Package 'telemetR'

April 13, 2023

Type Package

Title Filter and Analyze Generalised Telemetry Data from Organisms

Version 1.0

Description Analyze telemetry datasets generalized to allow

any technology. The filtering steps check for false positives caused by reflected transmissions from surfaces and false pings from other noise generating equipment. The filters are based on JSATS filtering algorithms found in package 'filteRjsats' https://CRAN.R-project.org/package=filteRjsats> but have been generalized to allow the user to define many of the filtering variables. Additionally, this package contains scripts used to help identify an optimal maximum blanking period as defined in Capello et al (2015) <doi:10.1371/journal.pone.0134002>. The functions were written according to their manuscript description, but have not been reviewed by the authors for accuracy. It is included here as is, without warranty.

License GPL (>= 3)

Encoding UTF-8

LazyData true

LazyDataCompression xz

Imports dplyr, tidyr, lubridate, zoo, ggplot2

Suggests knitr, rerddap, rmarkdown

RoxygenNote 7.2.3

Depends R (>= 4.1)

VignetteBuilder knitr

NeedsCompilation no

Author Taylor Spaulding [aut, cre] (<https://orcid.org/0000-0003-4381-5296>)

Maintainer Taylor Spaulding <tspaulding@esassoc.com>

Repository CRAN

Date/Publication 2023-04-13 11:40:02 UTC

R topics documented:

add_org	2
blanked_detects	3
blanking_event	4
build_residence	6
conv_thresh	7
conv_thresholds	7
dat_filt1	8
dat_orgfilt	9
duration_compare	10
ex_opt	11
ex_rSSR	11
filtered_detections	12
filter_2h	13
filter_4h	14
fish	14
format_detects	15
format_org	16
format_receivers	18
opt_mbp	19
prefilter	20
raw_detections	21
receivers	22
reftags	23
renorm_SSR	23
residence_plot	24
rSSR_plot	24
setup_blanking	25
Set_GVs	26
time_test	27
	28

Index

add_org

Add Organism Data to a Detection Dataframe

Description

This function takes a prefiltered detection dataframe from 'prefilter()' and joins it to organism data formatted using the 'format_org()' function. Detections are then filtered further based on the date and time of tag release and expected battery life. Detections occurring before release of the tag or after 2x the expected battery life are removed.

Usage

```
add_org(prefilter_file, org, time_before_detection, time_unit)
```

blanked_detects

Arguments

prefilter_file	a prefiltered detection dataframe from 'prefilter()'
org	a dataframe of organism data retrieved from 'get_org_data()' or 'format_org()'
time_before_de	tection
	How long before detection could an organism be released and still detected? Generally 2x the expected tag life.
time_unit	The unit of time used for time_before_detection (seconds, minutes, hours, days, weeks, months)

Value

A filtered dataframe converting the raw detection data into rows of detections

Examples

blanked_detects Example Multi-blanked Detection Data

Description

An example dataset of real acoustic telemetry detections of fish at several receivers within the California Central Valley from 2021. These detections have already been been processed using 'blanking_event()' to create events using maximum blanking periods from 3 to 1,500 seconds to reprocess the data. Each row represents a single event which includes >=1 detection(s) per fish per site which occur within the specified maximum blanking period 'mbp_n'.

Usage

blanked_detects

'blanked_detects' A data frame with 44,630 rows and 9 columns:

- fish_type Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)
- Tag_Code The hexadecimal acoustic tag ID code

mbp_n the maximum blanking period used to create this event

event_change An increasing number which identifies the event number; one event per fish per site for all detections which occur within 'mbp_n' seconds of the next.

receiver_general_location The more general geographic name of the location of the receiver

start_time The Date and Time of the first detection within the event

end_time The Date and Time of the last detection within the event

n_det The total number of detections contained within the event

duration the total length of time of the event in seconds

blanking_event

Create Potential Blanking Periods for Identifying Optimal Blanking Period

Description

Takes a dataframe with telemetry detection data and a list of potential Blanking Period multipliers (n_val) and crosses them, duplicating the entire dataframe by the length of n_val . Detections are grouped by individual, site, and any supplied grouping variables. Then events are created by collecting detections which occur within $n_val*ping_rate$ from the next detection. This function can be very slow depending on the size of the dataframe.

