
tfarima: an R package to build customized

TFARIMA models

José Luis Gallego

Universidad de Cantabria

Abstract

The R package tfarima provides classes and methods to build and use customized
Transfer Function and ARIMA models with multiple operators and/or parameter restric-
tions. Model estimation can be accomplished by exact or conditional maximum likelihood
(EML/CML). Procedures for automatic outlier detection, calendar effect estimation, pre-
diction and seasonal adjustment based on this general class of models are also provided.
Some classic time series are analyzed to illustrate the usage of the package.

Keywords: ARIMA models, transfer function models, prediction, outliers, R.

1. Introduction

Box and Jenkins (1970) provided a methodology to build a general and flexible class of parsi-
monious ARIMA and Transfer Function time series models following a three-stages iterative
process based on identification, estimation, and diagnostic checking. The fifth edition of the
book (Box, Jenkins, Reinsel, and Ljung 2016) includes for first time R code (R Core Team
2018) to replicate many of the applications illustrated along the different chapters of the
book. Some of the R packages used in that edition are stats, which comes with the base
distribution of R, TSA (Chan and Ripley 2018), astsa (Stoffer 2021) and MTS (Tsay, Wood,
and Lachmann 2022).

The arima() function of the stats package enables to fit traditional multiplicative ARIMA
(p, d, q)(P, D, Q)s models to time series with at most two types of serial correlation: regular,
dependence between consecutive observations in the series, and seasonal, dependence between
observations that are s interval apart. Explanatory and intervention variables such as pulses
and steps can be included to predict the output or to handle additive outliers and level
shifts. This class of models, sometimes called regARIMA models, is extended by the wrapper
arimax() function of the TSA package to allow for transfer functions (TFs) and innovational
outliers. Other R packages with ARIMA modeling capabilities, but oriented to the seasonal
adjustment, are the RJDemetra (la Tente, Michalek, Palate, and Baeyens 2021) and seasonal
(Sax and Eddelbuettel 2018) packages. TF and ARIMA models can be also estimated in
state space form using Kalman filter. Some packages with these capabilities are reviewed by
Tusell (2011).

Although the arima() and arimax() functions are useful to analyze and forecast a great
variety of time series, sometimes it is needed to formulate ARIMA models taking into account
not only the possibility of multiple dependencies between observations in the series, but

2 Customized TFARIMA models in R

also the type and nature of its different unobserved components that can impose of certain
restrictions on the parameters. The um() and tfm functions of the tfarima package here
presented extend the arima() and arimax() functions in these two directions to allow the
estimation of univariate models (UMs) and TF models (TFMs) with multiple AR, I and MA
operators, as well as with restrictions on the coefficients of these operators. The tfarima

also provides classes to apply the Box-Jenkins three stages procedures when building TF-
ARIMA models, which can be estimated by exact or conditional maximum likelihood. The
evaluation of the likelihood function is based on the closed form of the inverse covariance
matrix following the algorithm of Ljung and Box (1979). Other capabilities of the package are
the implementation of the Box, Pierce, and Newbold (1987) method to decompose seasonal
time series using the eventual forecast function, which is compared with the Tramo-Seats
method used by RJDemetra, as well as the automatic treatment of outliers and calendar
effects following the methods of Chen and Liu (1993) and Bell and Hillmer (1983). A recent,
and still in progress, addition to the package is the estimation of basic structural time series
models (Durbin and Koopman 2001) following a similar approach to that used for ARIMA
models, which allows not only a direct comparison of the results obtained by these two class
of models but a productive interaction between both. To this end, functions are provided to
obtain the ARIMA reduced form of a basic structural time series model and, vice versa, to
obtain the structural form of an ARIMA model.

This manual is organized as follows. Section 2 describes the general class of univariate ARIMA
models with multiple lag polynomials and parameter restrictions that can be specified with
the lagpol() and um() functions. Section 3 illustrates the Box-Jenkins methodology to
build ARIMA models, as well as the use of these models to forecast and decompose time
series. Section 4 shows how to build customized seasonal ARIMA models identical or very
similar to three alternative representations: linear regression with deterministic trend and
seasonality, the Holt-Winters methods and the Basic Structural Model. Section 5 presents
the general class of TF models and how they can be created and estimated with the tfm()

function. Section 6 concerns with the estimation of intervention models and the automatic
or supervised treatment of outliers. Section 7 deals with the calendar effects. Finally, some
conclusions and future developments are described in Section 8.

2. Univariate models

The general class of ARIMA(p,d,q) models that can be handled with the tfarima package is
defined by the equation

ϕp(B)[δd(B)z
(λ)
t − µ] = ϑq(B)at, t = 1, 2, . . . , n; (1)

where zt is a time series of length n; z
(λ)
t is the power Box-Cox transformation z

(λ)
t = (zλ

t −
1)/λ; ϕp(B), δd(B) and ϑq(B) are the AR, I and MA operators, respectively, which are
polynomials in the backshift operator B of degree p, d and q; µ is the mean of the transformed

time series δd(B)z
(λ)
t , and at is a Gaussian white noise process with variance σ2

a. Each one
of the three operators AR, I and MA can in turn be expressed as the product of several lag
polynomials of the form

ad(Bs)p = (1 − a1Bs − · · · − adBsd)p, (2)

José Luis Gallego 3

which is a polynomial in Bs of degree d, raised to the integer power p, that is, a polynomial of
order (d, s, p). Note that, following the Box-Jenkins notation (Box et al. 2016), the polynomial
(2) is normalized to ad(1) = 1 and the coefficients (a1, . . . , ad) are preceded by a minus sign.
Such coefficients can be expressed as functions of a set of parameters (b1, . . . , bk):

aj = fj(b1, . . . , bk), j = 1, . . . , d and k ≤ d. (3)

In this way, the tarima package allows us to specify customized ARIMA models with multiple
operators and parameter restrictions.

2.1. The lagpol class: lag polynomials

Lag polynomials of order (d, s, p) defined by equations (2)-(3) can be created with the lagpol()

function of the tfarima package,

lagpol <- function(param = NULL, s = 1, p = 1, lags = NULL, coef = NULL)

where param is a numeric vector of named parameters, coef is a vector of expressions to
compute the coefficients of the polynomial as functions of the parameters, s is the power of
the backshift operator, p is the power to the which the polynomial is raised and lags is an
optional integer vector for unequally spaced polynomials indicating the non-null coefficients.

For example, to create and print the nonseasonal polynomial (1 − θB)2 with θ = 0.5, we run
the following lines:

R> lp1 <- lagpol(param = c(theta = 0.5), p = 2L)

R> lp1

(1 - 0.5B)^2 = 1 - B + 0.25B^2

where param = c(theta = 0.5) is a single-parameter vector and p = 2L indicates that this
lag polynomial is raised to the power of 2. Here, the default value for coef = NULL is equiv-
alent to coef = "theta". Note that lag polynomials are created following the Box-Jenkins
notation. If the notation (1 + θB)2 with θ = −0.5 is preferred, the sign of the coefficients
must be changed in the coef argument,

R> lp2 <- lagpol(param = c(theta = -0.5), p = 2L, coef = "-theta")

R> lp2

(1 - 0.5B)^2 = 1 - B + 0.25B^2

where coef = "-theta" would be the coefficient in (1 − (−θ)B)2.

The so-called seasonal polynomials are created in a similar way, but using the s argument to
indicate the seasonal period. For example, the second-order seasonal polynomial 1−Θ1B12 −
Θ2B24 with Θ1 = 1.2 and Θ2 = −0.9 is created as follows:

R> lp3 <- lagpol(param = c(Theta1 = 1.2, Theta2 = -0.9), s = 12)

R> lp3

4 Customized TFARIMA models in R

1 - 1.2B^12 + 0.9B^24

Customized lag polynomials with restrictions on the coefficients can be created passing to
the coef argument a vector of strings with such restrictions. For example, to create the lag
polynomial with three-coefficients and two-parameters 1 − θB − ΘB12 + θΘB13, with θ = 0.8
and Θ = 0.9, we run the following sentence:

R> lp4 <- lagpol(param = c(theta = 0.8, Theta = 0.9),

+ coef = c("theta", "Theta", "-theta*Theta"),

+ lags = c(1, 12, 13))

R> lp4

1 - 0.8B - 0.9B^12 + 0.72B^13

where lags = c(1, 12, 13) contains the positions of the three non-null coefficients.

