
Package ‘tfautograph’
October 14, 2022

Title Autograph R for 'Tensorflow'

Version 0.3.2

Description Translate R control flow expressions into 'Tensorflow' graphs.

SystemRequirements TensorFlow (https://www.tensorflow.org/)

URL https://t-kalinowski.github.io/tfautograph/

BugReports https://github.com/t-kalinowski/tfautograph/issues

Depends R (>= 3.1)

Imports reticulate, backports

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.2

Suggests rlang, tensorflow, testthat (>= 2.1.0)

Language en-US

NeedsCompilation no

Author Tomasz Kalinowski [aut, cre]

Maintainer Tomasz Kalinowski <kalinowskit@gmail.com>

Repository CRAN

Date/Publication 2021-09-17 20:30:02 UTC

R topics documented:
ag_if_vars . 2
ag_loop_vars . 4
ag_name . 6
ag_while_opts . 7
autograph . 8
tf_assert . 9
tf_case . 10
tf_cond . 11

1

https://t-kalinowski.github.io/tfautograph/
https://github.com/t-kalinowski/tfautograph/issues

2 ag_if_vars

tf_map . 12
tf_switch . 13
view_function_graph . 14
[[<-.tensorflow.python.ops.tensor_array_ops.TensorArray 15

Index 17

ag_if_vars Specify tf.cond() output structure when autographing if

Description

This function can be used to specify the output structure from tf.cond() when autographing an if
statement. In most use cases, use of this function is purely optional. If not supplied, the if output
structure is automatically built.

Usage

ag_if_vars(
...,
modified = list(),
return = FALSE,
undefs = NULL,
control_flow = 0

)

Arguments

... Variables modified by the tf.cond() node supplied as bare symbols like foo
or expressions using $ e.g, foo$bar. Symbols do not have to exist before the
autographed if so long as they are created in both branches.

modified Variables names supplied as a character vector, or a list of character vectors
if specifying nested complex structures. This is an escape hatch for the lazy
evaluation semantics of ...

return logical, whether to include the return value the evaluated R expression in the
tf.cond(). if FALSE (the default), only the objects assigned in scope are cap-
tured.

undefs A bare character vector or a list of character vectors. Supplied names are ex-
ported as undefs in the parent frame. This is used to give a more informative
error message when attempting to access a variable that can’t be balanced be-
tween branches.

control_flow An integer, the maximum number of control-flow statements (break and/or
next) that will be captured in a single branch as part of the tf.cond(). Do not
count statements in loops that are dispatching to standard R control flow (e.g.,
don’t count break statements in a for loop that is iterating over an R vector)

ag_if_vars 3

Details

If the output structure is not explicitly supplied via ag_if_vars(), then the output structure is
automatically composed: The true and false branches of the expression are traced into concrete
functions, then the output signature from the two branch functions are balanced. Balancing is
performed by either fetching a variable from an outer scope or by reclassifying a symbol as an
undef.

When dealing with complex composites (that is, nested structures where a modified tensor is part of
a named list or dictionary), care is taken to prevent unnecessarily capturing other unmodified tensors
in the structure. This is done by pruning unmodified tensors from the returned output structure, and
then merging them back with the original object recursively. One limitation of the implementation
is that lists must either be fully named with unique names, or not named at all, partially named lists
or duplicated names in a list throw an error. This is due to the conversion that happens when going
between python and R: named lists get converted to python dictionaries, which require that all keys
are unique. Additionally, pruning of unmodified objects from an autographed if is currently only
supported for named lists (python dictionaries). Unnamed lists or tuples are passed as is (e.g, no
pruning and merging done), which may lead to unnecessarily bloat in the constructed graphs.