Usage

```
blanking_event(
  data,
  var_site,
  var_Id,
  var_datetime,
  var_groups = NULL,
  var_ping_rate,
  n_val,
  time_unit
)
```

blanking_event

Arguments

data	the detection dataframe with columns for sites, tag IDs, datetime, any grouping variables, and the expected ping rate.
var_site	the column name, in quotes, which identifies unique residency sites, these sites should be as distinct as possible, such that it is infrequent that organisms can be detected at two sites at a given time.
var_Id	the column name, in quotes, which identifies the individual transmitter/tag/organism identifier.
var_datetime	the column name, in quotes, which identifies the date and time of the detection event. This column should already have been converted to POSIXct format.
var_groups	a single string or vector of strings of the columns which should be used to group animals. Common groupings are species and cohorts.
var_ping_rate	the column name, in quotes, which identifies the temporal frequency at which the transmitter emits a detectable signal.
n_val	a vector sequence of integers which can be multiplied by the ping rate to con- struct multiple potential blanking periods. The range and step values for n should be selected based on prior knowledge about general behavior habits of the study organism and the functionality of the equipment. For more informa- tion, please refer to Capello et. al. 2015.
time_unit	the preferred unit of time to calculate durations, this should correspond to the ping_rate, (i.e. if the ping rate is 3 seconds, the preferred time_unit is seconds). If the preferred time_unit is on the same scale as the ping_rate, the ping rate should be converted to the same scale.

Value

A dataframe which has been crossed with all integers in n_val, and which has been condensed into events. Please refer to Capello et. al. 2015 for further detail about the creation of these events.

Examples

```
# Create a dataframe of events blanked by a set of n_values from 1:10
blanking_event(data = filtered_detections,
        var_Id = "Tag_Code",
        var_site = "receiver_general_location",
        var_datetime = "DateTime_Local",
        var_groups = "fish_type",
        var_ping_rate = "tag_pulse_rate_interval_nominal",
        n_val = c(1:2),
        time_unit = "secs")
```

build_residence

Description

Takes a dataframe with telemetry detection data and a single optimum blanking period chosen from the output of opt_mbp(), and groups detections by individual, site, and any supplied grouping variables into residence events. The residence events are created by collecting detections which occur within the selected optimum maximum blanking period from the next detection. This function can be very slow depending on the size of the dataframe.

Usage

```
build_residence(
   data,
   var_groups,
   var_Id,
   var_datetime,
   var_site,
   opt_mbp,
   time_unit
)
```

Arguments

data	the detection dataframe with columns for sites, tag IDs, datetime, any grouping variables, and the expected ping rate.
var_groups	a single string or vector of strings of the columns which should be used to group animals. Common groupings are species and cohorts.
var_Id	the column name, in quotes, which identifies the individual transmitter/tag/organism identifier.
var_datetime	the column name, in quotes, which identifies the date and time of the detection event. This column should already have been converted to POSIXct format.
var_site	the column name, in quotes, which identifies unique residency sites, these sites should be as distinct as possible, such that it is infrequent that organisms can be detected at two sites at a given time.
opt_mbp	a single optimum blanking period chosen from the output of opt_mbp()
time_unit	the unit of time used by the optimum maximum blanking period, often on the same scale as the ping rate for the transmitter.

Value

A dataframe of detections which has been condensed into continuous residence events based on the optimum maximum blanking period selected.

conv_thresh

Examples

conv_thresh

Example 95 Percent Convergence Threshold

Description

Example output from the 'conv_thresholds()' function, calculating the 95 convergence thresholds for the rSSR data found in 'ex_rSSR'.

