Package ‘threejs’

April 21, 2025
Type Package
Title Interactive 3D Scatter Plots, Networks and Globes

Description Create interactive 3D scatter plots, network plots, and
globes using the 'three.js' visualization library (<https://threejs.org>).

Version 0.3.4
Date 2025-04-19

URL https://bwlewis.github.io/rthreejs/

BugReports https://github.com/bwlewis/rthreejs/issues
License MIT + file LICENSE

Depends R (>=3.0.0), igraph (>= 1.0.0)

Imports htmlwidgets (>= 0.3.2), base64enc, crosstalk, methods, stats
Suggests maps

Enhances knitr, shiny

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author B. W. Lewis [aut, cre, cph],
Three.js authors [cph] (three.js library),
jQuery Foundation [cph] (jQuery library),
Alexey Stukalov [ctb],
Yihui Xie [ctb],
Andreas Briese [ctb],
B. Thieurmel [ctb]

Maintainer B. W. Lewis <blewis@illposed.net>
Repository CRAN
Date/Publication 2025-04-21 14:10:02 UTC

https://threejs.org
https://bwlewis.github.io/rthreejs/
https://github.com/bwlewis/rthreejs/issues

2 threejs-package

Contents
threejs-package L 2
B0 . o v e e e e e e e e 3
flights e 4
8Ol . e 4
globejs e 5
globeOutput e e 8
Sraphjs e e e 9
LeMis e e e e 14
light ambient 14
light_directional e e 15
lines3d e e e e e e e 15
points3d 16
scatterplot3jso L L e 17
TeXIUIE o o o e e e e e e e e e e 22
vertices,scatterplotThree-method 23

Index 24

threejs-package Interactive 3D graphics including point clouds and globes using
three.js and htmlwidgets.
Description

Interactive 3D graphics including point clouds and globes using three.js and htmlwidgets.

Author(s)

Maintainer: B. W. Lewis <blewis@illposed.net> [copyright holder]

Other contributors:

Three.js authors (three.js library) [copyright holder]
jQuery Foundation (jQuery library) [copyright holder]
Alexey Stukalov <astukalov@gmail.com> [contributor]
Yihui Xie <xie@yihui.name> [contributor]

Andreas Briese <ab@edutoolbox.de> [contributor]

B. Thieurmel <bthieurmel@gmail.com> [contributor]

References

https://threejs.org

https://threejs.org

ego 3

See Also
Useful links:

e https://bwlewis.github.io/rthreejs/
* Report bugs at https://github.com/bwlewis/rthreejs/issues

Examples

Not run:

library("shiny")
runApp(system.file("examples/globe”,package="threejs"))
runApp(system.file("examples/scatterplot”,package="threejs"))

See also help for globe.js and scatterplot3.js

End(Not run)

ego Facebook social circles

Description

A facebook social network subgraph obtained from the Stanford SNAP repository.

Usage
data(ego)

Format

An igraph package undirected graph object with 4039 vertices and 88234 edges. The graph includes
a force-directed layout with vertices colored by the cluster_fast_greedy algorithm from the
igraph package.

Source

Stanford SNAP network repository https://snap.stanford.edu/data/facebook_combined.
txt.gz

References

J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012.

https://bwlewis.github.io/rthreejs/
https://github.com/bwlewis/rthreejs/issues
https://snap.stanford.edu/data/facebook_combined.txt.gz
https://snap.stanford.edu/data/facebook_combined.txt.gz

4 gceol

flights Global flight example data from Callum Prentice.

Description

Global flight example data from Callum Prentice. Data are dynamically downloaded from GitHub.

Usage

flights()

Format

A data frame with 34,296 observations of 4 variables: origin_lat, origin_long, dest_lat, and dest_long.

Source

See Callum Prentice https://raw.githubusercontent.com/callumprentice/callumprentice.
github.io/master/apps/flight_stream/js/flights_one.js

gcol A basic internal color format parser

Description

A basic internal color format parser

Usage

gcol(x)

Arguments

X a character-valued color name

Value

a list of 3-hex-digit color values and scalar numeric alpha values

https://raw.githubusercontent.com/callumprentice/callumprentice.github.io/master/apps/flight_stream/js/flights_one.js
https://raw.githubusercontent.com/callumprentice/callumprentice.github.io/master/apps/flight_stream/js/flights_one.js

globejs

globejs

Plot Data on 3D Globes

Description

Plot points, arcs and images on a globe in 3D using Three.js. The globe can be rotated and and

zoomed.