Value

NULL, invisibly

Examples

Not run:
these examples only have an effect in graph mode
to enter graph mode easily we'll create a few helpers
ag <- autograph

pass which symbols you expect to be modifed or created liks this:
ag_if_vars(x)
ag(if (y > 0) {

x <- y * y
} else {

x <- y
})

if the return value from the if expression is important, pass `return = TRUE`
ag_if_vars(return = TRUE)
x <- ag(if(y > 0) y * y else y)

pass complex nested structures like this
x <- list(a = 1, b = 2)

ag_if_vars(x$a)
ag(if(y > 0) {

x$a <- y
})

undefs are for mark branch-local variables
ag_if_vars(y, x$a, undef = "tmp_local_var")

4 ag_loop_vars

ag(if(y > 0) {
y <- y * 100
tmp_local_var <- y + 1
x$a <- tmp_local_var

})

supplying `undef` is not necessary, it exists purely as a way to supply a
guardrail for defensive programming and/or to improve code readability

modified vars can be supplied in `...` or as a named arg.
these paires of ag_if_vars() calls are equivalent
ag_if_vars(y, x$a)
ag_if_vars(modified = list("y", c("x", "a")))

ag_if_vars(x, y, z)
ag_if_vars(modified = c("x", "y", "z"))

control flow
count number of odds between 0:10
ag({

x <- 10
count <- 0
while(x > 0) {
ag_if_vars(control_flow = 1)
if(x %% 2 == 0)

next
count <- count + 1

}
})

End(Not run)

ag_loop_vars Specify loop variables

Description

This can be used to manually specify which variables are to be included explicitly as loop_vars
when autographing an expression into a tf.while_loop() call, or the loop_vars equivalent when
building a dataset.reduce().

Usage

ag_loop_vars(
...,
list = character(),
include = character(),
exclude = character(),
undef = character()

)

ag_loop_vars 5

Arguments

... Variables as bare symbol names
list, include, exclude

optionally, the variable names as a character vector (use this as an escape hatch
from the ... lazy evaluation semantics).

undef character vector of symbols

Details

Use of this is usually not required as the loop variables are automatically inferred. Inference is
done by statically looking through the loop body and finding the symbols that are the targets of the
common assignment operators from base R (<-, ->, =), from package:zeallot (%<-% and %->%) and
package:magrittr (%<>%).

In certain circumstances, this approach may capture variables that are intended to be local variables
only. In those circumstances it is also possible to specify them preceded with a -.

Note, the specified loop vars are expected to exist before the autographed expression, and a warning
is issued otherwise (usually immediately preceding an error thrown when attempting to actually
autograph the expression)

Only bare symbol names can be supplied as loop vars. In the future, support may be expanded
to allow for nested complex composites (e.g., specifying variables that are nested within a more
complex structure–passing ag_loop_vars(foobarbaz) is currently not supported.)

Value

the specified hint invisibly.

Note

The semantics of this function are inspired by base::rm()

Examples

Not run:
i <- tf$constant(0L)

autograph({
ag_loop_vars(x, i)
while(x > 0) {
if(x %%2 == 0)

i <- i + 1L
x <- x - 1

}
})

sometimes, a variable is infered to be a loop_var unnecessarily. For example
x <- tf$constant(1:10)

imagine x is left over in the current scope from some previous calculations
It's value is not important, but it exists

6 ag_name

autograph({
for(i in tf$constant(1:6)) {
x <- i * i
tf$print(x)

}
})

this will throw an error because `x` was infered to be a `loop_var`,
but it's shape witin the loop body is different from what it was before.
there are two solutions to prevent `x` from being captured as a loop_var
1) remove `x` from the current scope like so:
rm(x)

2) provide a hint like so:
ag_loop_vars(-x)

if your variable names are being dynamically generated, there is an
escape hatch for the lazy evaluation semantics of ...
ag_loop_vars(exclude = "x")

End(Not run)

ag_name Specify a tensor name

Description

This can be used before any autographed expression that results in the creation of a tensor or op
graph node. This can be used before for (both with tensors and datasets), while, and if statements.