The lagpol() function returns an S3 object of class lagpol, which is a building block to
create ARIMA and TF models. Some useful methods of the lagpol class are roots() and
inv().

R> roots(lp4)[c(1:4,10:13),]

Real Imaginary Modulus Frequency Period Mult.

[1,] 1.009 -1.75e-13 1.01 0.0000 Inf 1

[2,] 1.250 1.10e-13 1.25 0.0000 Inf 1

[3,] 0.874 -5.04e-01 1.01 0.0833 12.0 1

[4,] 0.874 5.04e-01 1.01 0.0833 12.0 1

[5,] -0.504 8.74e-01 1.01 0.3333 3.0 1

[6,] -0.874 5.04e-01 1.01 0.4167 2.4 1

[7,] -0.874 -5.04e-01 1.01 0.4167 2.4 1

[8,] -1.009 -7.36e-16 1.01 0.5000 2.0 1

R> inv(lp4, lag.max = 9)

[B0] [B1] [B2] [B3] [B4] [B5] [B6] [B7] [B8] [B9]

1.000 0.800 0.640 0.512 0.410 0.328 0.262 0.210 0.168 0.134

2.2. The um class: univariate models

Univariate ARIMA models belonging to the class defined by (1) can be created using the
um() function,

um <- function(z = NULL, bc = FALSE, ar = NULL, i = NULL, ma = NULL,

mu = NULL, sig2 = 1.0, fit = TRUE)

where z is an object of class ts; bc is a logical value that indicates whether or not to take
logs; ar, i and ma are lists of objects of class lagpol, character and/or numeric representing

José Luis Gallego 5

lag polynomials; mu is a numeric value for the mean of the stationary series δ(B)z
(λ)
t ; sig2 is

a numeric value for the variance of the error, and fit is a logical value indicating whether or
not to estimate the model. The function returns an object of class um.

To illustrate the usage of this function we create a multiplicative ARIMA model with orders
(0, 1, 1)(0, 1, 1)3(0, 1, 1)12,

∇∇3∇12Zt = (1 − θ1B)(1 − θ2B3)(1 − θ3B12)at

where θ1 = θ2 = θ3 = 0.8 and σ2
a = 1. We can set the arguments ar, i and ma providing three

types of objects:

1. Lists of objects of class lagpol:

R> d1 <- lagpol(coef = 1)

R> d3 <- lagpol(coef = 1, s = 3)

R> d12 <- lagpol(coef = 1, s = 12)

R> ma1 <- lagpol(param = c(th1 = 0.8))

R> ma3 <- lagpol(param = c(th2 = 0.8), s = 3)

R> ma12 <- lagpol(param = c(th3 = 0.8), s = 12)

R> um1 <- um(i = list(d1, d3, d12), ma = list(ma1, ma3, ma12))

In this code chunk, we first create six lagpol objects, one for each operator of the model,
and then we pass them as lists to the arguments of the um function. This approach is
recommended to create customized models since it provides a way to specify names,
preestimates and restrictions for parameters.

2. Character strings with the equations of the polynomials:

R> um2 <- um(i = "(1 - B)(1 - B3)(1 - B12)",

+ ma = "(1 - .8B)(1 - .8B3)(1 - .8B12)")

Here we provide to each argument i and ma the equations of the operators as character
strings. This way of creating a model is more compact than the previous one, but doesn’t
allow us neither to set the names of the parameters nor create customized models. It is
useful to study the statistical properties of common ARMA models (Section 4.1).

3. Lists containing the orders c(d, s = 1, p = 1) of the operators:

R> um3 <- um(i = list(1, c(1, 3), c(1, 12)),

+ ma = list(1, c(1, 3), c(1, 12)))

In this case, we only provide the orders of each type of operator and the function sets the
names and values of the parameters: .1 for AR parameters, .2 for MA parameters and 1
for I coefficients. Hence, ar = list(1, c(1, 3), c(1, 12)) and ma = list(1, c(1,

3), c(1, 12)) are equivalent to ar = "(1 - .1B)(1 - .1B3)(1 - .1B12)" and ma

= "(1 - .2B)(1 - .2B3)(1 - .2B12)", whereas i = list(1, c(1, 3), c(1, 12))

is equivalent to i = "(1 - B)(1 - B3)(1 - B12)". This approach is convenient to fit
conventional models to time series.

We can combine these three types of objects to set the arguments ar, i and ma:

6 Customized TFARIMA models in R

R> um4 <- um(i = list(1, "1 - B3", d12), ma = list("1 - .8B", c(1, 3), ma12))

Each list of operators AR, I and MA in a um object, and the corresponding extended polyno-
mials, are stored into the data members ar, i and ma, phi, nabla and theta.

R> printLagpolList(um1$i)

[1] 1 - B [2] 1 - B^3 [3] 1 - B^12

R> printLagpolList(um1$ma)

[1] 1 - 0.8B [2] 1 - 0.8B^3 [3] 1 - 0.8B^12

R> nabla(um1)

1 - B - B^3 + B^4 - B^12 + B^13 + B^15 - B^16

R> theta(um1)

1 - 0.8B - 0.8B^3 + 0.64B^4 - 0.8B^12 + 0.64B^13 + 0.64B^15 - 0.51B^16

Note that we have created the object um1 without providing a time series, which is useful, for
example, to study the statistical properties of a particular model, to simulate data or to fit
the same model to several time series. These and other capabilities for objects of class um are
explained in the next sections.

3. ARIMA model building

This section illustrates the use of the tfarima package to build ARIMA models following the
Box-Jenkins three-stage procedure, which requires to be familiar with the characteristics of
some representative members of this broad class of stochastic processes.

3.1. Statistical properties

We can create an object of class um to study the characteristics of a particular ARMA model in
terms of the simple and partial autocorrelation functions (ACF and PACF) and the spectral
density function. The following code creates five basic time series models and displays their
main functions (see Figure 1):

R> ar1p <- um(ar = "(1 - 0.9B)")

R> ar1n <- um(ar = "(1 + 0.9B)")

R> ma1p <- um(ma = "(1 - 0.9B)")

R> ma1n <- um(ma = "(1 + 0.9B)")

R> ar2c <- um(ar = "(1 - 1.52B + 0.8B^2)")

R> display(list(ar1p, ar1n, ma1p, ma1n, ar2c), lag.max = 20)

José Luis Gallego 7

(1 − 0.9B)wt = at (1 + 0.9B)wt = at wt = (1 − 0.9B)at wt = (1 + 0.9B)at (1 − 1.5B + 0.8B
2
)wt = at

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

A
C

F

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

P
A

C
F

0.0 0.2 0.4

0
5

1
0

1
5

Freq

S
p
e
c

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

A
C

F

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

P
A

C
F

0.0 0.2 0.4

0
5

1
0

1
5

Freq

S
p
e
c

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

A
C

F

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

P
A

C
F

0.0 0.2 0.4

0
.0

0
.2

0
.4

Freq

S
p
e
c

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

A
C

F

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

P
A

C
F

0.0 0.2 0.4

0
.0

0
.2

0
.4

Freq

S
p
e
c

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

A
C

F

5 10 15 20

−
1
.0

0
.0

1
.0

Lag

P
A

C
F

0.0 0.2 0.4

0
4

8
1
2

Freq

S
p
e
c

Figure 1: ACF, PACF and spectrum of five UM’s.

t

Z
t

1950 1952 1954 1956 1958 1960

1
0
0

3
0
0

5
0
0

150 200 250 300 350 400

1
0
0

1
5
0

2
0
0

2
5
0

median

ra
n
g
e

Figure 2: Plot and range-median diagram for the monthly AirPassenger series.

The display() function shows the ACF, PACF and/or spectrum of a list of objects of class
um. Other methods of the um class to characterize stochastic processes are pi.weights() and
psi.weights(), which show the AR(∞) and MA(∞) forms; autocov() and autocorr(),
which compute the theoretical autocovariances and (simple/partial) autocorrelations, and
roots(), which computes the roots of the different polynomials of the model.

3.2. Model identification

Figure 2 shows the plot and the range-median diagram for the totals of international airline
passengers listed as Series G in Box et al. (2016). These graphs have been generated with the
ide() function of the tfarima package:

R> Z <- AirPassengers

R> ide(Z, graphs = c("plot", "rm"))

where the option rm in the graphs argument means range-median.