Usage

conv_thresh

Format

'conv_thresh' A data frame with 1 rows and 5 columns:

fish_type Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)

min_val The minimum rSSR value

max_val The maximum rSSR value

threshold the rSSR value which represents the 'thresh_level' cutoff for estimating convergence

thresh_level The desired convergence level (100-x)

conv_thresholds Calculate Convergence Thresholds for the rSSR curve

Description

Takes a dataframe created by renorm_SSR and calculates the range in values and then calculates thresholds given. Suggested values are 0.5, 0.1, and 0.005. The rSSR calculated for each MBP should decrease with each increasing blanking period until they reach close to zero, which We consider convergence. Since the rSSR curve generally bounces around an assymptote and often does not reach or stay at 0, we set a threshold a priori for identifying convergence.

Usage

```
conv_thresholds(rSSR_df, var_groups, thresh_levels = c(0.05, 0.01, 0.005))
```

Arguments

rSSR_df	a dataframe created by created by renorm_SSRduration compare showing the renormalized sum of squares of the residuals between one potential blanking period and the next.
var_groups	a single string or vector of strings of the columns which should be used to group organisms. Common groupings are species and cohorts.
thresh_levels	a single value or vector of values used to set thresholds for identifying conver- gence.

Value

A dataframe of rSSR values corresponding to the given convergence threshold

Examples

Description

An example dataset of real acoustic telemetry detections of fish at several receivers within the California Central Valley from 2021. These detections have already been been processed using 'prefilter()' from this package or companion package 'filteRjsats'.

Usage

dat_filt1

Format

'dat_filt1' A data frame with 47,931 rows and 4 columns:

ReceiverSN The serial number of the detecting receiver

DateTime_Local the local time of the detection (tz = America/Los_Angeles)

Tag_Code The hexadecimal acoustic tag ID code

CheckMBP A calculated field from the prefilter checking the time between acoustic transmissions from the same tag was >0.3secs

dat_orgfilt

Source

Data collected by the California Department of Water Resources 2021

dat_orgfilt Filtered detection data with Organism Data

Description

An example dataset of real acoustic telemetry detections of fish at several receivers within the California Central Valley from 2021. These detections have already been been processed using 'prefilter()' and 'add_org()'.

Usage

dat_orgfilt

Format

'dat_orgfilt' A data frame with 47,343 rows and 16 columns:

ReceiverSN The serial number of the detecting receiver

DateTime_Local the local time of the detection (tz = America/Los_Angeles)

Tag_Code The hexadecimal acoustic tag ID code

- **CheckMBP** A calculated field from the prefilter checking the time between acoustic transmissions from the same tag was >0.3secs
- **TagInFile** A calculated field from the add_fish filter which queries whether the tag code of the detection is associated with an organism.
- fish_type Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)

org_release_Date The release date and time of the fish

release_location The coded name of the release site

length The length of the fish in millimeters

weight The weight of the fish in grams

tag_weight The weight of the implanted acoustic tag

tag_model The model number of the implanted acoustic tag

- tag_pulse_rate_interval_nominal The pulse rate interval (time between transmissions) of the implanted tag, as reported by the manufacturer
- **tag_life** The expected number of days the tag should continue to transmit, as reported by the manufacturer
- **CheckDT** A calculated field which checks whether the detection occurred after the release of the fish
- **CheckBattLife** A calculated field which checks whether the detection occurred before the tag battery is expected to expire (2x tag life)

Data collected by the California Department of Water Resources 2021

duration_compare Compare the duration of Potential Blanking Periods

Description

Takes a dataframe of detection data which has been condensed by potential blanking periods generated by 'blanking_event()' and compares the duration of each event to a common sequence of increasing times. If the event is longer than the duration it is flagged as "survived". The proportion of events which "survive" for each potential blanking period at each time (t) is then calculated.