Usage

globejs(
img = system.
lat,
long,
value = 40,

file("images/world. jpg"”, package = "threejs"),

color = "#@Offff",

arcs,

arcsColor = "#99aaff",

arcsHeight =
arcslwd = 1,

arcsOpacity =

atmosphere =
bg = "black”,

0.4,

0.2,
FALSE,

height = NULL,

width = NULL,

elementId = NULL,

Arguments

img
lat
long
value
color

arcs

arcsColor

A character string representing a file path or URI of an image to plot on the
globe surface.

Optional data point decimal latitudes, must be of same length as long (negative
values indicate south, positive north).

Optional data point decimal longitudes, must be of same length as 1at (negative
values indicate west, positive east).

Either a single value indicating the height of all data points, or a vector of values
of the same length as 1at indicating height of each point.

Either a single color value indicating the color of all data points, or a vector of
values of the same length as 1at indicating color of each point.

Optional four-column data frame specifying arcs to plot. The columns of the
data frame, in order, must indicate the starting latitude, starting longitude, end-
ing latitude, and ending longitude.

Either a single color value indicating the color of all arcs, or a vector of values
of the same length as the number of rows of arcs.

6 globejs

arcsHeight A single value between 0 and 1 controlling the height above the globe of each
arc.

arcslLwd Either a single value indicating the line width of all arcs, or a vector of values of
the same length as the number of rows of arcs.

arcsOpacity A single value between 0 and 1 indicating the opacity of all arcs.

atmosphere TRUE enables WebGL atmpsphere effect.

bg Plot background color.

height The container div height.

width The container div width.

elementId Use an explicit element ID for the widget (rather than an automatically generated

one). Useful if you have other JavaScript that needs to explicitly discover and
interact with a specific widget instance.

Additional arguments to pass to the three.js renderer (see below for more infor-
mation on these options).

Value

An htmlwidget object (displayed using the object’s show or print method).

Available rendering options

""bodycolor' The diffuse reflective color of the globe.

"emissive'' The emissive color of the globe object.

"lightcolor'' The color of the ambient light in the scene.

"fov'"' The initial field of view, default is 35.

"rotationlat' The initial globe latitudinal rotation in radians, default is 0.
""rotationlong'' The initial globe longitudinal rotation in radians, default is 0.
""pointsize'’ The numeric size of the points/bars, default is 1.

"renderer'' Manually set the three.js renderer to one of "auto’ or ’canvas’. The canvas renderer
works across a greater variety of viewers and browsers. The default setting of auto’ automat-
ically chooses WebGL rendering if it’s available.

"program' User-supplied JavaScript run on plot initialization

Specify colors with standard color names or hex color representations. The default values (well-
suited to many earth-like map images) are lightcolor = "#aaeeff"”, emissive = "#000000", and
bodycolor = "#ffffff". Larger fov values result in a smaller (zoomed out) globe. The latitude
and longitude rotation values are relative to the center of the map image. Their default values of
zero radians result in the front of the globe corresponding to the center of the flat map image.

Note

The img argument specifies the WebGL texture image to wrap on a sphere. If you plan to plot points
using lat and lon the image must be a plate carree (aka lat/long) equirectangular map projection;
see https://en.wikipedia.org/wiki/Equirectangular_projection for details. Lat/long maps
are commonly found for most planetary bodies in the solar system, and are also easily generated
directly in R (see the references and examples below).

https://en.wikipedia.org/wiki/Equirectangular_projection

globejs 7

References

The three.js project https://threejs.org. (The corresponding three.js javascript file is in system.file("htmlwidgets/g:

An excellent overview of available map coordinate reference systems (PDF): https://www.nceas.
ucsb.edu/sites/default/files/2020-04/0verviewCoordinateReferenceSystems.pdf.

Examples

Not run:

Plot flights to frequent destinations from Callum Prentice's

global flight data,

http://callumprentice.github.io/apps/flight_stream/index.html

f <- flights()

Approximate locations as factors

dest <- factor(sprintf("%.2f:%.2f", f[,3]1, f[,41))

A table of destination frequencies

freq <- sort(table(dest), decreasing=TRUE)

The most frequent destinations in these data, possibly hub airports?

frequent_destinations <- names(freq)[1:10]

Subset the flight data by destination frequency

idx <- dest %in% frequent_destinations

frequent_flights <- f[idx, 1]

Lat/long and counts of frequent flights

11 <- unique(frequent_flights[, 3:41)

Plot frequent destinations as bars, and the flights to and from

them as arcs. Adjust arc width and color by frequency.