The ide() function can also show several graphs for a list of transformations. Figure 3 displays
the plot, ACF and PACF for the transformed series: log(Zt), (1 + B + · · · + B11) log(Zt) and
∇∇12 log(Zt). The transf argument allows us to set a list of lists of transformations such as

8 Customized TFARIMA models in R

t

lo
g
(Z

t)

1950 1952 1954 1956 1958 1960

4
.5

6
.0

−
1
.0

0
.0

1
.0

lag

A
C

F

12 24 36

−
1
.0

0
.0

1
.0

lag

P
A

C
F

12 24 36

t

S
1

2
lo

g
(Z

t)

1950 1952 1954 1956 1958 1960

6
0

7
0

−
1
.0

0
.0

1
.0

lag

A
C

F

12 24 36

−
1
.0

0
.0

1
.0

lag

P
A

C
F

12 24 36

t

∇
1

2
lo

g
(Z

t)

1950 1952 1954 1956 1958 1960

0
.0

0
.2

−
0
.5

0
.5

lag

A
C

F

12 24 36

−
0
.5

0
.5

lag

P
A

C
F

12 24 36

t

∇∇
1

2
lo

g
(Z

t)

1950 1952 1954 1956 1958 1960

−
0
.1

0
.1

−
0
.4

0
.2

lag

A
C

F

12 24 36

−
0
.4

0
.2

lag

P
A

C
F

12 24 36

Figure 3: Some identification tools for three data transformations of AirPassengers

the Box-Cox transformation (bc), the number of nonseasonal and seasonal differences (d and
D), the annual sum (S) or a list of lagpol objects with the integrated operators (i).

R> ide(Z, transf = list(list(bc = T), list(bc = T, S = 1),

+ list(bc = T, D = 1), list(bc = T, D = 1, d = 1)))

3.3. Model estimation

ARIMA models created with the um function can be estimated by exact or conditional max-
imum likelihood. We can create and estimate an ARIMA model with the um function by
providing a ts object or we can firstly create a um object and then fit to a series with the
function fit.

R> um1 <- um(AirPassengers, bc = TRUE, i = list(1, c(1, 12)),

+ ma = list(1, c(1, 12)))

R> um2 <- um(i = list(1, c(1, 12)), ma = list(1, c(1, 12)), bc = TRUE)

R> um2 <- fit(um2, AirPassengers)

R> um1

Estimate Std. Error

theta1 0.4018464 0.07656434

theta2 0.5570393 0.07401700

log likelihood: 244.6965

Residual standard error: 0.03513935

aic: -3.70529

José Luis Gallego 9

We can check that these estimatates are very similar to that provided by the arima() function
of the stats package

R> arima(log(AirPassengers), order = c(0,1,1),

+ seasonal = list(order = c(0,1,1), frequency = 12))

Call:

arima(x = log(AirPassengers), order = c(0, 1, 1), seasonal = list(order = c(0,

1, 1), frequency = 12))

Coefficients:

ma1 sma1

-0.4018 -0.5569

s.e. 0.0896 0.0731

sigma^2 estimated as 0.001348: log likelihood = 244.7, aic = -483.4

3.4. Model diagnostic checking

Detailed results of the estimation together with diagnostic statistics can be printed with the
summary() function:

R> summary(um2)

Model:

um2 <- um(i = list(1, c(1, 12)), ma = list(1, c(1, 12)), bc = TRUE)

Time series:

AirPassengers

Maximum likelihood method:

exact

Coefficients:

Estimate Gradient Std. Error z Value Pr(>|z|)

theta1 4.018e-01 6.544e-06 7.656e-02 5.248 1.53e-07 ***

theta2 5.570e-01 2.775e-05 7.402e-02 7.526 5.24e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total nobs 144 Effective nobs 131

log likelihood 244.7 Error variance 0.001348

Mean of residuals -0.0004231 SD of the residuals 0.03514

z-test for residuals -0.1445 p-value 0.8851

Ljung-Box Q(1) st. 10.08 p-value 0.001495

Ljung-Box Q(32) st. 47.4 p-value 0.03906

Barlett H(3) stat. 1.138 p-value 0.566

AIC -3.705 BIC -3.661

10 Customized TFARIMA models in R

t

u
t

1950 1952 1954 1956 1958 1960−
0
.1

5
−

0
.0

5
0
.0

5

0 2 4 6 8 10 12−
0
.1

5
−

0
.0

5
0
.0

5

Density

u
t

−
0
.2

0
.0

0
.1

0
.2

lag

A
C

F

12 24 36

−
0
.2

0
.0

0
.1

0
.2

lag

P
A

C
F

12 24 36 0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Frequency

C
u
m

.
p
e
r.

Figure 4: Some diagnostic tools for the residuals of model um1

whose argument is an object of class um. Some diagnostic graphs for this object can be shown
with the diagchk() function (see Figure 4):

R> diagchk(um1)

Overfitting is a technique that can be used for diagnostic checking. We can extend our model
by adding more AR, I and MA polynomials,

R> modify(um1, ar = list(2, c(2, 12)))

Estimate Std. Error

phi1 0.55477214 0.08502302

phi2 0.24975326 0.08322806

phi3 -0.09466045 0.23810134

phi4 -0.03393216 0.14198889

theta1 0.96372038 0.04100168

theta2 0.48331617 0.23071063

log likelihood: 246.2311

Residual standard error: 0.03447009

aic: -3.66765

To remove a lag polynomial we indicate its possition with a negative integer. Here we replace
the two MA(1) polynomials with two MA(2) polynomials,

R> um3 <- modify(um1, ma = list(-1, -2, 2, c(2, 12)))

R> printLagpolList(um3$ma)

[1] 1 - 0.41B - 0.037B^2 [2] 1 - 0.6B^12 + 0.067B^24

José Luis Gallego 11

Time

S
t

1950 1952 1954 1956 1958 1960

0
.8

1
.0

1
.2

Figure 5: Seasonal components for AirPassengers estimated with RJDemetra and tfarima.

3.5. Forecasting

Point and interval forecast from a um object can be computed with the predict() function,
whose arguments n.ahead and level allow to set the lead time and the confidence levels. The
object returned by this function can be displayed with the plot() function, whose n.back

argument sets the number of previous observations to be shown.

R> p <- predict(um2, n.ahead = 12)

R> #plot(p, n.back = 48)

3.6. Unobserved components

The ucomp() function computes unobserved components for a time series based on an object
of class um, which can be graphed with the plot command. Figure 5 shows the seasonal
component estimated with the tfarima and RJDementra packages. We can see that, for this
time series, the results are practically identical.

R> uc1 <- ucomp(um2)

R> #plot(uc1)

R> library(RJDemetra)

R> ts1 <- tramoseats(AirPassengers, spec = "RSA5")

R> plot(ts1$final$series[,4], ylab = expression('S'[t]), col = "gray")

R> lines(exp(uc1$seas), lty = 2)

4. Customized seasonal ARIMA models

Three alternative forecasting methods, closely related to ARIMA models, are the linear re-
gression model with deterministic linear trend and seasonal dummies, the Holt-Winters expo-
nential smoothing method and the structural time series models. These three representations

12 Customized TFARIMA models in R

can be reformulated as ARIMA models with restrictions on the MA parameters. This section
illustrates the estimation of these restricted ARIMA models.

4.1. Regression models with deterministic components

It is well known that the linear regression model with deterministic trend and seasonalilty,

Yt = µ0 + µ1t +
s−1
∑

j=1

Djt + ut, t = 1, . . . , n (4)

is equivalent to the non-invertible multiplicative IMA(1,1)(1,1)s model

∇∇sYt = (1 − B)(1 − Bs)ut (5)

where the seasonal difference ∇s removes the intercept µ0 and the set of seasonal dummies
Djt and transforms the trend t into a constant ∇st = s, which is later removed by the regular
difference ∇ (see, e.g., Bell 1987). As a result of this equivalence, both models provide the
same residuals. The next code chunk estimates the linear regression model (4) with the
lm() function and the non-invertible IMA model (5) with the um() and arima() functions.
In Figure 6, we can see that the least-squares residuals of (4) and the exact residuals of (5)
computed by the um functions are the same series, which differs from the innovations provided
by the arima() function.

