Package ‘text2emotion’

May 12, 2025

Type Package
Title Emotion Analysis and Emoji Mapping for Text
Version 0.1.0

Description Allows users to analyze text and classify emotions
such as happiness, sadness, anger, fear, and neutrality.
It combines text preprocessing, TF-IDF (Term Frequency-Inverse Document Frequency)
feature extraction, and Random Forest classification to predict emotions
and map them to corresponding emojis for enhanced sentiment visualization.

License GPL-2
Encoding UTF-8
Depends R (>=4.4.0)

Imports stringr, textclean, magrittr, text2vec, ranger, caret,
parallel, stats, Matrix

RoxygenNote 7.3.2

Suggests rmarkdown, knitr, testthat (>= 3.0.0)
NeedsCompilation no
Config/testthat/edition 3

VignetteBuilder knitr

Author Yusong Zhao [aut],
Fangyi Wang [aut, cre],
Zisheng Qu [aut]

Maintainer Fangyi Wang <123090550@1ink.cuhk.edu.cn>
Repository CRAN
Date/Publication 2025-05-12 08:20:05 UTC

Contents

evaluate rf model. e
handle_negation
predict_emotion_with_emoji

2 evaluate_rf _model

PIreProCesS_teXE . . o . v v v i e e e e e e e e e e e e e e e e 5
train_full_model 6
train_rf model 6
train_tAdf model e 7
tune_rf model e e 8
Index 10
evaluate_rf_model Evaluate a Random Forest Model on Test Data
Description

Evaluate a Random Forest Model on Test Data

Usage

evaluate_rf_model(
rf_model,
test_texts,
test_labels,
tfidf_model,

vectorizer,
stopwords,
verbose = TRUE
)
Arguments
rf_model A trained ‘ranger‘ model object.
test_texts A vector of raw test texts.
test_labels A factor vector of true labels.

tfidf_model The TF-IDF transformer used for training.

vectorizer The vectorizer used to build DTM.

stopwords A character vector of stopwords.

verbose Whether to print progress. Default TRUE.
Value

A list with test accuracy, test predictions, and aligned test data.

handle_negation 3

handle_negation Handle Negation in Token List

Description

This function processes a character vector of tokens and handles negations by combining the word
"not" with the immediately following word (e.g., "not happy" becomes "not_happy"). This tech-
nique helps to better preserve sentiment polarity during text analysis.

Usage

handle_negation(tokens)

Arguments

tokens A character vector of tokens (individual words).

Details
The negation handling procedure follows these steps:

¢ Iterate through each token.

 If atoken is "not" and followed by another token, merge them into a single token separated by
an underscore (e.g., "not_happy").

* Skip the next token after merging to avoid duplication.

* Otherwise, keep the token unchanged.

This method is especially useful in sentiment analysis tasks where the presence of negations can
invert the sentiment polarity of words.

Value

A character vector of tokens with negations handled by combining "not" with the next word.

Examples
handle_negation(c("i"”, "am”, "not", "happy"))
Returns: c("i", "am", "not_happy")

handle_negation(c("this"”, "is", "not"”, "good"”, "but”, "not", "terrible"))

]

Returns: c("this”, "is"”, "not_good”, "but", "not_terrible")

handle_negation(c("nothing”, "to", "worry", "about"))
Returns: c("nothing”, "to"”, "worry", "about")

predict_emotion_with_emoji

predict_emotion_with_emoji
Predict Emotion with Emoji Representation

Description

This function takes input text, preprocesses it, extracts TF-IDF features using a pre-trained model,
predicts the emotion using a trained classifier, and returns the result with optional emoji represen-

tation.
Usage

predict_emotion_with_emoji(text, output_type = "textemoji")
Arguments

text Character string containing the text to analyze.

output_type Type of output to return. Must be one of:

* "emotion" - returns only the predicted emotion label
* "emoji" - returns only the corresponding emoji

* "textemoji" - returns original text appended with predicted emoji (default)

Value
Depending on output_type:

* For "emotion": character string of predicted emotion
* For "emoji": character string of corresponding emoji

* For "textemoji": original text with appended emoji

The function also prints the result to console.

Examples

Not run:

This example is not run because it requires manually downloading
a large external model (~3@0MB), which cannot be retrieved automatically
and may fail in offline environments.

predict_emotion_with_emoji("I'm so happy today!")
predict_emotion_with_emoji("This makes me angry”, "emoji")
predict_emotion_with_emoji("I feel scared”, "emotion")

End(Not run)

preprocess_text 5

preprocess_text Preprocess Text with Slang Handling

Description

This function performs multi-stage text preprocessing, including lowercasing, HTML cleaning,
punctuation normalization, contraction expansion, internet slang replacement, emoticon replace-
ment, and final standardization.

Usage

preprocess_text(text, use_textclean = TRUE, custom_slang = NULL)

Arguments

text A character vector of input texts.

use_textclean Logical. Whether to use textclean for internet slang and emoticon replace-
ment. Default is TRUE.

custom_slang A named character vector providing user-defined slang mappings. Optional.

Details

The preprocessing pipeline includes:

* Lowercasing the text.

* Replacing HTML entities and non-ASCII characters.

* Expanding common English contractions (e.g., "I'm" -> "I am").

* Replacing internet slang and emoticons if use_textclean is TRUE.
* Handling additional slang defined by the user.

* Normalizing repeated punctuations and whitespace.

Value

A character vector of cleaned and normalized text.

Examples

preprocess_text("I'm feeling lit rn!!!")
preprocess_text("I can't believe it... lol :)", use_textclean = TRUE)

6 train_rf_model

train_full_model Train a full model pipeline including text preprocessing, TF-IDF vec-
torization, random forest tuning, and training.