Usage

ag_name(x)

Arguments

x A string

Value

x, invisibly

Examples

Not run:
when you're in graph mode. (e.g, tf$executing_eagerly == FALSE)

ag_name("main-training-loop")
for(elem in dataset) ...

End(Not run)

ag_while_opts 7

ag_while_opts specify tf.while_loop options

Description

See https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/while_loop for additional details.

Usage

ag_while_opts(
...,
shape_invariants = NULL,
parallel_iterations = 10L,
back_prop = TRUE,
swap_memory = FALSE,
maximum_iterations = NULL

)

Arguments

... Ignored, used to ensure all arguments supplied are named.

shape_invariants

The shape invariants for the loop variables.

parallel_iterations

The number of iterations allowed to run in parallel. It must be a positive integer.

back_prop Deprecated (optional). FALSE disables support for back propagation. Prefer
using tf$stop_gradient instead.

swap_memory Whether GPU-CPU memory swap is enabled for this loop.

maximum_iterations

Optional maximum number of iterations of the while loop to run. If provided,
the cond output is AND-ed with an additional condition ensuring the number of
iterations executed is no greater than maximum_iterations.

Value

‘NULL“ invisibly, called for it’s side effect.

Note

Use ag_name() to supply name and ag_loop_vars() to supply loop_vars directly.

This is only applicable when autograph in graph mode, otherwise this has no effect.

8 autograph

Examples

Not run:
use tf_function() to enter graph mode:
tf_function(autograph(function(n) {

ag_name("silly-example")
ag_while_opts(back_prop = FALSE)
while(n > 0)
n <- n - 1

}))

End(Not run)

autograph Autograph R code

Description

Note, this documentation page is meant to serve as a technical reference, not an introduction to
autograph. For the latter, please visit the documentation website: (https://t-kalinowski.github.io/tfautograph/)
or see the package vignettes.

Usage

autograph(x)

Arguments

x a function supplied as a bare symbol, or an expression

Value

if x is a function, then the the same function with a new parent environment, package:tfautograph:ag_mask,
which is the autograph mask that contains implementations of R control flow primitives that are ca-
pable of handling tensorflow tensors. The parent of the package:tfautograph:ag_mask in turn is
the original environment of x.

if x is an expression, then that expression is evaluated in a special environment with the autograph
mask ag_mask active. If the result of that expression included local assignment or modifications of
variables, (for example, via <-), those modified variables are then exported into the current frame.
The return value of the expression is then returned.

tf_assert 9

tf_assert tf_assert

Description

A thin wrapper around tf$Assert() that automatically constructs an informative error message
(passed on to data argument), which includes the expression passed to condition, the values of
the symbols found in the expression, as well as the full R call stack at the time the tf$Assert()
node is created.

Usage

tf_assert(
condition,
...,
expr = substitute(condition),
summarize = NULL,
name = NULL

)

Arguments

condition A boolean tensor

... Additional elements passed on to data. (e.g, an informative error message as a
string, additional tensor values that might be useful to have in the error message,
etc.)

expr A language object, provided in case condition is already computed prior to the
call

summarize Print this many entries of each tensor.

name A name for this operation (optional).

Examples

Not run:
x <- tf$constant(-1)
try(tf_assert(x > 0, "oopsies! x must be greater than 0"))

End(Not run)

10 tf_case

tf_case tf.case

Description

This is a minimal wrapper around tf.case() that allows you to supply the pred_fn_pairs using
the ~.