R> t <- 0:(length(AirPassengers) - 1)

R> D <- as.factor(cycle(AirPassengers))

R> reg <- lm(log(AirPassengers) ~ t + D)

R> ima1 <- um(AirPassengers, , bc = TRUE, i = list(1, c(1, 12)),

+ ma = "(1-B)(1-B12)", fit = FALSE)

R> ima2 <- arima(log(AirPassengers), order = c(0,1,1),

+ seasonal = list(order = c(0,1,1), frequency = 12),

+ fixed = c(-1, -1), transform.pars = FALSE, method = "ML")

R> res1 <- ts(residuals(reg), start = start(AirPassengers), frequency = 12)

R> res2 <- residuals(ima1)

R> res3 <- residuals(ima2)

Note that in the um() function we use the argument fit = FALSE because all the parame-
ters are fixed and we don’t need to estimate the model. If we extend this model with two
AR(2) operators, then to fix the non-invertible MA polynomials we have to create two MA
polynomials, MA(1) and MA(1)12, or a MA(13) polynomial with the lagpol() function set-
ting the values of the coefficients in the coef argument. Although it is not necessary, two
AR(2) polynomials are also created to highlight the way of creating a unrestricted and re-
stricted polynomials. Note that the argument ar = list(ar2, AR2) could be replaced by
ar = list(2, c(2, 12)).

R> #i1 <- lagpol(coef = 1); i12 <- lagpol(coef = 12); i <- list(i1, i12)

R> i <- lagpol(lags = c(1, 12, 13), coef = c(1,1,-1))

R> ar2 <- lagpol(param = c(phi1 = .1, phi2 = .1))

R> AR2 <- lagpol(param = c(PHI1 = .1, PHI2 = .1), s = 12)

R> um(AirPassengers, bc = TRUE, ar = list(ar2, AR2), i = i, ma = i)

José Luis Gallego 13

Time

re
s
1

1950 1952 1954 1956 1958 1960

−
0

.2
0

−
0

.1
0

0
.0

0
0

.1
0 lm

um
arima

Figure 6: Least-squares residuals, exact ARIMA residuals and innovations.

Estimate Std. Error

phi1 0.5697594 0.07460517

phi2 0.2755773 0.07525051

PHI1 0.4251549 0.07995199

PHI2 0.3131587 0.07636835

log likelihood: 243.8756

Residual standard error: 0.0333997

aic: -3.662224

4.2. Exponential smoothing

Roberts (1982) shown that the additive version of Holt-Winters method

Yt+h =µt + βth + St+h−s + ut+h

µt =µt−1 + βt−1 + α1ut

βt =βt−1 + α2ut

St =St−s + α3ut,

can be written as an ARIMA model

∇∇sYt = (1 − θ1B − θ2B2 − · · · − θs+1Bs+1)ut,

with θ1 = 1 − α1 − α2, θ2 = · · · = θs−1 = −α2, θs = 1 − α2 − α3, θs+2 = −(1 − α1 − α3). For
a monthly time series (s = 12), and assigning preestimates to the smoothing parameters, we
can create this class of restricted MA(13) polynomials as follows,

R> coef <- c("1-a1-a2", rep("-a2", 10), "1-a2-a3", "-(1-a1-a3)")

R> lp <- lagpol(param = c(a1 = 0.2, a2 = 0.1, a3 = 0.1), coef = coef)

R> lp

14 Customized TFARIMA models in R

1 - 0.7B + 0.1B^2 + 0.1B^3 + 0.1B^4 + 0.1B^5 + 0.1B^6 + 0.1B^7 +

0.1B^8 + 0.1B^9 + 0.1B^10 + 0.1B^11 - 0.8B^12 + 0.7B^13

In the following code chunk, the HW-ARIMA model is first estimated with the um function and
then the smoothing parameters are estimated with the hw() function of the forecast package,
choosing both optimal and simple preestimates of the initial states µ0, β0, S0, . . . , S−11.

R> library(forecast)

R> um0 <- um(AirPassengers, bc = TRUE, i = list(1, c(1, 12)), ma = lp)

R> hw1 <- hw(log(AirPassengers))

R> hw2 <- hw(log(AirPassengers), initial = "simple")

Given that the values of the likelihood provided by the two packages are not comparable, the
estimates of the smoothing parameters obtained with the forecast package are used to create
the equivalent HW-ARIMA model with the um() function and evaluate its log-likelihood.

R> a <- unname(hw1$model$par[1:3])

R> lp <- lagpol(param = c(a1 = a[1], a2 = a[2], a3 = a[3]), coef = coef)

R> um1 <- um(log(AirPassengers), i = list(1, c(1, 12)), ma = lp, fit = FALSE)

R> a <- unname(hw2$model$par[1:3])

R> lp <- lagpol(param = c(a1 = a[1], a2 = a[2], a3 = a[3]), coef = coef)

R> um2 <- um(log(AirPassengers), i = list(1, c(1, 12)), ma = lp, fit = FALSE)

R> cbind(hw_um = c(coef(um0), lik = logLik(um0)),

+ hw_simple = c(coef(um2), logLik(um2)),

+ hw_opt = c(coef(um1), logLik(um1)))

hw_um hw_simple hw_opt

a1 3.502908e-01 3.405976e-01 6.974804e-01

a2 9.648322e-04 1.485999e-04 3.058347e-03

a3 4.966692e-01 5.288037e-01 1.133132e-04

lik 2.379866e+02 2.379169e+02 2.292592e+02

4.3. Basic structural model

Harvey and Durbin (1986) consider a basic structural model with a trend µt, a seasonal St

and an irregular ut component for a seasonal time series Yt with frequency s observations per
unit of time,

Yt = µt + St + ut, ut ∼ iidN(0, σ2
u),

where the trend component is specified as

µt =µt−1 + βt−1 + vt, vt ∼ iidN(0, σ2
v)

βt =βt−1 + ω0t, ω0t ∼ iidN(0, σ2
w0

)

and the seasonal component St =
∑[s/2]

k=1 is formulated as the sum of [s/2] seasonal cycles with
frequencies 2πk/s(k = 1 . . . , [s/2]) given by

Sk,t =ckSk,t−1 + skS∗

k,t−1 + ωkt, ωkt ∼ iidN(0, σ2
wk

)

S∗

k,t = − skSk,t−1 + ckS∗

k,t−1 + ω∗

kt, ω∗

kt ∼ iidN(0, σ2
w∗

k
)

José Luis Gallego 15

being [s/2] the integer division, ck = cos(2πk/s) and sk = sin(2πk/s) and Skt = −Skt−1 + ωkt

for k = s/2 when s even. The set of shocks ut, vt and wkt (k = 0, . . . , [s/2]) are mutually
independent. The BSM reduces to an IMA(13,13) model ∇∇Yt = θ(B)at where complex
restrictions are imposed on the MA parameters.

For comparison purposes, a bsm() function has been added to the tfarima package to estimate
this class of models as special cases of ARIMA models so that the results obtained for both
models are directly comparable. The bsm() function can also be used to estimate the versions
of Harvey and Todd (1983) and Harrison and Stevens (1976) of this model.

For a vector of disturbances (vt, ω0t, ω1t, . . . , ω10t, ω11t)
′ with diagonal covariance matrix

diag(Σ) = (σ2
v , σ2

0, σ2
ω, . . . , σ2

ω, 0.5σ2
ω),

the bsm() function provide the following results

R> bsm1 <- bsm(AirPassengers, bc = TRUE)

R> bsm1

Var Ratio

lvl 2.984008e-04 1.000000e+00

slp 1.256387e-10 4.210401e-07

seas 3.560024e-06 1.193034e-02

irr 2.345546e-04 7.860387e-01

log likelihood: 242.0884

The reduced form of the bsm1 model can be found wiht the rfom() function,

R> rf1 <- rform(bsm1)

R> nabla(rf1)

1 - B + 6.9e-16B^2 - 7.2e-16B^3 - 3.9e-16B^4 + 1.1e-17B^5 + 7e-16B^6

- 9.8e-16B^7 - 7.2e-16B^8 + 1.8e-15B^9 - 3.1e-16B^10 + 8.2e-16B^11 -

B^12 + B^13

R> theta(rf1)

1 - 0.52B + 0.024B^2 - 0.047B^3 + 0.025B^4 - 0.041B^5 + 0.021B^6 -

0.039B^7 + 0.012B^8 - 0.046B^9 - 0.012B^10 - 0.08B^11 - 0.46B^12 +

0.17B^13

The reduced form rf1 is an object of class um and can be used to compute residuals, as well
as to forecast and decompose time series. The BSM can be compared with basic ARIMA
model estimated in the following subsection.