Description
Train a full model pipeline including text preprocessing, TF-IDF vectorization, random forest tun-
ing, and training.

Arguments

custom_slang A named list for custom slang replacements (optional).

max_features Maximum number of features for TF-IDF vectorizer (default 10000).

min_df Minimum document frequency for TF-IDF (default 2).

max_df Maximum document frequency for TF-IDF (default 0.8).

mtry_grid Grid of values for ‘mtry* parameter to tune in random forest (default: c(5, 10,
20)).

ntree_grid Grid of values for ‘ntree® parameter to tune in random forest (default: c(100,
200, 300)).

stopwords_file Path to the stopwords RDS file (default: "final_stopwords.rds").
vectorizer_file

Path to save the trained vectorizer (default: "trained_vectorizer.rds").
tfidf_model_file

Path to save the trained TF-IDF model (default: "trained_tfidf model.rds").
rf_model_file Pathto save the trained random forest model (default: "trained_rf_ranger_model.rds").

train_df_cache_path
Path to cache the training data frame (default: "train_df_cached.rds").

Value

A list containing the trained TF-IDF model, vectorizer, random forest model, and test accuracy.

train_rf_model Train a Random Forest Model with TF-IDF Features

Description

Train a Random Forest Model with TF-IDF Features

train_tfidf _model

Usage

train_rf_model(
train_matrix,
train_labels,

ntree = 300,
mtry = NULL,
seed = 123,
verbose = TRUE,
train_df_cache_path = "train_df_cached.rds"
)
Arguments

train_matrix A sparse matrix (‘dgCMatrix‘) of training features.

train_labels A factor vector of training labels.

ntree Number of trees. Default 300.

mtry Variables to consider at each split. If NULL, auto-selected.
seed Random seed. Default 123.

verbose Whether to print progress. Default TRUE.

train_df_cache_path
Path to cache the train data frame. Default "train_df cached.rds".

Value

A trained ‘ranger‘ model object.

train_tfidf_model Train a TF-IDF Model (for Training Phase)

Description

Train a TF-IDF model with customizable tokenization and vocabulary pruning.

Usage

train_tfidf_model(
preprocessed_text,
max_features = 10000,
min_df = 2,
max_df = 0.8

8 tune_rf _model

Arguments

preprocessed_text
A character vector containing the preprocessed text.

max_features The maximum number of features (terms) to include in the vocabulary. Default
is 10000.

min_df Minimum document frequency for terms. Default is 2 (terms must appear in at
least 2 documents).

max_df Maximum document frequency as a proportion of documents. Default is 0.8
(terms must appear in less than 80% of documents).

Details

This function performs the following steps:

1. Tokenizes the preprocessed text into words and removes stopwords. 2. Defines custom stopwords
and retains important emotional function words. 3. Creates a vocabulary based on unigrams and
trigrams, pruning terms based on document frequency and term count. 4. Builds the TF-IDF sparse
matrix for the input text.

Value
A list with the following components:
tfidf_model The trained TF-IDF model object.

vectorizer The vocabulary vectorizer used in training.

tfidf_matrix The TF-IDF sparse matrix representing the text data.

Examples

preprocessed_text <- c("I'm feeling so happy today!"”, "I feel really excited and hopeful!")
result <- train_tfidf_model (preprocessed_text)
result$tfidf_model # Access the trained TF-IDF model

tune_rf_model Tune Random Forest Model Hyperparameters

Description

This function performs hyperparameter tuning for a Random Forest model using grid search. It
searches over the grid of ‘mtry* (number of variables to consider at each split) and ‘ntree‘ (number
of trees in the forest) to find the best model based on training accuracy.

tune_rf_model

Usage

tune_rf_model(
train_matrix,
train_labels,

mtry_grid = c(5, 10, 20),
ntree_grid = c(100, 200, 300),

seed = 123,

verbose = TRUE

Arguments

train_matrix
train_labels

mtry_grid

ntree_grid

seed

verbose

Details

A sparse matrix (class ‘dgCMatrix ‘) representing the training feature data.
A factor vector representing the training labels.

A vector of values to search for the ‘mtry‘ parameter (number of variables to
consider at each split). Default is ‘c(5, 10, 20)°.

A vector of values to search for the ‘ntree‘ parameter (number of trees in the
forest). Default is ‘c(100, 200, 300)°.

A seed value for reproducibility. Default is ‘123°.

A logical indicating whether to print progress information during the grid search.
Default is “TRUE".

The function trains multiple Random Forest models using different combinations of ‘mtry* and
‘ntree‘ values, and evaluates their performance based on training accuracy. The hyperparameters
that give the highest accuracy are returned as the best parameters. The process uses the ‘ranger*
package for training the Random Forest model.

Value

A list containing the best hyperparameters (‘mtry‘, ‘ntree‘, and ‘accuracy):

* ‘mtry‘: The best number of variables to consider at each split.

¢ ‘ntree‘: The best number of trees in the forest.

* ‘accuracy‘: The accuracy achieved by the model with the best hyperparameters.

Index

evaluate_rf_model, 2
handle_negation, 3

predict_emotion_with_emoji, 4
preprocess_text, 5

train_full_model, 6
train_rf_model, 6
train_tfidf_model, 7
tune_rf_model, 8

10

	evaluate_rf_model
	handle_negation
	predict_emotion_with_emoji
	preprocess_text
	train_full_model
	train_rf_model
	train_tfidf_model
	tune_rf_model
	Index

