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tea-package Threshold Estimation Approaches
Description

This package contains implementations of many of the threshold estimation approaches proposed in
the literature. The estimation of the threshold is of great interest in statistics of extremes. Estimating
the threshold is equivalent to choose the optimal sample fraction in tail index estimation. The sample
fraction is given by k/n with n the sample size and k the number of extremes in the data or, if you
wish, the exceedances over a high unknown threshold u.

Details
Package: tea
Type: Package
Version: 1.1
Date: 2020-04-17
License: GPL-3
Author(s)

Johannes Ossberger

Maintainer: Johannes Ossberger <johannes.ossberger @ gmail.com>

References

Caeiro and Gomes (2016) <doi:10.1201/b19721-5>
Cebrian et al. (2003) <doi:10.1080/10920277.2003.10596098>
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Danielsson et al. (2001) <doi:10.1006/jmva.2000.1903>

Danielsson et al. (2016) <doi:10.2139/ssrn.2717478>

De Sousa and Michailidis (2004) <doi:10.1198/106186004X12335>
Drees and Kaufmann (1998) <doi:10.1016/S0304-4149(98)00017-9>
Hall (1990) <doi:10.1016/0047-259X(90)90080-2>

Hall and Welsh (1985) <doi:10.1214/a0s/1176346596>

Kratz and Resnick (1996) <doi:10.1080/15326349608807407>
Gomes et al. (2011) <doi:10.1080/03610918.2010.543297>

Gomes et al. (2012) <doi:10.1007/s10687-011-0146-6>

Gomes et al. (2013) <doi:10.1080/00949655.2011.652113>

G’Sell et al. (2016) <doi:10.1111/rssb.12122>

Guillou and Hall <doi:10.1111/1467-9868.00286>

Reiss and Thomas (2007) <doi:10.1007/978-3-0348-6336-0>
Resnick and Starica (1997) <doi:10.1017/S0001867800027889>
Thompson et al. (2009) <doi:10.1016/j.coastaleng.2009.06.003>

althill Alternative Hill Plot

Description

Plots the Alternative Hill Plot and an averaged version of it against the upper order statistics.

Usage
althill(data, u = 2, kmin = 5, conf.int = FALSE)

Arguments
data vector of sample data
u gives the amount of which the Hill estimator is averaged. Default ist set to u=2.
kmin gives the minimal k for which the graph is plotted. Default ist set to kmin=5.
conf.int logical. If FALSE (default) no confidence intervals are plotted

Details

The Alternative Hill Plot is just a normal Hill Plot scaled to the [@,1] interval which can make
interpretation much easier. See references for more information.

Value

The normal black line gives a simple Hill Plot scaled to [@,1]. The red dotted line is an averaged
version that smoothes the Hill Plot by taking the mean of k(u-1) subsequent Hill estimations with
respect to k. See references for more information.
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References
Resnick, S. and Starica, C. (1997). Smoothing the Hill estimator. Advances in Applied Probability,
271-293.

Examples

data=rexp(500)
althill(data)

avhill Averaged Hill Plot

Description

Plots an averaged version of the classical Hill Plot

Usage

avhill(data, u = 2, kmin = 5, conf.int = FALSE)

Arguments
data vector of sample data
u gives the amount of which the Hill estimator is averaged. Default ist set to u=2.
kmin gives the minimal k for which the graph is plotted. Default ist set to kmin=5.
conf.int logical. If FALSE (default) no confidence intervals are plotted

Details

The Averaged Hill Plot is a smoothed version of the classical Hill Plot by taking the mean of
values of the Hill estimator for subsequent k, i.e. upper order statistics. For more information see
references.

Value

The normal black line gives the classical Hill Plot. The red dotted line is an averaged version that
smoothes the Hill Plot by taking the mean of k(u-1) subsequent Hill estimations with respect to k.
See references for more information.

References

Resnick, S. and Starica, C. (1997). Smoothing the Hill estimator. Advances in Applied Probability,
271-293.

Examples

data(danish)
avhill(danish)
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dAMSE Minimizing the AMSE of the Hill estimator with respect to k

Description

Gives the optimal number of upper order statistics k for the Hill estimator by minimizing the AMSE-
criterion.

Usage

dAMSE (data)

Arguments

data vector of sample data

Details

The optimal number of upper order statistics is equivalent to the number of extreme values or, if
you wish, the number of exceedances in the context of a POT-model like the generalized Pareto
distribution. This number is identified by minimizing the AMSE criterion with respect to k. The
optimal number, denoted k@ here, can then be associated with the unknown threshold u of the GPD
by choosing u as the n-k@th upper order statistic. For more information see references.