4.4. Factored seasonal ARIMA models

As the Holt-Winters method, the ARIMA(0, 1, 1)(0, 1, 1)s model,

(1 − B)(1 − Bs)zt = (1 − θB)(1 − ΘBs)at, (6)

16 Customized TFARIMA models in R

doesn’t not allow to identify neither series with deterministic linear trend and stochastic
seasonality nor series with stochastic linear trend and deterministic seasonality. The first
type of series would arise with the cancellation of the two regular differences (1 − B)2 on
both sides of the equation, while the second one would imply the cancellation of the annual
sum operator 1 + B + · · · + Bs−1. It is not possible either to identify series with mixed
deterministic-stochastic seasonality, which would require the cancellation of some, but not
all, factors of the seasonal difference. To overcome these restrictions Gallego and Treadway
(1995) considered two generalizations of (6): the basic generalization with three parameters

(1 − B)2(1 + B + · · · + Bs−1)zt = (1 − θB)(1 − Θ
1/s
0 B)(1 + Θ

1/s
1 B + · · · + Θ

(s−1)/s
1 Bs−1)at (7)

and the full generalization with [s/2] + 1 parameters

(1 − B)2(1 + B)

[(s−1)/2]
∏

k=1

(1 − 2 cos(2πk/s)B + B2)zt =

(1 − θB)(1 − Θ
1/s
0 B)[(1 + Θ

1/s
s/2B)]

[(s−1)/2]
∏

k=1

(1 − 2 cos(2πk/s)Θ
1/s
k B + Θ

2/s
k B2)at.

(8)

Note that model (8) reduces to (7) when Θk = Θ1 for k = 1, . . . , [s/2], and (7) reduces to
(6) when Θ0 = Θ1. In both equations (7) and (8), the linear trend is deterministic when
θ = Θ0 = 1, and seasonality is deterministic when Θ1 = Θk = 1 for k = 1, . . . , [s/2].
In (8), mixed deterministic-stochastic seasonality would arise when Θk = 1 for some k ∈
{1, . . . , [s/2]}. Note also that the paramaters Θk are rised to a power multiple of 1/s to ease
the comparisons with the airline model (6), but such powers could be omited.

The basic generalized airline model with three MA parameters (7) can be created and esti-
mated as follows

R> coef <- paste("-Theta1^(", 1:11,"/12)", sep = "")

R> lp3 <- lagpol(param = c(Theta1 = 0.8), coef = coef)

R> lp2 <- lagpol(param = c(Theta0 = 0.8), coef = "Theta0^(1/12)")

R> bam1 <- um(AirPassengers, bc = TRUE, i = list(1, c(1,12)),

+ ma = list(1,lp2,lp3))

R> bam1

Estimate Std. Error

theta1 0.3789938 0.07891351

Theta0 0.9994439 0.25674367

Theta1 0.5405008 0.07621691

log likelihood: 245.7904

Residual standard error: 0.0346022

aic: -3.706724

We can see that the basic factorization of the MA(1)12 polynomial reveals the presence of a
unit MA root that implies a linear trend with a deterministic slope, which is coherent with
the estimates of the BSM reported in the previous subsection. It is interesting to compare the

José Luis Gallego 17

roots of the MA polynomial of these models. We can see that the seasonal MA roots of the
bam1 model are exactly at the range of seasonal frequencies 1/12, 2/12, . . . , 0.5, while that the
corresponding MA roots in the codebsm1 are very close to this range of frequencies. Another
difference is that all the seasonal MA roots in the bam1 model have the same modulus, which
doesn’t ocurr in the bsm1 model. Finally, the log-likehood is slightly superior for the bam1

model.

R> rbam1 <- roots(bam1$theta)

R> rbsm1 <- roots(rf1$t)

R> cbind(rbam1[, 3:5], rbsm1[, 3:5])

Modulus Frequency Period Modulus Frequency Period

[1,] 1.000046 0.00000000 Inf 1.000652 0.00000000 Inf

[2,] 2.638565 0.00000000 Inf 2.920373 0.00000000 Inf

[3,] 1.052609 0.08333333 12.0 1.036727 0.08301823 12.045548

[4,] 1.052609 0.08333333 12.0 1.036727 0.08301823 12.045548

[5,] 1.052609 0.16666667 6.0 1.058420 0.16642798 6.008605

[6,] 1.052609 0.16666667 6.0 1.058420 0.16642798 6.008605

[7,] 1.052609 0.25000000 4.0 1.068622 0.24987214 4.002047

[8,] 1.052609 0.25000000 4.0 1.068622 0.24987214 4.002047

[9,] 1.052609 0.33333333 3.0 1.073313 0.33327280 3.000545

[10,] 1.052609 0.33333333 3.0 1.073313 0.33327280 3.000545

[11,] 1.052609 0.41666667 2.4 1.074949 0.41666987 2.399982

[12,] 1.052609 0.41666667 2.4 1.074949 0.41666987 2.399982

[13,] 1.052609 0.50000000 2.0 1.109723 0.50000000 2.000000

In the same way that a structural model can be reduced to an ARIMA model, an ARIMA
model can be formulated as a structural model, which can be thought of as the solution of
the difference equation of the ARIMA model. The sform() function returns the structural
form of an ARIMA model,

R> sf1 <- sform(bam1)

R> sf1$b # vector link

[1] 1.000000e+00 1.297573e-15 1.000000e+00 6.390409e-16

[5] 1.000000e+00 5.979725e-16 1.000000e+00 2.075947e-15

[9] 1.000000e+00 -6.251810e-16 1.000000e+00 0.000000e+00

[13] 1.000000e+00

R> sf1$C[3:4, 3:4] # State-transition submatrix

[,1] [,2]

[1,] 0.8660254 0.5000000

[2,] -0.5000000 0.8660254

R> diag(sf1$Sv)

18 Customized TFARIMA models in R

[1] 0.0004262411 0.0003847401 0.0003472818 0.0003134723 0.0002829560

[6] 0.0002554122 0.0002305511 0.0002081114 0.0001878572 0.0001695756

[11] 0.0001530744 0.0008046841 0.0004266362

We can see that the disturbances of the seasonal components for the bam1 don’t have equal
variances.

The generalized airline model with seven MA parameters (8) can be created and estimated
as follows

R> lp0 <- lagpol(param = c(Theta0 = 0.5), coef = "Theta0^(1/12)")

R> lp6 <- lagpol(param = c(Theta6 = 0.5), coef = "-Theta6^(1/12)")

R> lp15 <- lapply(1:5, function(k) {

+ th <- paste("Theta", k, sep = "")

+ param <- 0.8

+ names(param) <- th

+ coef1 <- paste("2*cos(2*pi*", k, "/12)*", th, "^(1/12)", sep = "")

+ coef2 <- paste("-", th, "^(2/12)", sep = "")

+ lagpol(param = param, coef = c(coef1, coef2))

+ })

R> gam <- um(AirPassengers, bc = TRUE, i = list(1, c(1,12)),

+ ma = list(1, lp0,lp15,lp6))

R> gam

Estimate Std. Error

theta1 0.4493981 0.09018171

Theta0 0.9991544 0.23126557

Theta1 0.4500810 0.14400633

Theta2 0.4432250 0.12780458

Theta3 0.9914946 0.15453472

Theta4 0.5378578 0.15690862

Theta5 0.6285395 0.12799566

Theta6 0.9958152 0.20530270

log likelihood: 249.2741

Residual standard error: 0.03292445

aic: -3.683575

5. Transfer function models

Transfer function models describes the dynamic relationship between an output Yt and one
or several inputs Xjt. The impulse response function (IRF) νj(B) = νj0 + νj1B + νj2B2 + . . .
for each input Xjt can be approximated by the rational transfer function of order (rj , sj , bj)

νj(B) = wj0
wjsj

(B)

δjrj
(B)

Bbj , (9)

José Luis Gallego 19

where bj is the delay or dead time, wj0 = νjb is the first non-null coefficient of the IRF νj(B),
and δjrj

(B) = 1 − δj1B − · · · − δjrj
Brj and wjsj

(B) = 1 − ωj1B − · · · − ωjrj
Brj are here

polynomials of order sj and rj that, like the AR and MA operators of (1), can be expressed
as the product of multiple normalized polynomials of the class (2)-(3). Note that the wjsj

(B)
polynomial multiplied by the scalar wj0 would correspond to the form of the polynomial
ω(B) = w0 − w1B − · · · − wsBs defined by Box et al. (2016).