globejs(lat=11[, 11, long=11[, 2], arcs=frequent_flights,
bodycolor="#aaaaff", arcsHeight=0.3, arcsLwd=2,
arcsColor="#ffffe@0", arcsOpacity=0.15,
atmosphere=TRUE, color="#00aaff", pointsize=0.5)

End(Not run)

Not run:

Plot populous world cities from the maps package.

library(threejs)

library(maps)

data(world.cities, package="maps")

cities <- world.cities[order(world.cities$pop, decreasing=TRUE)[1:1000],]

value <- 100 * cities$pop / max(cities$pop)

col <- colorRampPalette(c("cyan”, "lightgreen"))(10)[floor(10 * value/100) + 1]
globejs(lat=cities$lat, long=cities$long, value=value, color=col, atmosphere=TRUE)

Plot the data on the moon:
moon <- system.file("images/moon.jpg", package="threejs")
globejs(img=moon, bodycolor="#555555", lightcolor="#aaaaaa",
lat=cities$lat, long=cities$long,
value=value, color=col)

Using global plots from the maptools, rworldmap, or sp packages.

Instead of using ready-made images of the earth, we can use
many R spatial imaging packages to produce globe images

https://threejs.org
https://www.nceas.ucsb.edu/sites/default/files/2020-04/OverviewCoordinateReferenceSystems.pdf
https://www.nceas.ucsb.edu/sites/default/files/2020-04/OverviewCoordinateReferenceSystems.pdf

8 globeOutput

dynamically. With a little extra effort you can build globes with total
control over how they are plotted.

library(maptools)
library(threejs)
data(wrld_simpl)

bgcolor <- "#000025"
earth <- tempfile(fileext=".jpg")

NOTE: Use antialiasing to smooth border boundary lines. But! Set the jpeg
background color to the globe background color to avoid a visible aliasing
effect at the the plot edges.

jpeg(earth, width=2048, height=1024, quality=100, bg=bgcolor, antialias="default")
par(mar = c(0,0,0,0), pin = c(4,2), pty = "m", xaxs = "i",
xaxt = "n", xpd = FALSE, yaxs = "i", bty = "n", yaxt = "n")
plot(wrld_simpl, col="black", bg=bgcolor, border="cyan”, ann=FALSE,
setParUsrBB=TRUE)
dev.off()

globejs(earth)

A shiny example:
shiny: :runApp(system.file("examples/globe”,package="threejs"))

End(Not run)

See http://bwlewis.github.io/rthreejs for additional examples.

globeOutput Shiny bindings for threejs widgets

Description

Output and render functions for using threejs widgets within Shiny applications and interactive Rmd
documents.

Usage

globeOutput(outputld, width = "100%", height = "600px")
renderGlobe(expr, env = parent.frame(), quoted = FALSE)
scatterplotThreeOutput (outputId, width = "100%", height = "500px")

renderScatterplotThree(expr, env = parent.frame(), quoted = FALSE)

graphjs

Arguments

outputlId
width, height

output variable to read from

Must be a valid CSS unit (like "100%", "400px", "auto") or a number, which
will be coerced to a string and have "px" appended.

expr An expression that generates threejs graphics.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.
graphjs Interactive 3D Graph Visualization
Description

Make interactive 3D plots of igraph objects.

Usage

graphjs(
g,
layout,

vertex.color,
vertex.size,
vertex.shape,
vertex.label,
edge.color,
edge.width,
edge.alpha,
main = "",

bg = "white”,
width = NULL,

height = NULL,
elementId = NULL,

Arguments

g

layout
vertex.color
vertex.size
vertex.shape

vertex.label

an igraph graph object or a list of igraph objects (see notes)

optional graph layout or list of layouts (see notes)

optional vertex color or vector of colors as long as the number of vertices in g
optional vertex size or vector of sizes

optional vertex shape or vector of shapes

optional mouse-over vertex label or vector of labels

10 graphjs

edge.color optional edge color or vector of colors as long as the number of edges in g
edge.width optional edge width (single scalar value, see notes)

edge.alpha optional single numeric edge transparency value

main plot title text

bg plot background color

width the widget container div width in pixels

height the widget container div height in pixels

elementId Use an explicit element ID for the widget (rather than an automatically generated

one). Useful if you have other JavaScript that needs to explicitly discover and
interact with a specific widget instance.

optional additional arguments passed to scatterplot3js

Value

An htmlwidget object that is displayed using the object’s show or print method. (If you don’t see
your widget plot, try printing it with the print function.)