Usage

```
duration_compare(event_dur, var_groups = NULL, time_seq)
```

Arguments

event_dur	the detection dataframe which has been condensed into discrete events using each potential blanking period.
var_groups	a single string or vector of strings of the columns which should be used to group organisms. Common groupings are species and cohorts.
time_seq	a vector of times on the same scale as the ping rate. The largest value of the sequence should be greater that the longest duration produced using blanking event, and the smallest should be shorter than the smallest blanking period.

Value

A dataframe which contains the proportion of "survived" events created by each potential blanking period for each time (t).

Examples

ex_opt

Description

Example output from the 'opt_mbp()' function, finding the optimal mbp for each group and desired convergence threshold.

Usage

ex_opt

Format

'ex_opt' A data frame with 1 rows and 5 columns:

fish_type Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)

min_val The minimum rSSR value

max_val The maximum rSSR value

threshold the rSSR value which represents the 'thresh_level' cutoff for estimating convergence **thresh_level** The desired convergence level (100-x)

opt_mbp The identified optimum mbp for the given threshold and group

ex_rSSR

Example Renormalized Sum of Squares

Description

Example output from the 'renorm_SSR()' function, calculating the renormalized sum of squares for the "survival" data found in 'time_test'.

Usage

ex_rSSR

Format

'ex_rSSR' A data frame with 100 rows and 5 columns:

- fish_type Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)
- mbp_n The maximum blanking period (in seconds) used to create a set of events

SSR The sum of squared residuals between this 'mbp_n' and the next

n the total number of events created with this 'mbp_n'

rSSR the renormalized sum of squared residuals between this 'mbp_n' and the next

filtered_detections Example Completely Filtered Detection Data

Description

An example dataset of real acoustic telemetry detections of fish at several receivers within the California Central Valley from 2021. These detections have already been been processed using 'prefilter()' and 'add_org()'.

Usage

filtered_detections

Format

'filtered_detections' A data frame with 41,000 rows and 26 columns:

ReceiverSN The serial number of the detecting receiver

DateTime_Local the local time of the detection (tz = America/Los_Angeles)

Tag_Code The hexadecimal acoustic tag ID code

- **CheckMBP** A calculated field from the prefilter checking the time between acoustic transmissions from the same tag was >0.3secs
- **TagInFile** A calculated field from the add_fish filter which queries whether the tag code of the detection is associated with an organism.
- fish_type Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)
- org_release_Date The release date and time of the fish
- release_location The coded name of the release site
- **length** The length of the fish in millimeters
- weight The weight of the fish in grams
- tag_weight The weight of the implanted acoustic tag
- tag_model The model number of the implanted acoustic tag
- tag_pulse_rate_interval_nominal The pulse rate interval (time between transmissions) of the implanted tag, as reported by the manufacturer
- **tag_life** The expected number of days the tag should continue to transmit, as reported by the manufacturer
- **CheckDT** A calculated field which checks whether the detection occurred after the release of the fish
- **CheckBattLife** A calculated field which checks whether the detection occurred before the tag battery is expected to expire (2x tag life)
- dep_id A unique id is created for each receiver deployment
- Make The brand of the acoustic receiver

latitude The decimal degree latitude (WGS1984) of the acoustic receiver at deployment
longitude The decimal degree longitude (WGS1984) of the acoustic receiver at deployment
receiver_location The site name of an individual receiver, often more than one 'receiver_location' is found at a 'receiver_general_location'

receiver_general_location The more general geographic name of the location of the receiver receiver_river_km The number of river kilometers the receiver is from the Golden Gate Bridge receiver_start The start time of the receiver (generally when it was deployed) receiver_end The end time of the receiver (generally when it was retrieved)

Source

Data collected by the California Department of Water Resources 2021

filter_2h Basic Two Hit Filter for Detections

Description

This function takes a detection dataframe generated from the add_org() function and filters it a second time to remove any remaining multipath detections, and then check the remaining detections by comparing the time between each detection to ensure it is less 4x the stated pulse rate interval. Called by second_filter_2h4h().