Value

second.order.par
gives an estimation of the second order parameter beta and rho.

ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Caeiro, J. and Gomes, M.I. (2016). Threshold selection in extreme value analysis. Extreme Value
Modeling and Risk Analysis:Methids and Applications, 69—-86.

Examples

data(danish)
dAMSE (danish)
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danielsson A Double Bootstrap Procedure for Choosing the Optimal Sample
Fraction

Description
An Implementation of the procedure proposed in Danielsson et al. (2001) for selecting the optimal
sample fraction in tail index estimation.

Usage

danielsson(data, B = 500, epsilon = 0.9)

Arguments
data vector of sample data
B number of Bootstrap replications
epsilon gives the amount of the first resampling size n1 by choosing n1 = n*epsilon.
Default is set to epsilon=0.9
Details

The Double Bootstrap procedure simulates the AMSE criterion of the Hill estimator using an aux-
iliary statistic. Minimizing this statistic gives a consistent estimator of the sample fraction k/n with
k the optimal number of upper order statistics. This number, denoted k@ here, is equivalent to the
number of extreme values or, if you wish, the number of exceedances in the context of a POT-model
like the generalized Pareto distribution. k@ can then be associated with the unknown threshold u of
the GPD by choosing u as the n-k@th upper order statistic. For more information see references.

Value

second.order.par
gives an estimation of the second order parameter rho.

ke optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Danielsson, J. and Haan, L. and Peng, L. and Vries, C.G. (2001). Using a bootstrap method to
choose the sample fraction in tail index estimation. Journal of Multivariate analysis, 2, 226-248.

Examples

data=rexp(100)
danielsson(data, B=200)
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danish Danish Fire Insurance Claims

Description

These data describe large fire insurance claims in Denmark from Thursday 3rd January 1980 until
Monday 31st December 1990. The data are contained in a numeric vector. They were supplied by
Mette Rytgaard of Copenhagen Re

Usage
data("danish")

Format

The format is: atomic [1:2167] 1.68 2.09 1.73 1.78 4.61 ... - attr(*, "times")= POSIXt[1:2167],
format: "1980-01-03 01:00:00" "1980-01-04 01:00:00" ...

Source

The data is taken from package evir.

Examples

data(danish)

DK A Bias-based procedure for Choosing the Optimal Sample Fraction

Description

An Implementation of the procedure proposed in Drees & Kaufmann (1998) for selecting the opti-
mal sample fraction in tail index estimation.

Usage
DK(data, r = 1)

Arguments
data vector of sample data
r tuning parameter for the stopping criterion. default is set to 1. Change only if

recommended by the output.



eye

Details

The procedure proposed in Drees & Kaufmann (1998) is based on bias reduction. A stopping
criterion with respect to k is implemented to find the optimal tail fraction, i.e. k/n with k the
optimal number of upper order statistics. This number, denoted k@ here, is equivalent to the number
of extreme values or, if you wish, the number of exceedances in the context of a POT-model like
the generalized Pareto distribution. k@ can then be associated with the unknown threshold u of the
GPD by choosing u as the n-k@th upper order statistic. If the above mentioned stopping criterion
exceedes a certain value r, the bias of the assumed extreme model has become prominent and
therefore k should not be chosen higher. For more information see references.

Value

second.order.par
gives an estimation of the second order parameter rho.

ke optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail
References

Drees, H. and Kaufmann, E. (1998). Selecting the optimal sample fraction in univariate extreme
value estimation. Stochastic Processes and their Applications, 75(2), 149—-172.

Examples

data(danish)
DK (danish)

eye Automated Approach for Interpreting the Hill-Plot

Description

An Implementation of the so called Eye-balling Technique proposed in Danielsson et al. (2016)

Usage

eye(data, ws = 0.01, epsilon = 0.3, h = 0.9)

Arguments
data vector of sample data
WS size of the moving window. Default is one percent of the data
epsilon size of the range in which the estimates can vary
h percentage of data inside the moving window that should lie in the tolerable

range
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Details

The procedure searches for a stable region in the Hill-Plot by defining a moving window. Inside
this window the estimates of the Hill estimator with respect to k have to be in a pre-defined range
around the first estimate within this window. It is sufficient to claim that only h percent of the
estimates within this window lie in this range. The smallest k that accomplishes this is then the
optimal number of upper order statistics, i.e. data in the tail.