Interacting with the plot

Press and hold the left mouse button, or touch or trackpad equivalent, and move the mouse to rotate
the plot. Press and hold the right mouse button to pan. Use the mouse scroll wheel to zoom. If
vertex.labels are specified (see below), moving the mouse pointer over a point will display the
label. Altenatively use vertex.shape to plot character names as shown in the examples below. Set
the optional experimental use.orbitcontrols=TRUE argument to use a more CPU-efficient but
somewhat less fluid mouse/touch interface.

Layout options

Use the 1ayout parameter to control the visualization layout by supplying either a three-column ma-
trix of vertex x, y, z coordinates, or a function that returns such a layout. The igraph layout_with_fr
force-directed layout is used by default (note that only 3D layouts are supported). Also see the ani-
mation section below.

Vertex options

Optional parameters beginning with vertex. represent a subset of the igraph package vertex visual-
ization options and work similarly, see igraph.plotting. Vertex shapes in graphjs act somewhat
differently, and are mapped to the pch option in scatterplot3js. In particular, pch character
symbols or even short text strings may be specified. The vertex.label option enables a mouse-
over label display instead of plotting lables directly near the vertices. (Consider using the text pch
options for that instead.)

Edge options

Optional parameters beginning with edge. represent a subset of the igraph edge visualization op-
tions and work similarly as the vertex. options above. The current version of the package only
supports uniform edge widths specified by a single scalar value. This choice was made for perfor-
mance reasons to support large visualizations.

graphjs 11

Graph animation

Specifying a list of three-column layout matrices in layout displays a linear interpolation from one
layout to the next, providing a simple mechanism for graph animation. Each layout must have the
same number of rows as the number of vertices in the graph.

Specify the optional fpl (frames per layout) parameter to control the number of interpolating ani-
mation frames between layouts. See the examples.

Optionally specify a list of graph objects in g to vary the displayed edges and edge colors from one
layout to the next, with the restriction that each graph object must refer to a uniform number of
vertices.

The lists of graphs may optionally include varying vertex and edge colors. Alternatively, specify a
list of vertex.color vectors (one for each layout) to animate vertex colors. Similarly, optionally
specify a list of edge. color vectors to animate edge colors.

Optionally provide a list of main title text strings to vary the title with each animation layout.

None of the other plot parameters may be animated.

Click animation

Specify the option click=1ist to animate the graph when specified vertices are clicked interac-
tively, where 1ist is a named list of animation entries. Each entry must itself be a list with the
following entries

g optional a single igraph object with the same number of vertices as g above (if specified this must
be the first entry)

layout - optional a single igraph layout, or differential layout if cumulative=TRUE
vertex.color - optional single vector of vertex colors
edge.color - optional single vector of edge colors

cumulative - optional boolean entry, if TRUE then vertex positions are added to current plot, default
is FALSE

At least one of g or layout must be specified in each animation list entry. The layouts and colors
may be alternatively imbedded in the igraph object itself. Each animation list entry must be named
by a number corresponding to the vertex enumeration in g. An animation sequence is triggered when
a corresponding vertex is clicked. For instance, to trigger animations when vertices number 1 or 5
are clicked, include list entries labeled "1" and "5". See the demos in demo(package="threejs")
for detailed examples.

Other interactions

Specify the argument brush=TRUE to highlight a clicked vertex and its directly connected edges
(click off of a vertex to reset the display). Optionally set the highlight=<hex color>and lowlight=<hex
color> to manually control the brushing display colors.

Crosstalk

graphjs() works with crosstalk selection (but not filtering yet); see https://rstudio.github.io/crosstalk/.
Enable crosstalk by supplying the optional agrument crosstalk=df, where df is a crosstalk-
SharedData data.frame-like object with the same number of rows as graph vertices (see the ex-
amples).

12 graphjs

User-defined JavaScript

Use the optional program argument (see scatterplot3js) to supply JavaScript code as a character
string value. The code will be run during plot initialization. See the examples.

Note

Edge transparency values specified as part of edge.color are ignored, however you can set an
overall transparency for edges with edge . alpha.

References

The three.js project https://threejs.org.