Combining (1) and (9) we obtain a rich class of TF models for an output Yt given by

Yt =
k

∑

j=1

wj0
ωjsj

(B)

δjrj
(B)

Bbj Xjt + Nt

δd(B)Nt =µ +
ϑq(B)

ϕp(B)
at,

(10)

where the noise Nt follows a general ARIMA(p, d, q) model of the class (1). This specification
contains as special cases the intervention models used to deal with four common types of
outliers: additive outlier (AO), innovative outlier (IO), level shift (LS) and transitory change
(TC), see, e.g., Box and Tiao (1975) and Chen and Liu (1993).

5.1. The tfm class: transfer function models

To create TF models defined by equation (10), we have to create previously both the TF for
each input and the UM for the noise. The tf() function of the tfarima package specifies the
TF for a particular input,

tf <- function(x = NULL, delay = 0, w0 = 0.1, ar = NULL, ma = NULL,

um = NULL, par.prefix = "")

where the input x is an object of class "ts", delay is an integer value for the input lag, w0 a
numeric value for the parameter w0 of the TF, ar and ma are lists of objects of class lagpol

in the denominator (AR) and numerator (MA) of the TF, um is an optional object of class
um used to back/forecast the input x, and par.prefix is an optional character to set a prefix
for the parameters of the TF. Any of the three ways described to provide lag polynomials in
the um() function can also be used with the tf() function.

Once we have specified a TF for each input, we can create a TF model with the tfm()

function,

tfm <- function(output = NULL, xreg = NULL, inputs = NULL, noise, fit = TRUE)

where output is an object of class ts, xreg is a vector or matrix of regressors, inputs is a
list of objects of class tf, noise is an object of class um with the UM for the noise, fit is a
logical value indicating whether or not to fit the TF model. Two comments are in order: (1)
if the um object for the output is set to the noise argument, then it is not necessary provide
the output argument because it is already contained in this um object; (2) time series for
the inputs and regressors must have at least the same length as the output, but they can be
extended with backcasts and forecasts to improve the estimation or to forecast the output
(more on that later).

20 Customized TFARIMA models in R

−15 −10 −5 0 5 10 15

−
0
.4

−
0
.1

Lag

C
C

F

ρ(Xt+k,Yt)

Figure 7: Estimated cross correlation function.

The function returns an object of class tfm, whose main data members are xreg, inputs

and noise. Some useful methods for these of objects are: noise(), fit(), diagchk(),
calendar(), outliers(), predict() and ucomp(), which are illustrated in the following
subsections.

5.2. Building transfer function models

To illustrate the Box-Jenkins approach to the identification, fitting and checking of TF models,
we replicate the analysis of the gas furnace data by Box et al. (2016), Series J. They identify
and fit an AR(3) model for the input Xt, which can be also fitted to the output Yt:

R> Y <- seriesJ$Y - mean(seriesJ$Y)

R> X <- seriesJ$X - mean(seriesJ$X)

R> umx <- um(X, ar = 3)

R> umy <- fit(umx, Y)

This umx model is used to prewhiten the input X and the output Y . The residuals()

function of the tfarima package compute the conditional or exact residuals for a time series
from an object of class um:

R> a <- residuals(umx, Y, method = "cond")

R> b <- residuals(umx, X, method = "cond")

Now we can use the ccf() function of the stats package to display the estimated cross
correlation function for the gas furnace data after filtering. Alternatively, we can use the
pccf() function of the tfarima defined as

R> pccf(X, Y, um.x = umx, um.y = NULL, lag.max = 16)

where x and y are the input and the output, um.x and um.y are the univariate models used
to prewhiten both series, and lag.max is the number of correlation in each side. If both um.x

and um.y arguments are equal to NULL, the ccf is estimated without prewhitening; if only
one of these arguments is equal to NULL, the um provided is used to prewhiten both series;
otherwise, each series is prewhitenned by its own UM.

As in Box et al. (2016) we identify a TF with orders (1, 2, 3) or (2, 2, 3), see Figure 7.

Preestimates of the parameters of the TF can be computed with the tfest() function

José Luis Gallego 21

R> tfx <- tfest(Y, X, delay = 3, p = 2, q = 2, um.x = umx, um.y = umy)

where we provide the output and the input, the delay, the orders of the AR and MA lag poly-
nomials of the TF, and the UMs for the input and the output. The extended lag polynomials
of the TF are stored into the data members theta and phi.

R> printLagpol(tfx$theta)

- 0.51 - 0.32B - 0.48B^2

R> printLagpol(tfx$phi)

1 - 0.65B + 0.087B^2

Box et al. (2016) fit the following TF model:

Yt =
w0 − w1B − w2B2

1 − δ1B − δwB2
Xt + Nt,

Nt =
1

1 − φ1B − φ2B2
at,

which can be estimated as follows:

R> tfmy <- tfm(Y, inputs = tfx, noise = um(ar = 2))

R> printLagpol(tfmy$inputs[[1]]$theta)

- 0.53 - 0.37B - 0.51B^2

R> printLagpol(tfmy$inputs[[1]]$phi)

1 - 0.56B + 0.011B^2

R> printLagpol(tfmy$noise$phi)

1 - 1.5B + 0.63B^2

where we can see that the estimates are very close to those reported by Box et al. (2016):
ω̂0 = −0.53, ω̂1 = 0.33, ω̂2 = 0.51, δ̂1 = 0.57, δ̂2 = 0.02, φ̂1 = 1.54, φ̂2 = −0.64.

It is worth mentioning that the tfm() function uses the backcasting method to extend the
input using its own UM so that the effect of transients can be minimized. The number of
backcasts is set by the n.back argument, which by default is n/4. The UM of the input is
also used to compute forecasts when forecasting the output.

As a second illustration, Box et al. (2016, p. 409) consider a TF model to predict sales data
using a leading indicator. Pankratz (1991, p. 202) estimated this model using the SCA system
and the first 140 observations,

∇Yt =0.033 +
4.716

1 − 0.725B
∇Xt−3 + (1 − 0.620B)ât

∇Xt =(1 − 0.4483B)b̂t.

22 Customized TFARIMA models in R

Before comparing these estimates with those provided by the tfarima package, we can com-
pute the exact value of the concentrated likelihood function of this TF model. To this end,
we first create the model without estimating the parameters and then we call the logLik

function:

R> Y <- window(BJsales, end = 140)

R> X <- window(BJsales.lead, end = 140)

R> umy <- um(Y, i = 1, ma = "1-0.620B", mu = 0.033, fit = FALSE)

R> umx <- um(X, i = 1, ma = "1 - 0.4483B", fit = FALSE)

R> tfx <- tf(X, delay = 3, w0 = 4.716, ar = "1-0.725B", um = umx)

R> tfmy <- tfm(output = Y, inputs = tfx, noise = umy, fit = FALSE)

R> c(logLik(tfmy), logLik(umx))

[1] 7.157349 -23.832730

Without the previous information we would estimate the TF model for the sales data with
the following code chunk:

R> umy <- um(Y, i = 1, ma = 1, mu = mean(diff(Y)))

R> umx <- um(X, i = 1, ma = "1-0.8B")

R> #pccf(Y, X, um.x = umx, lag.max = 20)

R> tfx <- tfest(Y, X, delay = 3, p = 1, q = 0, um.y = umy, um.x = umx)

R> tfmy <- tfm(output = Y, inputs = tfx, noise = umy)

R> c(coef(tfmy), lik = logLik(tfmy))

X X.d1 mu theta1 lik

4.71938012 0.72564183 0.02572325 0.53875615 8.01622163

R> c(coef(umx), lik = logLik(umx))

theta1 lik

0.4480407 -23.8327217

Following the Box-Jenkins textbook example, forecasts from origin 89 for lead times from 1
to 10 are generated and shown in Figure 8.

R> p <- predict(tfmy, n.ahead = 10, ori = 89)

R> plot(p, n.back = 15, ylab = expression("Y"["t"]))

6. Intervention analysis and outlier detection

Intervention models suggested by Box and Tiao (1975) are special cases of TF models and
can be estimated with the tfm() function to take care of outliers. For example, Box et al.
(2016) identify three innovational outliers (IO) at times 58, 59 and 60 in the Series C, the

José Luis Gallego 23

Time

Y
t

75 80 85 90 95

2
1
0

2
3
0

2
5
0

Figure 8: Forecast of sales at origin t = 89.