Value
ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index by plugging in k@ into the hill estimator
References

Danielsson, J. and Ergun, L.M. and de Haan, L. and de Vries, C.G. (2016). Tail Index Estimation:
Quantile Driven Threshold Selection.

Examples

data(danish)
eye(danish)

ggplot Gerstengarbe Plot

Description

Performs a sequential Mann-Kendall Plot also known as Gerstengarbe Plot.

Usage

ggplot(data, nexceed = min(data) - 1)

Arguments
data vector of sample data
nexceed number of exceedances. Default is the minimum of the data to make sure the

whole dataset is considered.
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Details

The Gerstengarbe Plot, referring to Gerstengarbe and Werner (1989), is a sequential version of
the Mann-Kendall-Test. This test searches for change points within a time series. This method
is adopted for finding a threshold in a POT-model. The basic idea is that the differences of order
statistics of a given dataset behave different between the body and the tail of a heavy-tailed distri-
bution. So there should be a change point if the POT-model holds. To identify this change point
the sequential test is done twice, for the differences from start to the end of the dataset and vice
versa. The intersection point of these two series can then be associated with the change point of the
sample data. For more informations see references.

Value
ko optimal number of upper order statistics, i.e. the change point of the dataset
threshold the corresponding threshold
tail.index the corresponding tail index

Authors

Ana Cebrian Johannes Ossberger

Acknowledgements

Great thanks to A. Cebrian for providing a basic version of this code.

References

Gerstengarbe, EW. and Werner, P.C. (1989). A method for statistical definition of extreme-value
regions and their application to meteorological time series. Zeitschrift fuer Meteorologie, 39(4),
224-226.

Cebrian, A., and Denuit, M. and Lambert, P. (2003). Generalized pareto fit to the society of actuaries
large claims database. North American Actuarial Journal, 7(3), 18-36.

Examples

data(danish)
ggplot(danish)

GH A Bias-based procedure for Choosing the Optimal Threshold

Description

An Implementation of the procedure proposed in Guillou & Hall(2001) for selecting the optimal
threshold in extreme value analysis.
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Usage
GH(data)

Arguments

data vector of sample data

Details

The procedure proposed in Guillou & Hall (2001) is based on bias reduction. Due to the fact that
the log-spacings of the order statistics are approximately exponentially distributed if the tail of
the underlying distribution follows a Pareto distribution, an auxilliary statistic with respect to k is
implemented with the same properties. The method then behaves like an asymptotic test for mean
0. If some critical value crit is exceeded the hypothesis of zero mean is rejected. Thus the bias
has become too large and the assumed exponentiality and therefore the assumed Pareto tail can not
be hold. From this an optimal number of k can be found such that the critical value is not exceeded.
This optimal number, denoted k@ here, is equivalent to the number of extreme values or, if you wish,
the number of exceedances in the context of a POT-model like the generalized Pareto distribution.
k@ can then be associated with the unknown threshold u of the GPD by coosing u as the n-koth
upper order statistic. For more information see references.

Value
ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Guillou, A. and Hall, P. (2001). A Diagnostic for Selecting the Threshold in Extreme Value Analy-
sis. Journal of the Royal Statistical Society, 63(2), 293-305.

Examples
data(danish)
GH(danish)
gomes A Double Bootstrap Procedure for Choosing the Optimal Sample
Fraction
Description

An Implementation of the procedure proposed in Gomes et al. (2012) and Caeiro et al. (2016) for
selecting the optimal sample fraction in tail index estimation.
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Usage

gomes(data, B = 1000, epsilon = 0.995)

Arguments
data vector of sample data
B number of Bootstrap replications
epsilon gives the amount of the first resampling size n1 by choosing n1 = n*epsilon.
Default is set to epsilon=0.995
Details

The Double Bootstrap procedure simulates the AMSE criterion of the Hill estimator using an aux-
iliary statistic. Minimizing this statistic gives a consistent estimator of the sample fraction k/n with
k the optimal number of upper order statistics. This number, denoted k@ here, is equivalent to the
number of extreme values or, if you wish, the number of exceedances in the context of a POT-model
like the generalized Pareto distribution. k@ can then be associated with the unknown threshold u of
the GPD by choosing u as the n-k@th upper order statistic. For more information see references.

Value

second.order.par
gives an estimation of the second order parameter rho.

ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail
References

Gomes, M.I. and Figueiredo, F. and Neves, M.M. (2012). Adaptive estimation of heavy right tails:
resampling-based methods in action. Extremes, 15, 463-489.