Usage

tf_case(
...,
pred_fn_pairs = list(...),
default = NULL,
exclusive = FALSE,
name = "case"

)

Arguments

..., pred_fn_pairs

a list pred_fn_pairs supplied with the ~ like so: pred ~ fn_body

default a function, optionally specified with the ~, (or something coercible to a function
via as.function())

exclusive bool, whether to evaluate all preds and ensure only one is true. If FALSE (the de-
fault), then the preds are evaluated in the order supplied until the first TRUE value
is encountered (effectively, acting as an if()... else if() ... else if() ...
chain)

name a string, passed on to tf.case()

Value

The result from tf$case()

Examples

Not run:
fizz_buzz_one <- function(x) {

tf_case(
x %% 15 == 0 ~ "FizzBuzz",
x %% 5 == 0 ~ "Buzz",
x %% 3 == 0 ~ "Fizz",
default = ~ tf$as_string(x, precision = 0L)

)
}

fn <- tf_function(autograph(function(n) {

tf_cond 11

for(e in tf$range(n))
tf$print(fizz_buzz_one(e))

}))

x <- tf$constant(16)
fn(x)

End(Not run)

tf_cond tf.cond

Description

This is a minimal wrapper around tf$cond() that allows you to supply true_fn and false_fn as
lambda functions defined using the tilde ~.

Usage

tf_cond(pred, true_fn, false_fn, name = NULL)

Arguments

pred R logical or a tensor.
true_fn, false_fn

a ~ function, a function, or something coercible to a function via as.function

name a string, passed on to tf.cond()

Value

if cond is a tensor, then the result of tf.cond(). Otherwise, if pred is an EagerTensor or an R
logical, then the result of either true_fn() or false_fn()

Note

in Tensorflow version 1, the strict keyword argument is supplied with a value of TRUE (different
from the default)

Examples

Not run:
square if positive
using tf$cond directly:
raw <- function(x) tf$cond(x > 0, function() x * x, function() x)

using tf_cond() wrapper
tilde <- function(x) tf_cond(x > 0, ~ x * x, ~ x)

End(Not run)

12 tf_map

tf_map tf.map_fn()

Description

Thin wrapper around tf.map_fn() with the following differences:

• accepts purrr style ~ lambda syntax to define function fn.

• The order of elems and fn is switched to make it more pipe %>% friendly and consistent with
R mappers lapply() and purrr::map().

Usage

tf_map(
elems,
fn,
dtype = NULL,
parallel_iterations = NULL,
back_prop = TRUE,
swap_memory = FALSE,
infer_shape = TRUE,
name = NULL

)

Arguments

elems A tensor or (possibly nested) sequence of tensors, each of which will be un-
packed along their first dimension. The nested sequence of the resulting slices
will be applied to fn.

fn An R function, specified using purrr style ~ syntax, a character string, a python
function (or more generally, any python object with a __call__ method) or
anything coercible via as.function(). The function will be be called with one
argument, which will have the same (possibly nested) structure as elems. Its
output must return the same structure as dtype if one is provided, otherwise it
must return the same structure as elems.

dtype (optional) The output type(s) of fn. If fn returns a structure of Tensors differing
from the structure of elems, then dtype is not optional and must have the same
structure as the output of fn.

parallel_iterations

(optional) The number of iterations allowed to run in parallel. When graph
building, the default value is 10. While executing eagerly, the default value is
set to 1.

back_prop (optional) True enables support for back propagation.

swap_memory (optional) True enables GPU-CPU memory swapping.

infer_shape (optional) False disables tests for consistent output shapes.

name (optional) Name prefix for the returned tensors.

tf_switch 13

Value

A tensor or (possibly nested) sequence of tensors. Each tensor packs the results of applying fn to
tensors unpacked from elems along the first dimension, from first to last.

tf_switch tf.switch_case

Description

tf.switch_case

Usage

tf_switch(
branch_index,
...,
branch_fns = list(...),
default = NULL,
name = "switch_case"

)

Arguments

branch_index an integer tensor
..., branch_fns

a list of function bodies specified with a ~, optionally supplied with a branch
index on the left hand side. See examples

default A function defined with a ~, or something coercible via ‘as.function()“

name a string, passed on to tf.switch_case()

Value

The result from tf.switch_case()