“uncontrolled” temperature readings every minute in a chemical process. To estimate the
effects of these IOs they fit the outlier model:

(1 − B)Yt =
1

1 − φB
(w1P

(58)
t + w2P

(59)
t + w3P

(60)
t + at),

where P
(τ)
t is a pulse function at τ :

P
(τ)
t =

{

0 t 6= τ

1 t = τ

They estimated the model by conditional least squares (CLS) and obtained the following
results (s.e. in parenthesis): φ̂ = 0.851(0.035), ω̂1 = 0.745(0.116), ω̂2 = −0.551(0.120),
ω̂1 = −0.455(0.116), σ̂2

a = 0.0132. This model can be reformulated as a single input transfer
function model:

Yt =w0
(1 − w′

1B − w′

2B2)

(1 − φB)(1 − B)
P

(58)
t + Nt

Nt =
1

(1 − φB)(1 − B)
at,

(11)

where the input and the noise share the same ARI operators. The capabilities of the tfarima

package to estimate models with multiple operators and parameter restrictions allows us to
estimate this model by running the following code:

R> Y <- as.ts(seriesC)

R> um1 <- um(Y, ar = 1, i = 1, method = "cond")

R> P58 <- InterventionVar(Y, 58)

R> tf58 <- tf(P58, ma = 2, ar = c(um1$ar, um1$i))

R> tfm1 <- tfm(inputs = tf58, noise = um1)

R> tfm1

Estimate Std. Error

P58 0.7447334 0.1183491

P58.w1 0.7405461 0.2053821

P58.w2 0.6110603 0.1869052

24 Customized TFARIMA models in R

phi1 0.8512211 0.0355065

log likelihood: 161.8301

Residual standard error: 0.1180356

aic: -1.402934

R> printLagpol(tfm1$inputs[[1]]$theta, digits = 3)

0.745 - 0.552B - 0.455B^2

Firstly, we load the Series C and fit an ARIMA(1,1,0) model, which is used as noise model.
Next, we create a pulse variable at τ = 58 and its transfer function by providing the order of
the MA polynomial and the ARI operators of the um1 model. Finally, we create and fit the
transfer function model which is made up of a single input and an ARIMA(1,1,0) noise. We
can see that the results of the estimation by conditional likelihood maximum are very similar
to those reported by Box et al. (2016).

The outliers() function implements a version of the Chen and Liu (1993) procedure to detect
and correct the effects of four common types of anomalies: additive outliers, innovational
outliers, level shifts and transitory changes. We apply this function to model um1 and use a
critical value c = 3.5 to determine if an observation is anomalous:

R> tfm2 <- outliers(um1, c = 3.5)

R> tfm2

Estimate Std. Error

LS58 0.7037228 0.08971299

IO60 -0.4560648 0.11841531

phi1 0.8535311 0.03524750

log likelihood: 161.6899

Residual standard error: 0.1181278

aic: -1.410577

The function detects two outliers at times 58 and 60 of type LS and IO, respectively. Note
that model tfm2 is compatible with model tfm1 since (11) can be reformulated as

Yt = w0
(1 − w′

1B)

(1 − φB)
S

(58)
t − w0 ∗ w′

2P 60
t + Nt,

where S58
t = (1−B)−1P 58

t is a step function at T = 58 and w′

1 ≃ φ. The outliers() function
can also be used to identify and estimate the effects of some types of outliers at known times:

R> tfm3 <- outliers(um1, dates = c(58, 59, 60), types = c("AO", "LS"))

R> summary(tfm3)$table

Estimate Gradient Std. Error z Value Pr(>|z|)

LS58 0.90083708 2.764073e-08 0.10556934 8.533132 1.424382e-17

LS59 0.39900251 1.525865e-08 0.11016572 3.621839 2.925162e-04

AO60 0.09983522 -5.708279e-08 0.05530577 1.805150 7.105116e-02

phi1 0.84876909 1.157228e-07 0.03567670 23.790574 4.181158e-125

José Luis Gallego 25

More information on the type of intervention needed at a known time can be obtained with the
intervantion() function, which shows the estimates for one or several intervention variables

R> intervention(um1, type = c("AO", "LS", "TC", "IO"), time = 58)

AO58 LS58 TC58(1) IO58

Estimate 2.676559e-01 7.044211e-01 7.036062e-01 7.617154e-01

Gradient 2.560198e-07 6.257278e-06 1.757167e-05 3.214669e-05

Std. Error 5.826450e-02 9.317969e-02 1.010188e-01 1.269253e-01

z Value 4.593808e+00 7.559814e+00 6.965101e+00 6.001288e+00

Pr(>|z|) 4.352294e-06 4.036472e-14 3.281681e-12 1.957585e-09

where the number between parenthesis next to the name of the TC variable is the estimate
of the AR parameter. In this case, the temporary change reduces to a level shift.

7. Calendar effects

Hillmer (1982) used the telephone data of Thompson and Tiao (1971) to illustrate how to
forecast time series with trading day variation. This data refers to outward station movements
(disconnections) of the Wisconsin telephone company from January 1951 to October 1968.
Clearly the series exhibits increasing seasonality and an upward trend requiring logs and both
types of differences (regular and seasonal). Besides, it is affected by the number of trading
days in a month because there are more disconnections on weekdays than on weekends. Due
to these calendar effects, the sample ACF and PACF of ∇∇ log(Yt) do not have a recognizable
pattern. Hence, to identify a tentative ARMA structure for this series, the calendar effects
are removed by fitting the regARIMA model

log(Zt) = TDt + Nt, ∇∇12Nt = at,

where

TDt =
7

∑

j=1

αjXjt + Nt (12)

and Xjt, i = 1, ..., 7, are, respectively, the number of Mondays, Tuesdays, and so on in month
t and Nt is the noise. Defining β0 =

∑7
j=1 αj/7 and Lt = X1t + · · · + X7t (length of month

t), the regression component TDt =
∑

j=1 αjXjt can be reparametrized as

TDt = β0Lt +
6

∑

j=1

β1(Xjt − X7t) (13)

where βj = αj − β0 for j = 1, . . . , 6 .

The calendar() function enlarges an ARIMA or a TF model by adding calendar variables:

calendar <- function(mdl, z = NULL, form = c("td", "td7", "td6", "wd"),

ref = 0, lom = TRUE, lpyear = TRUE, easter = FALSE, len = 4,

easter.mon = FALSE, p.value = 1, n.ahead = 0, ...)

26 Customized TFARIMA models in R

where mdl is an object of class um or tfm and form is a character indicating the type of
representation for TDt: "td", equation (13); "td7", equation (12); "td6", equation (13) without
Lt; "wd", a variable for the 5 working days and another for the two weekend days. For
representations "td" and "td6", the argument ref sets the reference day, by default it is
Sunday. Instead of the length-of-month variable Lt, the leap year indicator can be included
by setting lpyear = TRUE and lom = FALSE. Besides, Easter effects can be captured with an
Easter variable whose values are the proportion of days of the Easter period ocurring in a
particular month, ussually March and/or April. The duration of the Easter period is set with
the len argument and can include the Easter Monday, easter.mon = TRUE. Other arguments
are: p.value, used to remove the non-significant variables, and n.ahead, optional integer to
extend the regressors with future observations to forecast the output.

To estimate this regARIMA model, we create an ARIMA(0,1,0)(0,1,0)12 model without pa-
rameters and call the calendar() function, first with form = "td" and then with form =

"td7". It can be checked that both representations are equivalent.

R> Y <- Wtelephone$Y

R> umY <- um(Y, bc = TRUE, i = list(1, c(1,12)))

R> td <- calendar(umY, n.ahead = 13)

R> td7 <- calendar(umY, form = "td7", n.ahead = 13)

R> bTD <- coef(td); bTD7 = coef(td7)

R> cbind(bTD, cbind(c(bTD7[2:7]- mean(bTD7), mean(bTD7))))

bTD

Mon_Sun 0.018741626 0.018741626

Tue_Sun 0.026319985 0.026319985

Wed_Sun 0.013239777 0.013239777

Thu_Sun 0.001581267 0.001581267

Fri_Sun 0.011129339 0.011129339

Sat_Sun -0.045970854 -0.045970854

lom -0.025984496 -0.025984496

Alternatively, we could estimate this model generating the calendar variables and creating a
tfm object:

R> X <- CalendarVar(Y, form = "td7", n.ahead = 13)

R> tfmY <- tfm(xreg = X, noise = umY)

where the Y argument in the CalendarVar() function is used to get the sample period.