See Also

igraph.plotting, scatterplot3js

Examples

set.seed(1)

g <- sample_islands(3, 10, 5/10, 1)

i <- membership(cluster_louvain(g))

(graphjs(g, vertex.color=c("orange”, "green", "blue")[i],
vertex.shape="sphere"))

similar example with user-defined directional lighting

11 <- light_directional(color="red", position=c(@, -0.8, 0.5))

12 <- light_directional(color="yellow"”, position=c(@, 0.8, -0.5))

13 <- light_ambient(color="#555555")

(graphjs(g, vertex.color="gray", vertex.shape="sphere”,
lights=1ist(11, 12, 13)))

Les Miserables Character Co-appearance Data
data("LeMis")
(graphjs(LeMis))

Use HTML and CSS directly in each vertex label to customize
and align the legend:
(graphjs(LeMis,
vertex.label=sprintf(”"<h2 style='text-align:left;'>%s</h2>",
V(LeMis)$label)))

The plot legend 'div' element is of CSS class 'infobox'. Use JavaScript
to customize labels to hover near the mouse pointer:
program <- "document.addEventListener('mousemove', function(e) {
e.preventDefault();
let x = document.getElementsByClassName('infobox')[0];
x.style['background'] = '#00c9c2';
x.style['border-radius'] = '5px';
x.style['color'] = '#222';
x.style['font-family'] = 'sans-serif';
x.style['position'] = 'absolute';

https://threejs.org

graphjs 13

x.style['top'] = e.pageY + 'px';
x.style['left'] = e.pageX + 'px';
»n
(graphjs(LeMis, program = program))

...plot Character names
(graphjs(LeMis, vertex.shape=V(LeMis)$label, vertex.size=0.3))

SNAP Facebook ego network dataset
data("ego")
(graphjs(ego, bg="black"))

Not run:
A shiny example
shiny: :runApp(system.file("examples/graph”, package="threejs"))

A graph amination that shows several layouts
data("LeMis")
graphjs(LeMis,
layout=list(
layout_randomly(LeMis, dim=3),
layout_on_sphere(LeMis),
layout_with_drl(LeMis, dim=3), # note! somewhat slow...
layout_with_fr(LeMis, dim=3, niter=30)),
main=list("random layout”, "sphere layout”, "drl layout”, "fr layout"),
fpl=300)

A simple graph animation illustrating edge modification
g <- make_ring(5) - edges(1:5)
graph_list <- list(
g + edge(1, 2),
+ edge(1, 2) + edge(2, 3),
+ edge(1, 2) + edge(2, 3) + edge(3, 4),
+ edge(1, 2) + edge(2, 3) + edge(3, 4) + edge(4, 5),
+ edge(1, 2) + edge(2, 3) + edge(3, 4) + edge(4, 5) + edge(5, 1))
graphjs(graph_list, main=paste(1:5),
vertex.color=rainbow(5), vertex.shape="sphere”, edge.width=3)

oQ 0Q 0] 07

see ~demo(package="threejs") for more animation demos.

A crosstalk example
library(crosstalk)
library(DT)
data(LeMis)
sd = SharedData$new(data.frame(Name = V(LeMis)$label))
print(bscols(
graphjs(LeMis, brush=TRUE, crosstalk=sd),
datatable(sd, rownames=FALSE, options=list(dom="tp'))
))

End(Not run)

14 light_ambient

LeMis Les Miserables Character Coappearance Data

Description

Les Miserables Character Coappearance Data

Usage

data(LeMis)

Format

An igraph package graph object.

Source

Mike Bostock’s D3.js force-directed graph example https://bl.ocks.org/mbostock/4062045.
Data based on character coappearence in Victor Hugo’s Les Miserables, compiled by Donald Knuth
(https://www-cs-faculty.stanford.edu/~uno/sgh.html).

light_ambient Plot illumination

Description

Plot illumination

Usage

light_ambient(color = "#eeeeee")
Arguments

color the ambient light color
Value

An object for use with the 1ights argument in scatterplot3js and graphjs.

https://bl.ocks.org/mbostock/4062045
https://www-cs-faculty.stanford.edu/~uno/sgb.html

light_directional 15

light_directional Plot illumination

Description

Plot illumination

Usage

light_directional(color = "#eeeeee"”, position = c(0, @, 0))
Arguments

color the light color

position the light position as an (X, y, z) coordinate vector with entries in [-1, 1]
Value

An object for use with the 1ights argument in scatterplot3js and graphjs.

lines3d Add lines to a 3D scatterplot

Description

Add lines to a 3D scatterplot

Usage

lines3d(s, from, to, lwd = 1, alpha = 1, color)

Arguments
s A scatterplot object returned by scatterplot3js.
from A vector of integer indices of starting points.
to A vector of integer indices of ending points of the same length as from.
lwd A single numeric value of line width (applies to all lines).
alpha A single numeric value of line alpha (applies to all lines).
color Either a single color value or vector of values as long as from of line colors; line
colors default to interpolating their vertex point colors.
Value

A new scatterplot htmlwidget object.

16 points3d

Note

This function replaces the old points3d approach used by scatterplot3d.