Usage

```
filter_2h(org_file, time_unit, multipath_time, org_ping_rate)
```

Arguments

org_file	a dataframe of detections retrieved from add_org()
time_unit	The unit of time used for analyses (seconds, minutes, hours, days, weeks, months)
<pre>multipath_time</pre>	A numeric maximum amount of time which must pass between detections for a detection to be considered a "true", not a bounced, signal.
org_ping_rate	The expected time between transmissions emitted from tags/transmitters im- planted or attached to an organism

Value

A dataframe which has been filtered to remove false positives

Examples

filter_4h

Description

This function takes a detection dataframe generated from the 'add_org()' function and filters it a second time to remove any remaining multipath detections, and then check the remaining detections by comparing the time between detections, for a rolling window of 4 detections to ensure it is less 16.6x the stated pulse rate interval. Called by 'second_filter()'.

Usage

```
filter_4h(org_file, time_unit, multipath_time, org_ping_rate)
```

Arguments

org_file	a dataframe of detections retrieved from 'add_org()'
time_unit	The unit of time used for analyses (secs, mins, hours, days, weeks)
<pre>multipath_time</pre>	A numeric maximum amount of time which must pass between detections for a detection to be considered a "true", not a bounced, signal.
org_ping_rate	The expected time between transmissions emitted from tags/transmitters im- planted or attached to an organism

Value

A dataframe which has been filtered to remove false positives

Examples

fish	Fish Data
------	-----------

Description

An example dataset of real fish tagged with acoustic telemetry tags and released within the California Central Valley in 2021 and 2022.

Usage

fish

format_detects

Format

- ## 'fish' A data frame with 7,240 rows and 60 columns:
- **fish_type** Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)
- TagCode The hexadecimal code of the implanted acoustic tag
- Release_Date The release date and time of the fish
- release_location The coded name of the release site
- length The length of the fish in millimeters
- weight The weight of the fish in grams
- **tag_weight** The weight of the implanted acoustic tag
- tag_model The model number of the implanted acoustic tag
- **PRI** The pulse rate interval (time between transmissions) of the implanted tag, as reported by the manufacturer
- **TagLife** The expected number of days the tag should continue to transmit, as reported by the manufacturer

Source

<https://oceanview.pfeg.noaa.gov/CalFishTrack/pageRealtime_download.html>

format_detects Format Detections for filteRjsats

Description

This function takes a detection dataframe from a single receiver and reformats specific columns so that they can be read by the filtering functions in filteRjsats package

Usage

```
format_detects(
    data,
    var_Id,
    var_datetime_local,
    var_frequency = NULL,
    var_receiver_serial,
    var_receiver_make = NULL,
    local_time_zone,
    time_format
)
```

Arguments

data	the detection dataframe with columns for individual receivers, tag IDs,datetime, and the expected ping rate.	
var_Id	the column name, in quotes, which identifies the individual transmitter/tag/organism identifier.	
<pre>var_datetime_ld</pre>	ocal	
	the column name, in quotes, which identifies the date and time of the detection event. This column should already have been converted to POSIXct format and should be converted to the local timezone.	
var_frequency	the column name, in quotes, which identifies the maximum temporal frequency at which transmitters in organisms emit a detectable signal, only for use before JSATS filtering.	
<pre>var_receiver_se</pre>	erial	
	the column name, in quotes, which identifies the serial number of the detection receiver	
var_receiver_make		
	the column name, in quotes, which identifies the make or brand of the detection receiver. Must be one of "ATS", "Lotek", or "Tekno", only for use before JSATS filtering.	
local_time_zone		
	the local timezone used for analyses. Uses tz database names (e.g. "Amer- ica/Los_Angeles" for Pacific Time)	
time_format	a string value indicating the datetime format of all time fields	

Value

A standardized detection dataframe which can be read by filteRjsats

Examples

format_org

Format Organism Data for add_org()

