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evaluate_rf_model Evaluate a Random Forest Model on Test Data
Description

Evaluate a Random Forest Model on Test Data

Usage

evaluate_rf_model(
rf_model,
test_texts,
test_labels,
tfidf_model,

vectorizer,
stopwords,
verbose = TRUE
)
Arguments
rf_model A trained ‘ranger‘ model object.
test_texts A vector of raw test texts.
test_labels A factor vector of true labels.

tfidf_model The TF-IDF transformer used for training.

vectorizer The vectorizer used to build DTM.

stopwords A character vector of stopwords.

verbose Whether to print progress. Default TRUE.
Value

A list with test accuracy, test predictions, and aligned test data.
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handle_negation Handle Negation in Token List

Description

This function processes a character vector of tokens and handles negations by combining the word
"not" with the immediately following word (e.g., "not happy" becomes "not_happy"). This tech-
nique helps to better preserve sentiment polarity during text analysis.

Usage

handle_negation(tokens)

Arguments

tokens A character vector of tokens (individual words).

Details
The negation handling procedure follows these steps:

¢ Iterate through each token.

 If atoken is "not" and followed by another token, merge them into a single token separated by
an underscore (e.g., "not_happy").

* Skip the next token after merging to avoid duplication.

* Otherwise, keep the token unchanged.

This method is especially useful in sentiment analysis tasks where the presence of negations can
invert the sentiment polarity of words.

Value

A character vector of tokens with negations handled by combining "not" with the next word.

Examples
handle_negation(c("i"”, "am”, "not", "happy"))
# Returns: c("i", "am", "not_happy")

handle_negation(c("this"”, "is", "not"”, "good"”, "but”, "not", "terrible"))

]

# Returns: c("this”, "is"”, "not_good”, "but", "not_terrible")

handle_negation(c("nothing”, "to", "worry", "about"))
# Returns: c("nothing”, "to"”, "worry", "about")
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predict_emotion_with_emoji
Predict Emotion with Emoji Representation

Description

This function takes input text, preprocesses it, extracts TF-IDF features using a pre-trained model,
predicts the emotion using a trained classifier, and returns the result with optional emoji represen-

tation.
Usage

predict_emotion_with_emoji(text, output_type = "textemoji")
Arguments

text Character string containing the text to analyze.

output_type Type of output to return. Must be one of:

* "emotion" - returns only the predicted emotion label
* "emoji" - returns only the corresponding emoji

* "textemoji" - returns original text appended with predicted emoji (default)

Value
Depending on output_type:

* For "emotion": character string of predicted emotion
* For "emoji": character string of corresponding emoji

* For "textemoji": original text with appended emoji

The function also prints the result to console.

Examples

## Not run:

# This example is not run because it requires manually downloading
# a large external model (~3@0MB), which cannot be retrieved automatically
# and may fail in offline environments.

predict_emotion_with_emoji("I'm so happy today!")
predict_emotion_with_emoji("This makes me angry”, "emoji")
predict_emotion_with_emoji("I feel scared”, "emotion")

## End(Not run)
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preprocess_text Preprocess Text with Slang Handling

Description

This function performs multi-stage text preprocessing, including lowercasing, HTML cleaning,
punctuation normalization, contraction expansion, internet slang replacement, emoticon replace-
ment, and final standardization.

Usage

preprocess_text(text, use_textclean = TRUE, custom_slang = NULL)

Arguments

text A character vector of input texts.

use_textclean Logical. Whether to use textclean for internet slang and emoticon replace-
ment. Default is TRUE.

custom_slang A named character vector providing user-defined slang mappings. Optional.

Details

The preprocessing pipeline includes:

* Lowercasing the text.

* Replacing HTML entities and non-ASCII characters.

* Expanding common English contractions (e.g., "I'm" -> "I am").

* Replacing internet slang and emoticons if use_textclean is TRUE.
* Handling additional slang defined by the user.

* Normalizing repeated punctuations and whitespace.

Value

A character vector of cleaned and normalized text.

Examples

preprocess_text("I'm feeling lit rn!!!")
preprocess_text("I can't believe it... lol :)", use_textclean = TRUE)
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train_full_model Train a full model pipeline including text preprocessing, TF-IDF vec-
torization, random forest tuning, and training.

Description
Train a full model pipeline including text preprocessing, TF-IDF vectorization, random forest tun-
ing, and training.