Examples

Not run:
x <= rnorm(5)
y <= rnorm(5)
z <~ rnorm(5)
scatterplot3js(x, y, z, pch="@Q", color=rainbow(5)) %>%
lines3d(c(1, 2), c(3, 4), lwd=2)

End(Not run)

points3d Add points to a 3D scatterplot

Description

Add points to a 3D scatterplot

Usage
points3d(s, x, y, z, color = "orange", pch = "@", size = 1, labels = "")
Arguments

s A non-animated scatterplot object returned by scatterplot3js.

X Either a vector of x-coordinate values or a three-column data matrix with columns
corresponding to the x,y,z coordinate axes. Column labels, if present, are used
as axis labels.

y (Optional) vector of y-coordinate values, not required if x is a matrix.

z (Optional) vector of z-coordinate values, not required if x is a matrix.

color Either a single hex or named color name (all points same color), or a vector of
hex or named color names as long as the number of points in x.

pch Optional point glyphs or text strings, see scatterplot3js.

size The plot point radius, either as a single number or a vector of sizes of length
nrow(x).

labels Character vector of length x of point labels displayed when the mouse moves
over the points.

Value

A new scatterplot htmlwidget object.

scatterplot3js 17

Note

This function replaces the old points3d approach used by scatterplot3d.

Examples

Not run:
Adding point labels to a scatterplot:
x <= rnorm(5)
y <= rnorm(5)
z <~ rnorm(5)
scatterplot3js(x, y, z, pch="0") %>%
points3d(x + 0.1, y + 0.1, z, color="red", pch=paste("point”, 1:5))

Adding point labels to a graph, obtaining the graph vertex coordinates
with the “vertices()™ function:

data(LeMis)

graphjs(LeMis) %>% points3d(vertices(.), color="red"”, pch=V(LeMis)$label)

End(Not run)

scatterplot3js Interactive 3D Scatterplots

Description

A 3D scatterplot widget using three.js. Many options follow the scatterplot3d package.

Usage

scatterplot3js(
X,
Y,
z,
height = NULL,
width = NULL,
axis = TRUE,
num.ticks = c(6, 6, 6),
x.ticklabs = NULL,
y.ticklabs = NULL,
z.ticklabs = NULL,
color = "steelblue”,
size = cex.symbols,
stroke = "black”,
flip.y = TRUE,
grid = TRUE,
renderer = c("auto”, "canvas"),
signif = 8,

18 scatterplot3js

bg = "#ffffff",
cex.symbols = 1,

xlim,

ylim,

zlim,

axis.scale = c(1, 1, 1),
pch = "@",

elementId = NULL,

Arguments

X Either a vector of x-coordinate values or a three-column data matrix with columns
corresponding to the x,y,z coordinate axes. Column labels, if present, are used
as axis labels.

y (Optional) vector of y-coordinate values, not required if x is a matrix.

z (Optional) vector of z-coordinate values, not required if x is a matrix.

height The container div height.

width The container div width.

axis A logical value that when TRUE indicates that the axes will be displayed.

num. ticks A three-element or one-element vector with the suggested number of ticks to
display per axis. If a one-element vector, this number of ticks will be used for
the axis with the smallest axis. scale, and the number of ticks on the remaining
axes will be increased proportionally to the axis.scale values. Set to NULL
to not display ticks. The number of ticks may be adjusted by the program.

x.ticklabs A vector of tick labels of length num. ticks[1], or NULL to show numeric labels.

y.ticklabs A vector of tick labels of length num. ticks[2], or NULL to show numeric labels.

z.ticklabs A vector of tick labels of length num. ticks[3], or NULL to show numeric labels.

color Either a single hex or named color name (all points same color), or a vector of
hex or named color names as long as the number of data points to plot.

size The plot point radius, either as a single number or a vector of sizes of length
nrow(x).

stroke A single color stroke value (surrounding each point). Set to null to omit stroke
(only available in the canvas renderer).

flip.y Reverse the direction of the y-axis (the default value of TRUE produces plots
similar to those rendered by the R scatterplot3d package).

grid Set FALSE to disable display of a grid.

renderer Select from available plot rendering techniques of ’auto’ or ’canvas’. Set to
"canvas’ to explicitly use non-accelerated Canvas rendering, otherwise WebGL
is used if available.

signif Number of significant digits used to represent point coordinates. Larger numbers
increase accuracy but slow plot generation down.

bg The color to be used for the background of the device region.

scatterplot3js 19

cex.symbols Equivalent to the size parameter.

x1lim Optional two-element vector of x-axis limits. Default auto-scales to data.

ylim Optional two-element vector of y-axis limits. Default auto-scales to data.

zlim Optional two-element vector of z-axis limits. Default auto-scales to data.
axis.scale Three-element vector to scale each axis as displayed on the plot, after first scal-

ing them all to a unit length. Default c(1,1,1) thus results in the axes of equal
length. If NA, the displayed axes will be scaled to the ratios determined from
c(xlim,ylim,zlim).

pch Optional point glyphs, see notes.

elementId Use an explicit element ID for the widget (rather than an automatically generated
one). Useful if you have other JavaScript that needs to explicitly discover and
interact with a specific widget instance.