Examples

Not run:
tf_pow <- tf_function(function(x, pow) {

tf_switch(pow,
0 ~ 1,
1 ~ x,
2 ~ x * x,
3 ~ x * x * x,
default = ~ -1)

})

can optionally also omit the left hand side int, in which case the order of

14 view_function_graph

the functions is used.
tf_pow <- function(x, pow) {

tf_switch(pow,
~ 1,
~ x,
~ x * x,
~ x * x * x,
default = ~ -1)

}

supply just some of the ints to override the default order
tf_pow <- function(x, pow) {

tf_switch(pow,
3 ~ x * x * x,
2 ~ x * x,
~ 1,
~ x,
default = ~ -1)

}

A slightly less contrived example:
tf_norm <- tf_function(function(x, l) {

tf_switch(l,
0 ~ tf$reduce_sum(tf$cast(x != 0, tf$float32)), # L0 norm
1 ~ tf$reduce_sum(tf$abs(x)), # L1 norm
2 ~ tf$sqrt(tf$reduce_sum(tf$square(x))), # L2 norm
default = ~ tf$reduce_max(tf$abs(x))) # L-infinity norm

})

End(Not run)

view_function_graph Visualizes the generated graph

Description

Visualizes the generated graph

Usage

view_function_graph(
fn,
args,
...,
name = deparse(substitute(fn)),
profiler = FALSE,
concrete_fn = do.call(fn$get_concrete_fn, args),
graph = concrete_fn$graph

)

[[<-.tensorflow.python.ops.tensor_array_ops.TensorArray 15

Arguments

fn TensorFlow function (returned from tf.function())

args arguments passed to fun

... other arguments passed to tensorflow::tensorboard()

name string, provided to tensorboard

profiler logical, passed on to tf.compat.v2.summary.trace_on() (only used in eager
mode)

concrete_fn a ConcreteFunction (only used in graph mode, ignored with a warning if exe-
cuting eagerly)

graph a tensorflow graph (only used in graph mode, ignored with a warning if execut-
ing eagerly)

Examples

Not run:
fn <- tf_function(function(x) autograph(if(x > 0) x * x else x))
view_function_graph(fn, list(tf$constant(5)))

End(Not run)

[[<-.tensorflow.python.ops.tensor_array_ops.TensorArray

TensorArray.write()

Description

TensorArray.write()

Usage

S3 replacement method for class 'tensorflow.python.ops.tensor_array_ops.TensorArray'
ta[[i, ..., name = NULL]] <- value

Arguments

ta a tensorflow TensorArray

i something castable to an int32 scalar tensor. 0-based.

... Error if anything is passed to ...

name A scalar string, name of the op

value The value to write.

16 [[<-.tensorflow.python.ops.tensor_array_ops.TensorArray

Examples

Not run:
ta <- tf$TensorArray(tf$float32, size = 5L)
for(i in 0:4)

ta[[i]] <- i
ta$stack()

You can use this to grow objects in graph mode
accuracies_log <- tf$TensorArray(tf$float32, size = 0L, dynamic_size=TRUE)
for(epoch in 0:4)

accuracies_log[[epoch]] <- runif(1)
acc <- accuracies_log$stack()
acc

End(Not run)

Index

[[<-.tensorflow.python.ops.tensor_array_ops.TensorArray,
15

ag_if_vars, 2
ag_loop_vars, 4
ag_loop_vars(), 7
ag_name, 6
ag_name(), 7
ag_while_opts, 7
autograph, 8

tensorflow::tensorboard(), 15
tf_assert, 9
tf_case, 10
tf_cond, 11
tf_map, 12
tf_switch, 13

view_function_graph, 14

17

	ag_if_vars
	ag_loop_vars
	ag_name
	ag_while_opts
	autograph
	tf_assert
	tf_case
	tf_cond
	tf_map
	tf_switch
	view_function_graph
	[[<-.tensorflow.python.ops.tensor_array_ops.TensorArray
	Index