Caeiro, F. and Gomes, 1. (2016). Threshold selection in extreme value analysis. Extreme Value
Modeling and Risk Analysis: Methods and Applications, 69-86.

Examples

data(danish)
gomes (danish)
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gpd The Generalized Pareto Distribution (GPD)

Description

Density, distribution function, quantile function and random number generation for the Generalized
Pareto distribution with location, scale, and shape parameters.

Usage
dgpd(x, loc = @, scale = 1, shape = 0@, log.d = FALSE)
rgpd(n, loc = @, scale = 1, shape = 0)
ggpd(p, loc = @, scale = 1, shape = 0@, lower.tail = TRUE,
log.p = FALSE)
pgpd(g, loc = @, scale = 1, shape = 0, lower.tail = TRUE,
log.p = FALSE)
Arguments
X Vector of observations.

loc, scale, shape
Location, scale, and shape parameters. Can be vectors, but the lengths must be

appropriate.
log.d Logical; if TRUE, the log density is returned.
n Number of observations.
p Vector of probabilities.
lower.tail Logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
log.p Logical; if TRUE, probabilities p are given as log(p).
q Vector of quantiles.

Details

The Generalized Pareto distribution function is given (Pickands, 1975) by

é(y—u)}*/5

(e

H(y)=1—[1+

definedon {y : y > 0,(1 4+ &(y — p)/o) > 0}, with location p, scale o > 0, and shape parameter
&
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References

Brian Bader, Jun Yan. "eva: Extreme Value Analysis with Goodness-of-Fit Testing." R package
version (2016)

Pickands III, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics,
119-131.

Examples

dgpd(2:4, 1, 0.5, 0.01)

dgpd(2, -2:1, 0.5, 0.01)

pgpd(2:4, 1, 0.5, 0.01)

ggpd(seq(0.9, 0.6, -0.1), 2, 0.5, 0.01)
rgpd(6, 1, 0.5, 0.01)

## Generate sample with linear trend in location parameter
rgpd(6, 1:6, 0.5, 0.01)

## Generate sample with linear trend in location and scale parameter
rgpd(6, 1:6, seq(@.5, 3, 0.5), 0.01)

p <- (1:9)/10
pgpd(agpd(p, 1, 2

, 0.8)
## [1] 0.1 0.2 0.3 0.4

, 2

’ 0 . )
0.6 0.

, 1 8
0.5 7 0.80.9
## Incorrect syntax (parameter vectors are of different lengths other than 1)

# rgpd(1, 1:8, 1:5, 0)

## Also incorrect syntax
# rgpd(10, 1:8, 1, 0.01)

gpdFit Parameter estimation for the Generalized Pareto Distribution (GPD)

Description

Fits exceedances above a chosen threshold to the Generalized Pareto model. Various estimation pro-
cedures can be used, including maximum likelihood, probability weighted moments, and maximum
product spacing. It also allows generalized linear modeling of the parameters.

Usage

gpdFit(data, threshold = NA, nextremes = NA, npp = 365,
method = c("mle”, "mps”, "pwm"), information = c("”expected”,
"observed”), scalevars = NULL, shapevars = NULL, scaleform = ~1,
shapeform = ~1, scalelink = identity, shapelink = identity,
start = NULL, opt = "Nelder-Mead", maxit = 10000, ...)
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Arguments

data Data should be a numeric vector from the GPD.

threshold A threshold value or vector of the same length as the data.

nextremes Number of upper extremes to be used (either this or the threshold must be given,
but not both).

npp Length of each period (typically year). Is used in return level estimation. De-
faults to 365.

method Method of estimation - maximum likelihood (mle), maximum product spacing
(mps), and probability weighted moments (pwm). Uses mle by default. For
pwm, only the stationary model can be fit.

information Whether standard errors should be calculated via observed or expected (default)

information. For probability weighted moments, only expected information will
be used if possible. For non-stationary models, only observed information is
used.

scalevars, shapevars
A dataframe of covariates to use for modeling of the each parameter. Parameter
intercepts are automatically handled by the function. Defaults to NULL for the
stationary model.

scaleform, shapeform
An object of class ‘formula’ (or one that can be coerced into that class), specify-
ing the model of each parameter. By default, assumes stationary (intercept only)
model. See details.

scalelink, shapelink
A link function specifying the relationship between the covariates and each pa-
rameter. Defaults to the identity function. For the stationary model, only the
identity link should be used.

start Option to provide a set of starting parameters to optim; a vector of scale and
shape, in that order. Otherwise, the routine attempts to find good starting pa-
rameters. See details.

opt Optimization method to use with optim.
maxit Number of iterations to use in optimization, passed to optim. Defaults to 10,000.