Description

This function takes a dataframe of org and tag data and renames the columns to those expected by the add_org() function

format_org

Usage

```
format_org(
   data,
   var_Id,
   var_release,
   var_tag_life,
   var_ping_rate,
   local_time_zone,
   time_format
)
```

Arguments

data	a dataframe of org and tag data	
var_Id	the column name, in quotes, which identifies the individual transmitter/tag/organism identifier.	
var_release	the column name, in quotes, which identifies the release date and time in POSIX format and appropriate timezone	
var_tag_life	the column name, in quotes, which identified the expected tag life in days	
var_ping_rate	the column name, in quotes which identifies the expected ping rate of the tag/transmitter	
local_time_zone		
	the local timezone used for analyses. Uses tz database names (e.g. "Amer- ica/Los_Angeles" for Pacific Time)	
time_format	a string value indicating the datetime format of all time fields	

Value

A dataframe which contains fields renamed to match those required by add_org() function

Examples

format_receivers

Description

This function takes a dataframe of receiver metadata and reformats specific columns so that they can be read by the filtering functions in filteRjsats package

Usage

```
format_receivers(
   data,
   var_receiver_serial,
   var_receiver_make,
   var_receiver_deploy,
   var_receiver_retrieve,
   local_time_zone,
   time_format
)
```

Arguments

data	the detection dataframe with columns for individual receivers, tag IDs,datetime, and the expected ping rate.
var_receiver_s	erial
	the column name, in quotes, which identifies the serial number of the detection receiver
var_receiver_m	ake
	the column name, in quotes, which identifies the make or brand of the detection receiver. Must be one of "ATS", "Lotek", or "Tekno"
var_receiver_deploy	
	the column name, in quotes, which identifies the date and time the receiver was deployed
var_receiver_retrieve	
	the column name, in quotes, which identifies the date and time the receiver was retrieved
local_time_zone	
	the local timezone used for analyses. Uses tz database names (e.g. "Amer- ica/Los_Angeles" for Pacific Time)
time_format	a string value indicating the datetime format of all time fields

Value

A dataframe which contains fields renamed to match those required by add_receivers() function

opt_mbp

Examples

opt_mbp

Idenitfy the Optimum MBP based on Convergence Threshold

Description

Takes dataframes created by 'renorm_SSR()' and 'conv_thresholds()' and determines the corresponding "optimum" maximum blanking period (MBP) for each convergence threshold.

Usage

opt_mbp(rSSR_df, thresh_values)

Arguments

rSSR_df	a dataframe created by created by renorm_SSRduration compare showing the renormalized sum of squares of the residuals between one potential blanking period and the next.
thresh_values	a dataframe created by conv_thresholds corresponding to the chosen conver- gence thresholds.

Value

A dataframe showing the convergence value and corresponding optimal maximum blanking period for each grouping.

Examples

prefilter

Description

This function takes a detection dataframe output from format_detects and filters out multipath signals (signals which are bounced off of surfaces, usually seen in underwater systems with hard surfaces which reflect sound) and spurious signals which do not occur within a user defined time frame of the last detection (12x the ping rate for organisms or 3x the ping rate for beacons). Following this, the dataframe is standardized so that all detection dataframes from any technology type are identical and superfluous fields are removed.

Usage

```
prefilter(
   data,
   reference_tags,
   time_unit,
   multipath_time,
   org_ping_rate,
   beacon_ping
)
```

Arguments

data	A dataframe which is the output from read_jstats() or format_detects()
reference_tags	A vector of potential reference (beacon) tag IDs
time_unit	The unit of time used for analyses (seconds, minutes, hours, days, weeks, months)
<pre>multipath_time</pre>	A numeric maximum amount of time which must pass between detections for a detection to be considered a "true", not a bounced, signal.
org_ping_rate	The expected time between transmissions emitted from tags/transmitters im- planted or attached to an organism
beacon_ping	The expected time between transmissions emitted from tags/transmitters used as beacon or reference tags to check receiver functionality.