Additional options (see note).

Value

An htmlwidget object that is displayed using the object’s show or print method. (If you don’t see
your widget plot, try printing it with the print function.)

Scaling the axes

With the default values, the displayed axes are scaled to equal one-unit length. If you instead need
to maintain the relative distances between points in the original data, and the same distance between
the tick labels, pass num. ticks=6 (or any other single number) and axis.scale=NA

Interacting with the plot

Press and hold the left mouse button (or touch or trackpad equivalent) and move the mouse to rotate
the plot. Press and hold the right mouse button (or touch equivalent) to pan. Use the mouse scroll
wheel or touch equivalent to zoom. If 1abels are specified (see below), moving the mouse pointer
over a point will display the label.

Detailed plot options

Use the optional . . . argument to explicitly supply axisLabels as a three-element character vector,
see the examples below. A few additional plot options are also supported:

"lights" alist of light_ambient and light_directional objects

""cex.lab'" font size scale factor for the axis labels

""cex.axis' font size scale factor for the axis tick labels

"font.axis'' CSS font string used for all axis labels

""font.symbols' CSS font string used for plot symbols

"font.main' CSS font string used for main title text box

"labels" character vector of length x of point labels displayed when the mouse moves over the
points

20 scatterplot3js

"main"' Plot title text

"top'"' Top location in pixels from top of the plot title text

"left" Left location in pixels from center of the plot title text

"program' User-supplied JavaScript run on plot initialization

The default CSS font string is "48px Arial". Note that the format of this font string differs from, for
instance, the usual ‘par(font.axis)°.

Use the pch option to specify points styles in WebGL-rendered plots. pch may either be a single
character value that applies to all points, or a vector of character values of the same length as x. All
character values are used literally '+, ’x’, **’, etc.) except for the following special cases:

"o'" Plotted points appear as 3-d spheres.

"@" Plotted points appear as stroked disks.

""" Points appear as tiny squares.

Character strings of more than one character are supported—see the examples. The "@" and "."
options exhibit the best performance, consider using one of those to plot large numbers of points.

Set the optional experimental use . orbitcontrols=TRUE argument to use a more CPU-efficient but
somewhat less fluid mouse/touch interface.

Plotting lines

See 1lines3d for an alternative interface. Lines are optionally drawn between points specified in x,
y, z using the following new plot options.
"from' A numeric vector of indices of line starting vertices corresponding to entries in X.

"to" A numeric vector exactly as long as from of indices of line ending vertices corresponding to
entries in x.

"lcol" Either a single color value or vector of values as long as from; line colors default to inter-
polating their vertex point colors.

"lwd" A single numeric value of line width (for all lines), defaults to 1.

"linealpha' A single numeric value between 0 and 1 inclusive setting the transparency of all plot
lines, defaulting to 1.

Highlighting selected points

Specify the argument brush=TRUE to highlight a clicked point (currently limited to single-point
selection). Optionally set the highlight=<color> and lowlight=<color> to manually control
the brushing display colors. This feature works with crosstalk.

Crosstalk

The scatterplot3js() and graphjs() functions work with crosstalk selection (but not filtering
yet); see https://rstudio.github.io/crosstalk/. Enable crosstalk with the optional agrument crosstalk=df,
where df is a crosstalk-SharedData data.frame-like object with the same number of rows as points
(scatterplot3js()) or graph vertices (graphjs()) (see the examples).

scatterplot3js 21

Note

Points with missing values are omitted from the plot, please try to avoid missing values in x, y, z.

