - Clears the tic/toc log.

tic.clear - Clears the tic/toc stack. This could be useful in cases when because of an error the
closing toc() calls never get executed.

tic.log - Returns log messages from calls to tic/toc since the last call to tic.clearlog.

Usage
tic(msg = NULL, quiet = TRUE, func.tic = NULL, ...)
toc(log = FALSE, quiet = FALSE, func.toc = toc.outmsg, ...)

toc.outmsg(tic, toc, msg)
tic.clearlog()
tic.clear()

tic.log(format = TRUE)

Arguments
msg - a text string associated with the timer. It gets printed on a call to toc()
quiet When TRUE, doesn’t print any messages
func.tic Function producing the formatted message with a signature f(tic, toc, msg,

...). Here, parameters tic and toc are the elapsed process times in seconds,
so the time elapsed between the tic() and toc() calls is computed by toc -
tic. msg is the string passed to the tic() call.

The other parameters that are passed to func. tic and func. toc.

log - When TRUE, pushes the timings and the message in a list of recorded timings.

func. toc

tic
toc

format

Value

tic

Function producing the formatted message with a signature f(tic, toc, msg,
...). Here, parameters tic and toc are the elapsed process times in seconds,
so the time elapsed between the tic() and toc() calls is computed by toc -
tic. msg is the string passed to the tic() call.

Time from the call to tic() (proc.time()["elapsed”])
Time from the call to toc() (proc.time()["elapsed”])

When true, tic.log returns a list of formatted toc() output, otherwise, returns
the raw results.

tic returns the timestamp (invisible).

toc returns an (invisible) list containing the timestamps tic, toc, and the message msg.

toc. outmsg returns formatted message.

tic.log returns a list of formatted messages (format = TRUE) or a list of lists containing the times-
tamps and unformatted messages from prior calls to tic/toc.

See Also

tictoc, Stack
Examples
Not run:

Basic use case
tic()

print("Do something...")

Sys.sleep(1)
toc()

1.034 sec elapsed

Inline timing example, similar to system.time()

tic(); for(i in 1

:1000000) { j =i / 2 }; toc()

0.527 sec elapsed

Timing multiple steps

tic("step 1")

print(”"Do something...")

Sys.sleep(1)
toc()

step 1: 1.005 sec elapsed

tic("step 2")

print(”"Do something...")

Sys.sleep(1)
toc()

step 2: 1.004 sec elapsed

tic

Timing nested code
tic("outer"”)
Sys.sleep(1)
tic("middle")
Sys.sleep(2)
tic("inner")
Sys.sleep(3)
toc()
inner: 3.004 sec elapsed
toc()
middle: 5.008 sec elapsed
toc()
outer: 6.016 sec elapsed

Timing in a loop and analyzing the results later using tic.log().
tic.clearlog()
for (x in 1:10)

{

tic(x)

Sys.sleep(1)

toc(log = TRUE, quiet = TRUE)
}

log.txt <- tic.log(format = TRUE)
log.1st <- tic.log(format = FALSE)
tic.clearlog()

timings <- unlist(lapply(log.lst, function(x) x$toc - x$tic))
mean(timings)

[1] 1.001
writeLines(unlist(log.txt))
1: 1.002 sec elapsed

sec elapsed

.002 sec elapsed

.001 sec elapsed

.001 sec elapsed

.001 sec elapsed

.001 sec elapsed

.001 sec elapsed

.001 sec elapsed

0: 1 sec elapsed

e E E E E R
J

Using custom callbacks in tic/toc
my.msg.tic <- function(tic, msg)

{
if (is.null(msg) || is.na(msg) || length(msg) == @)
{
outmsg <- paste@(round(toc - tic, 3), " seconds elapsed”)
}
else
{
outmsg <- paste@(”Starting ", msg, "...")
}

outmsg

6 tictoc

}
my.msg.toc <- function(tic, toc, msg, info)
{
if (is.null(msg) || is.na(msg) || length(msg) == @)
{
outmsg <- paste@(round(toc - tic, 3), " seconds elapsed"”)
}
else
{
outmsg <- paste@(info, ": ", msg, ": ",
round(toc - tic, 3), " seconds elapsed"”)
}
outmsg
3

tic("outer”, quiet = FALSE, func.tic = my.msg.tic)
Starting outer...
Sys.sleep(1)
tic("middle”, quiet = FALSE, func.tic = my.msg.tic)
Starting middle...
Sys.sleep(2)
tic("inner"”, quiet = FALSE, func.tic = my.msg.tic)
Sys.sleep(3)
Starting inner...
toc(quiet = FALSE, func.toc = my.msg.toc, info = "INFQ")
INFO: inner: 3.005 seconds elapsed
toc(quiet = FALSE, func.toc = my.msg.toc, info = "INFQ")
INFO: middle: 5.01 seconds elapsed
toc(quiet = FALSE, func.toc = my.msg.toc, info = "INFQ")
INFO: outer: 6.014 seconds elapsed

End(Not run)

tictoc Package tictoc

Description

Functions for timing, as well as implementations of Stack and StackList structures.

Details

The tictoc package provides the timing functions tic and toc that can be nested. It provides an
alternative to system. time () with a different syntax similar to that in another well-known software
package. tic and toc are easy to use, and are especially useful when timing several sections in more
than a few lines of code.

tictoc

In general, calls to tic and toc start the timer when the tic call is made and stop the timer when
the toc call is made, recording the elapsed time between the calls from proc.time. The default
behavior is to print a simple message with the elapsed time in the toc call.

The features include the following:

nesting of the tic and toc calls

suppressing the default output with quiet = TRUE

collecting the timings in user-defined variables

collecting the timings in a log structure provided by the package (see tic.log)
providing a custom message for each tic call

using custom callbacks for the tic and toc calls to redefine the default behavior and/or add
other functionality (such as logging to a database)

In addition, this package provides classes Stack (implemented as a vector) and StackList (a
stack implemented as a list), both of which support operations push, pop, first_element,
last_element, clear and size.

Copyright

Copyright (C) Collective, Inc.; with portions Copyright (C) Jabiru Ventures LLC

License

Apache License, Version 2.0, available at http://www.apache.org/licenses/LICENSE-2.0

URL

http://github.com/jabiru/tictoc

Installation from github

devtools::install_github("”jabiru/tictoc")

Author(s)

Sergei Izrailev

See Also

tic, Stack

Index

* list
tictoc, 6
* profiling
tictoc, 6
* stack
tictoc, 6
* timing
tictoc, 6

as.Stack (Stack and StackList), 2
as.StackList (Stack and StackList), 2

clear (Stack and StackList), 2
first_element (Stack and StackList), 2
last_element (Stack and StackList), 2

pop (Stack and StackList), 2
push (Stack and StackList), 2

shift (Stack and StackList),2
size (Stack and StackList), 2
Stack, 4,7

Stack (Stack and StackList), 2
Stack and StackList, 2
StackList, 7

StackList (Stack and StackList), 2

tic, 3,7
tic.clearlog, 3
tic.log, 7
tictoc, 4, 6

toc (tic), 3

	Stack and StackList
	tic
	tictoc
	Index