Value

A standardized detection dataframe with multipath detects removed

Examples

Run the prefilter on a set of raw detection data

```
var_datetime_local = "local_time",
var_receiver_serial = "serial",
local_time_zone = "America/Los_Angeles",
time_format = "%Y-%m-%d %H:%M:%S")
#apply the prefilter
prefilter(data = detects_formatted,
reference_tags = reftags,
time_unit = "secs",
multipath_time = 0.3,
org_ping_rate = 3,
beacon_ping = 30)
```

raw_detections Unfiltered detection data

Description

An example dataset of real acoustic telemetry detections of fish at several receivers within the California Central Valley from 2021. These detections have not been processed to remove false positives.

Usage

raw_detections

Format

'raw_detections' A data frame with 55,736 rows and 3 columns:

serial The serial number of the detecting receiver

local_time the local time of the detection (tz = America/Los_Angeles)

tag_id The hexadecimal acoustic tag ID code

Source

Data collected by the California Department of Water Resources 2021

receivers

Description

An example dataset of real acoustic telemetry receivers within the California Central Valley in 2021. These receivers are only those which match the serial numbers in companion dataset 'fil-tered_detections'. This data is formatted to match the California Fish Tracking receiver metadata found here: https://oceanview.pfeg.noaa.gov/CalFishTrack/.

Usage

receivers

Format

'receivers' A data frame with 7,240 rows and 60 columns:

dep_id A unique id is created for each receiver deployment

receiver_make The brand of the acoustic receiver

receiver_serial_number The serial number of the acoustic receiver

latitude The decimal degree latitude (WGS1984) of the acoustic receiver at deployment

longitude The decimal degree longitude (WGS1984) of the acoustic receiver at deployment

receiver_location The site name of an individual receiver, often more than one 'receiver_location' is found at a 'receiver_general_location'

receiver_general_location The more general geographic name of the location of the receiver

receiver_river_km The number of river kilometers the receiver is from the Golden Gate Bridge

receiver_start The start time of the reciever (generally when it was deployed)

receiver_end The end time of the receiver (generally when it was retrieved)

Source

<https://oceanview.pfeg.noaa.gov/CalFishTrack/pageRealtime_download.html>

reftags

Description

A vector of example reference tag codes

Usage

reftags

Format

A vector of example reference tag codes

renorm_SSR

Calculate the Renormalized Sum of Squared Residuals

Description

Takes a dataframe of the proportion of events created by each potential blanking period which "survived" a certain time (t) created by 'duration_compare()' and calculates the sum of squares of the residuals between one potential blanking period and the next. This result is then renormalized by dividing the result by the number of events created.

Usage

```
renorm_SSR(time_df, var_groups = NULL)
```

Arguments

time_df	a dataframe created by duration compare showing the proportion of events cre- ated by each potential blanking period which "survived" a certain time (t)
var_groups	a single string or vector of strings of the columns which should be used to group organisms. Common groupings are species and cohorts.

Value

A dataframe of the renormalized sum of squared residuals between each potential blanking period and the subsequent one. residence_plot

Description

Takes a dataframe of the proportion of events created by each potential blanking period which "survived" a certain time (t) and creates a plot. Used to visually look for convergences between survival lines.

Usage

```
residence_plot(time_df, var_groups = NULL, time_unit)
```

Arguments

time_df	a dataframe created by duration compare showing the proportion of events cre- ated by each potential blanking period which "survived" a certain time (t)
var_groups	a single string or vector of strings of the columns which should be used to group organisms. Common groupings are species and cohorts.
time_unit	the unit of time used to calculate durations

Value

A plot of the proportion of events created by each potential blanking period at each time (t).

Examples

rSSR_plot

Plot the rSSR Curve and Convergence Thresholds and Optimum MBP

Description

Using the dataframes produced by renorm_SSR and opt_mbp, plots the rSSR curve, and all the convergence thresholds (horizontal lines) and corresponding optimum mbps (vertical lines).