References

The three.js project: https://threejs.org. The HTML Widgets project:

See Also

scatterplot3d, rgl, points3d, lines3d, light_ambient, light_directional

Examples

Example 1 from the scatterplot3d package (cf.)
z <- seq(-10, 10, 0.1)

x <- cos(z)

y <- sin(z)

scatterplot3js(x, y, z, color=rainbow(length(z)))

Same example with explicit axis labels
scatterplot3js(x, y, z, color=rainbow(length(z)), axisLabels=c("a", "b", "c"))

Same example showing multiple point styles with pch
scatterplot3js(x, y, z, color=rainbow(length(z)),
pch=sample(c(”.", "o", letters), length(x), replace=TRUE))

Point cloud example, should run this with WebGL!
N <- 20000

theta <- runif (N) * 2 * pi

phi <= runif (N) * 2 % pi

R <- 1.5

r <- 1.0

x <= (R + r * cos(theta)) * cos(phi)
y <= (R + r x cos(theta)) * sin(phi)
z <- r * sin(theta)

d<-6

h<-6

t <=2 % runif (N) -1

w <- t*2 * sqrt(1 - t*2)

x1 <= d * cos(theta) * sin(phi) * w

y1 <= d * sin(theta) * sin(phi) * w

i <- order(phi)

j <- order(t)

col <- c(rainbow(length(phi))[order(i)],
rainbow(length(t), start=0, end=2/6)[order(j)])

M <- cbind(x=c(x, x1), y=c(y, y1), z=c(z, h*t))

scatterplot3js(M, size=0.5, color=col, bg="black", pch=".")

Plot generic text using 'pch' (we label some points in this example)
set.seed(1)

x <= rnorm(5); y <- rnorm(5); z <- rnorm(5)

scatterplot3js(x, y, z, pch="@") %>%

https://threejs.org

22 texture

points3d(x + 0.1, y + 0.1, z, color="red", pch=paste("point”, 1:5))

Not run:
A shiny example
shiny: :runApp(system.file("examples/scatterplot”, package="threejs"))

End(Not run)

Not run:

A crosstalk example

library(crosstalk)

library(d3scatter) # devtools::install_github("jcheng5/d3scatter”)

z <- seq(-190, 10, 0.1)

X <- cos(z)

y <- sin(z)

sd <- SharedData$new(data.frame(x=x, y=y, z=z))

print(bscols(
scatterplot3js(x, y, z, color=rainbow(length(z)), brush=TRUE, crosstalk=sd),
d3scatter(sd, ~x, ~y, width="100%", height=300)

D)

End(Not run)

texture Convert an image file or uri to a three.js texture

Description

Convert file image representations in R into JSON-formatted arrays suitable for use as three.js
textures. This function is automatically invoked for images used in the globejs function.

Usage
texture(data)
Arguments
data A character string file name referring to an image file, or referring to an image
uri (see the examples).
Value

JSON-formatted list with image, width, and height fields suitable for use as a three.js texture created
with the base64texture function. The image field contains a base64 dataURI encoding of the image.

vertices,scatterplotThree-method 23

Note

Due to browser "same origin policy" security restrictions, loading textures from a file system in
three.js may lead to a security exception, see https://github.com/mrdoob/three.js/wiki/
How-to-run-things-locally. References to file locations work in Shiny apps, but not in stand-
alone examples. The texture function facilitates transfer of image texture data from R into three.js
textures. Binary image data are encoded and inserted into three.js without using files as dataURIs.

References

The threejs project https: //threejs.org. https://github.com/mrdoob/three. js/wiki/How-to-run-things-locall

Examples

Not run:

A big image (may take a while to download):

img <- paste("http://eoimages.gsfc.nasa.gov/",
"images/imagerecords/73000/73909/",
"world.topo.bathy.200412.3x5400x2700. jpg", sep="")

t <- texture(img)

End(Not run)

vertices,scatterplotThree-method
Extract a matrix of vertex coordinates from a threejs widget

Description

Extract a matrix of vertex coordinates from a threejs widget

Usage

S4 method for signature 'scatterplotThree'
vertices(...)

Arguments

a scatterplotThree object from the threejs package.

See Also

points3d

https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally
https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally
https://threejs.org
https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally

Index

+ datasets
ego, 3
flights, 4
LeMis, 14

ego, 3
flights, 4

gcol, 4
globejs, 5
globeOutput, 8
graphjs, 9

LeMis, 14
light_ambient, 14
light_directional, 15
lines3d, 15, 20

points3d, 16

renderGlobe (globeOutput), 8
renderScatterplotThree (globeOutput), 8

scatterplot3js, 10, 12, 15, 16, 17
scatterplotThreeOutput (globeOutput), 8

texture, 22

threejs (threejs-package), 2
threejs-package, 2
threejs-shiny (globeOutput), 8

vertices,scatterplotThree-method, 23

24

	threejs-package
	ego
	flights
	gcol
	globejs
	globeOutput
	graphjs
	LeMis
	light_ambient
	light_directional
	lines3d
	points3d
	scatterplot3js
	texture
	vertices,scatterplotThree-method
	Index