We can recover the noise Nt or its transformations exp(Nt) and ∇∇12Nt with the function

noise <- function(tfmY, diff = TRUE, exp = FALSE)

where diff is a logical value indicating if the noise must be differenced and exp is a logical
value indicating if the antilog must be applied to the non-differenced noise. Note that these
transformations are determined by the noise model.

Now we can identify a pattern in the ACF and PACF of the corrected series compatible with
an ARIMA(0,1,1)(0,1,1)12:

José Luis Gallego 27

t

∇∇
1

2
lo

g
(y

1
t)

1955 1960 1965

−
0
.2

0
.0

0
.2

0
.4

−
0
.5

0
.0

0
.5

lag

A
C

F

12 24 36

−
0
.5

0
.0

0
.5

lag

P
A

C
F

12 24 36

t

∇∇
1

2
lo

g
(y

2
t)

1955 1960 1965

−
0
.2

0
.0

0
.2

−
0
.4

0
.0

0
.2

0
.4

lag

A
C

F

12 24 36

−
0
.4

0
.0

0
.2

0
.4

lag

P
A

C
F

12 24 36

Figure 9: Identification tools for original and corrected telephone data.

R> y <- noise(tfmY, diff = FALSE, exp = TRUE)

R> ide(list(Y, y), transf = list(bc = T, d = 1, D = 1))

The two MA operators can be added to the tfmY object with the modify() function:

R> tfmY <- modify(tfmY, ma = list(1, c(1,12)))

R> tfmY

Estimate Std. Error

Sun -0.042666358 0.01809336

Mon 0.006352052 0.01706942

Tue 0.005981991 0.01810221

Wed 0.002218116 0.01728891

Thu -0.019814682 0.01773134

Fri -0.003301995 0.01755550

Sat -0.065388393 0.01736859

theta1 0.742658333 0.04579664

theta2 0.456092445 0.06809570

log likelihood: 338.1755

Residual standard error: 0.04367511

aic: -3.259164

Finally, we could predict future values:

R> p <- predict(tfmY, n.ahead = 13)

R> print(p, rows = c(1, 13))

Forecast RMSE 95% LB 95% UB

dic 1968 18482.13 0.04396946 16956.07 20145.54

dic 1969 20113.80 0.06769674 17614.51 22967.71

28 Customized TFARIMA models in R

For the sake of completeness, we estimate the ARIMA model developed by Thompson and
Tiao (1971):

(1 − φ1B3)(1 − φ2B12) log(Yt) = (1 − θ9B9 − θ12B12 − θ13B13)at

R> ma <- lagpol(c(theta9 = .2, theta12 = .2, theta13 = .2),

+ lags = c(9, 12, 13))

R> TT <- um(Y, bc = TRUE, ar = list(c(1, 3), c(1, 12)), ma = ma)

R> TT

Estimate Std. Error

phi1 0.94158802 0.030531610

phi2 0.99557584 0.004359192

theta9 -0.23538081 0.064989826

theta12 0.31958805 0.067679083

theta13 0.03334713 0.062176433

log likelihood: 235.9692

Residual standard error: 0.06568544

aic: -2.148551

8. Summary

We have presented some of the capabilities offered by the tfarima package to build customized
TF and ARIMA models, which can include multiple conventional and user-defined lag polyno-
mials. The package provides a full set of functions to apply the three stages of the Box-Jenkins
methodology: identification, estimation and diagnosis of TF-ARIMA models, which can be
used to forecast and decompose time series. Currently the package is been improved to in-
clude tests for a diversity of MA unit roots. A multivariate version of the package is also
being developed.

References

Bell W (1987). “A Note on Overdifferencing and the Equivalence of Seasonal Time Series
Models with Monthly Means and Models with (0,1,1)12 Seasonal Parts When θ = 1.”
Journal of Business & Economic Statistics, 5(3), 383–387. ISSN 07350015. URL http:

//www.jstor.org/stable/1391613.

Bell WR, Hillmer SC (1983). “Modeling Time Series With Calendar Variation.” Journal
of the American Statistical Association, 78(383), 526–534. ISSN 01621459. URL http:

//www.jstor.org/stable/2288114.

Box GEP, Jenkins GM (1970). Time Series Analysis: Forecasting and Control. 2nd edition.
Holden-Day, San Francisco, CA.

José Luis Gallego 29

Box GEP, Jenkins GM, Reinsel GC, Ljung GM (2016). Time Series Analysis: Forecasting
and Control. 5th edition. John Wiley and Sons Inc., Hoboken, New Jersey. ISBN 978-1-
118-67502-1.

Box GEP, Pierce DA, Newbold P (1987). “Estimating Trend and Growth Rates in Seasonal
Time Series.” Journal of the American Statistical Association, 82(397), 276–282.

Box GEP, Tiao GC (1975). “Intervention Analysis with Applications to Economic and En-
vironmental Problems.” Journal of the American Statistical Association, 70(349), 70–79.
URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1975.10480264.

Chan KS, Ripley B (2018). TSA: Time Series Analysis. R package version 1.2, URL https:

//CRAN.R-project.org/package=TSA.

Chen C, Liu LM (1993). “Joint Estimation of Model Parameters and Outlier Effects in
Time Series.” Journal of the American Statistical Association, 88(421), 284–297. URL
https://doi.org/10.1080/01621459.1993.10594321.

Durbin J, Koopman S (2001). Time series analysis by state space methods. Oxford University
Press, Oxford; New York.

Gallego J, Treadway A (1995). “The general family of seasonal stochastic procresses.” De-
partamento de Economía, Universidad de Cantabria.

Harrison PJ, Stevens CF (1976). “Bayesian Forecasting.” Journal of the Royal Statistical
Society. Series B (Methodological), 38(3), 205–247. ISSN 00359246. URL http://www.

jstor.org/stable/2984970.

Harvey AC, Durbin J (1986). “The effects of seat belt legislation on Brithish road casualties:
a case study in structural time series modelling.” JRSSA, 149(4), 187–227.

Harvey AC, Todd P (1983). “Forecasting Economic Time Series with Structural and Box-
Jenkins Models: A Case Study.” JBES, 1(4), 299–307.

Hillmer SC (1982). “Forecasting time series with trading day variation.” Journal of Forecast-
ing, 4(1), 385–95.

la Tente AQ, Michalek A, Palate J, Baeyens R (2021). RJDemetra: Interface to JDemetra+
Seasonal Adjustment Software. Package Version 0.1.7, URL https://cran.r-project.

org/web/packages/RJDemetra/index.html.

Ljung GM, Box GEP (1979). “The likelihood function of stationary autoregressive-moving
average models.” Biometrika, 66(2), 265–270. URL https://doi.org/10.1093/biomet/

66.2.265.

Pankratz A (1991). Forecasting with Dynamic Regression Models. John Wiley and Sons, New
York.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

30 Customized TFARIMA models in R

Roberts SA (1982). “A General Class of Holt-Winters Type Forecasting Models.” Management
Science, 28(7), 808–820. ISSN 00251909, 15265501. URL http://www.jstor.org/stable/

2631264.

Sax C, Eddelbuettel D (2018). “Seasonal Adjustment by X-13ARIMA-SEATS in R.” Journal
of Statistical Software, 87(11), 1–17. doi:10.18637/jss.v087.i11. URL https://www.

jstatsoft.org/index.php/jss/article/view/v087i11.

Stoffer D (2021). Applied Statistical Time Series Analysis. R package version 1.14, URL
https://CRAN.R-project.org/package=TSA.

Thompson H, Tiao GC (1971). “Analysis of Telephone Data: A Case Study of Forecasting
Seasonal Time Series.” 2, 515–541.

Tsay RS, Wood D, Lachmann J (2022). All-Purpose Toolkit for Analyzing Multivariate Time
Series (MTS) and Estimating Multivariate Volatility Models. R package version 1.1.1, URL
https://CRAN.R-project.org/package=TSA.

Tusell F (2011). “Kalman Filtering in R.” Journal of Statistical Software, 39(2), 1–27. doi:

10.18637/jss.v039.i02. URL https://www.jstatsoft.org/index.php/jss/article/

view/v039i02.

Affiliation:

José Luis Gallego
Department of Economics
Faculty of Economics and Buisness
Universidad de Cantabria
Avda. de los Castros s/n
39005 Santander, Spain
E-mail: jose.gallego@unican.es