Usage

```
rSSR_plot(rSSR_df, opt_mbp_df, var_groups = NULL)
```

setup_blanking

Arguments

rSSR_df	a dataframe created by created by renorm_SSRduration compare showing the renormalized sum of squares of the residuals between one potential blanking period and the next.
opt_mbp_df	a dataframe created by opt_mbp showing the values for the convergence thresholds and optimum mbps
var_groups	a single string or vector of strings of the columns which should be used to group organisms. Common groupings are species and cohorts.

Value

A plot of the rSSR curve, convergence thresholds, and optimum mbps

Examples

setup_blanking Setup a Detection Dataframe for Identifying the Optimal Blanking F riod	Pe-
---	-----

Description

Takes a dataframe with telemetry detection data and a list of potential Blanking Period multipliers (n_val) and crosses them, duplicating the entire dataframe by the length of n_val . This function is contained in blanking event. This function can be slow depending on the size of the dataframe.

Usage

```
setup_blanking(
   data,
   var_site,
   var_Id,
   var_datetime,
   var_groups = NULL,
   var_ping_rate,
   n_val
)
```

Arguments

data	the detection dataframe with columns for sites, tag IDs, datetime, any grouping variables, and the expected ping rate.
var_site	the column name, in quotes, which identifies unique residency sites, these sites should be as distinct as possible, such that it is infrequent that organisms can be detected at two sites at a given time.
var_Id	the column name, in quotes, which identifies the individual transmitter/tag/organism identifier.
var_datetime	the column name, in quotes, which identifies the date and time of the detection event. This column should already have been converted to POSIXct format.
var_groups	a single string or vector of strings of the columns which should be used to group animals. Common groupings are species and cohorts.
<pre>var_ping_rate</pre>	the column name, in quotes, which identifies the temporal frequency at which the transmitter emits a detectable signal.
n_val	a vector sequence of integers which can be multiplied by the ping rate to con- struct multiple potential blanking periods. The range and step values for n should be selected based on prior knowledge about general behavior habits of the study organism and the functionality of the equipment. For more informa- tion, please refer to Capello et. al. 2015.

Value

A dataframe which has been crossed with all integers in n_val

Examples

Set_GVs

Add in Global Variables

Description

Sets all global variables to remove warnings in package build

time_test

Description

Example output from the 'duration_compare()' function, testing the duration of detection events found in 'blanked_detects'.

Usage

time_test

Format

'time_test' A data frame with 333,400 rows and 4 columns:

t The time (in seconds) against which the duration was compared

- **fish_type** Generally a strain, run, and species of fish (e.g. Nimbus Fall Chinook = Fall-run Chinook Salmon from Nimbus Hatchery)
- mbp_n The maximum blanking period (in seconds) used to create a set of events
- **prop_res** The proportion of all events created with 'mbp_n' which have a duration longer than time 't'.

Index

```
* datasets
    blanked_detects, 3
    conv_thresh, 7
    dat_filt1,8
    dat_orgfilt,9
    ex_opt, 11
    ex_rSSR, 11
    filtered_detections, 12
    fish, 14
    raw_detections, 21
    receivers, 22
    reftags, 23
    time_test, 27
add_org, 2
blanked_detects, 3
blanking_event, 4
build_residence, 6
conv_thresh, 7
conv_thresholds, 7
dat_filt1, 8
dat_orgfilt,9
duration_compare, 10
ex_opt, 11
ex_rSSR, 11
filter_2h, 13
filter_4h, 14
filtered_detections, 12
fish, 14
format_detects, 15
format_org, 16
format_receivers, 18
opt_mbp, 19
prefilter, 20
```

raw_detections, 21
receivers, 22
reftags, 23
renorm_SSR, 23
residence_plot, 24
rSSR_plot, 24
Set_GVs, 26
setup_blanking, 25
time_test, 27