Arguments

custom_slang A named list for custom slang replacements (optional).

max_features Maximum number of features for TF-IDF vectorizer (default 10000).

min_df Minimum document frequency for TF-IDF (default 2).

max_df Maximum document frequency for TF-IDF (default 0.8).

mtry_grid Grid of values for ‘mtry* parameter to tune in random forest (default: c(5, 10,
20)).

ntree_grid Grid of values for ‘ntree® parameter to tune in random forest (default: c(100,
200, 300)).

stopwords_file Path to the stopwords RDS file (default: "final_stopwords.rds").
vectorizer_file

Path to save the trained vectorizer (default: "trained_vectorizer.rds").
tfidf_model_file

Path to save the trained TF-IDF model (default: "trained_tfidf model.rds").
rf_model_file Pathto save the trained random forest model (default: "trained_rf_ranger_model.rds").

train_df_cache_path
Path to cache the training data frame (default: "train_df_cached.rds").

Value

A list containing the trained TF-IDF model, vectorizer, random forest model, and test accuracy.

train_rf_model Train a Random Forest Model with TF-IDF Features

Description

Train a Random Forest Model with TF-IDF Features
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Usage

train_rf_model(
train_matrix,
train_labels,

ntree = 300,
mtry = NULL,
seed = 123,
verbose = TRUE,
train_df_cache_path = "train_df_cached.rds"
)
Arguments

train_matrix A sparse matrix (‘dgCMatrix‘) of training features.

train_labels A factor vector of training labels.

ntree Number of trees. Default 300.

mtry Variables to consider at each split. If NULL, auto-selected.
seed Random seed. Default 123.

verbose Whether to print progress. Default TRUE.

train_df_cache_path
Path to cache the train data frame. Default "train_df cached.rds".

Value

A trained ‘ranger‘ model object.

train_tfidf_model Train a TF-IDF Model (for Training Phase)

Description

Train a TF-IDF model with customizable tokenization and vocabulary pruning.

Usage

train_tfidf_model(
preprocessed_text,
max_features = 10000,
min_df = 2,
max_df = 0.8
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Arguments

preprocessed_text
A character vector containing the preprocessed text.

max_features The maximum number of features (terms) to include in the vocabulary. Default
is 10000.

min_df Minimum document frequency for terms. Default is 2 (terms must appear in at
least 2 documents).

max_df Maximum document frequency as a proportion of documents. Default is 0.8
(terms must appear in less than 80% of documents).

Details

This function performs the following steps:

1. Tokenizes the preprocessed text into words and removes stopwords. 2. Defines custom stopwords
and retains important emotional function words. 3. Creates a vocabulary based on unigrams and
trigrams, pruning terms based on document frequency and term count. 4. Builds the TF-IDF sparse
matrix for the input text.

Value
A list with the following components:
tfidf_model The trained TF-IDF model object.

vectorizer The vocabulary vectorizer used in training.

tfidf_matrix The TF-IDF sparse matrix representing the text data.

Examples

preprocessed_text <- c("I'm feeling so happy today!"”, "I feel really excited and hopeful!")
result <- train_tfidf_model (preprocessed_text)
result$tfidf_model # Access the trained TF-IDF model

tune_rf_model Tune Random Forest Model Hyperparameters

Description

This function performs hyperparameter tuning for a Random Forest model using grid search. It
searches over the grid of ‘mtry* (number of variables to consider at each split) and ‘ntree‘ (number
of trees in the forest) to find the best model based on training accuracy.
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Usage

tune_rf_model(
train_matrix,
train_labels,

mtry_grid = c(5, 10, 20),
ntree_grid = c(100, 200, 300),

seed = 123,

verbose = TRUE

Arguments

train_matrix
train_labels

mtry_grid

ntree_grid

seed

verbose

Details

A sparse matrix (class ‘dgCMatrix ‘) representing the training feature data.
A factor vector representing the training labels.

A vector of values to search for the ‘mtry‘ parameter (number of variables to
consider at each split). Default is ‘c(5, 10, 20)°.

A vector of values to search for the ‘ntree‘ parameter (number of trees in the
forest). Default is ‘c(100, 200, 300)°.

A seed value for reproducibility. Default is ‘123°.

A logical indicating whether to print progress information during the grid search.
Default is “TRUE".

The function trains multiple Random Forest models using different combinations of ‘mtry* and
‘ntree‘ values, and evaluates their performance based on training accuracy. The hyperparameters
that give the highest accuracy are returned as the best parameters. The process uses the ‘ranger*
package for training the Random Forest model.

Value

A list containing the best hyperparameters (‘mtry‘, ‘ntree‘, and ‘accuracy):

* ‘mtry‘: The best number of variables to consider at each split.

¢ ‘ntree‘: The best number of trees in the forest.

* ‘accuracy‘: The accuracy achieved by the model with the best hyperparameters.
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