Additional arguments to pass to optim.

Details

The base code for finding probability weighted moments is taken from the R package evir. See
citation. In the stationary case (no covariates), starting parameters for mle and mps estimation are
the probability weighted moment estimates. In the case where covariates are used, the starting
intercept parameters are the probability weighted moment estimates from the stationary case and
the parameters based on covariates are initially set to zero. For non-stationary parameters, the first
reported estimate refers to the intercept term. Covariates are centered and scaled automatically to
speed up optimization, and then transformed back to original scale.

Formulas for generalized linear modeling of the parameters should be given in the form ‘~ varl +
var2 + - - -’. Essentially, specification here is the same as would be if using function ‘Im’ for only the
right hand side of the equation. Interactions, polynomials, etc. can be handled as in the ‘formula’
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class.

Intercept terms are automatically handled by the function. By default, the link functions are the
identity function and the covariate dependent scale parameter estimates are forced to be positive.
For some link function f(-) and for example, scale parameter o, the link is written as o = f (o121 +
O9Xo + -+ Ukﬁk).

Maximum likelihood estimation and maximum product spacing estimation can be used in all cases.
Probability weighted moments can only be used for stationary models.

Value

A class object ‘gpdFit’ describing the fit, including parameter estimates and standard errors.

References

Brian Bader, Jun Yan. "eva: Extreme Value Analysis with Goodness-of-Fit Testing." R package
version (2016)

Examples

## Fit data using the three different estimation procedures
set.seed(7)

x <- rgpd(2000, loc = @, scale
## Set threshold at 4

mle_fit <- gpdFit(x, threshold = 4, method = "mle")

pwm_fit <- gpdFit(x, threshold = 4, method = "pwm")

mps_fit <- gpdFit(x, threshold = 4, method = "mps")

## Look at the difference in parameter estimates and errors
mle_fit$par.ests

pwm_fit$par.ests

mps_fit$par.ests

2, shape = 0.2)

mle_fit$par.ses
pwm_fit$par.ses
mps_fit$par.ses

## A linear trend in the scale parameter

set.seed(7)

n <- 300

x2 <- rgpd(n, loc = @, scale =1 + 1:n / 200, shape = 0)

covs <- as.data.frame(seq(1, n, 1))
names(covs) <- c("Trend1")

resultl <- gpdFit(x2, threshold = @, scalevars = covs, scaleform = ~ Trendl)

## Show summary of estimates
resultl
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hall A Single Bootstrap Procedure for Choosing the Optimal Sample Frac-
tion

Description

An Implementation of the procedure proposed in Hall (1990) for selecting the optimal sample frac-
tion in tail index estimation

Usage

hall(data, B = 1000, epsilon = 0.955, kaux = 2 * sqrt(length(data)))

Arguments
data vector of sample data
B number of Bootstrap replications
epsilon gives the amount of the first resampling size n1 by choosing n1 = n*epsilon.
Default is set to epsilon=0.955
kaux tuning parameter for the hill estimator
Details

The Bootstrap procedure simulates the AMSE criterion of the Hill estimator. The unknown theoret-
ical parameter of the inverse tail index gamma is replaced by a consistent estimation using a tuning
parameter kaux for the Hill estimator. Minimizing this statistic gives a consistent estimator of the
sample fraction k/n with k the optimal number of upper order statistics. This number, denoted k@
here, is equivalent to the number of extreme values or, if you wish, the number of exceedances in
the context of a POT-model like the generalized Pareto distribution. k@ can then be associated with
the unknown threshold u of the GPD by choosing u as the n-k@th upper order statistic. For more
information see references.

Value
ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Hall, P. (1990). Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing Param-
eter in Nonparametric Problems. Journal of Multivariate Analysis, 32, 177-203.

Examples

data(danish)
hall(danish)
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Himp A Single Bootstrap Procedure for Choosing the Optimal Sample Frac-
tion

Description
An Implementation of the procedure proposed in Caeiro & Gomes (2012) for selecting the optimal
sample fraction in tail index estimation

Usage
Himp(data, B = 1000, epsilon = 0.955)

Arguments
data vector of sample data
B number of Bootstrap replications
epsilon gives the amount of the first resampling size n1 by choosing n1 = n*epsilon.
Default is set to epsilon=0.955
Details

This procedure is an improvement of the one introduced in Hall (1990) by overcoming the restrictive
assumptions through estimation of the necessary parameters. The Bootstrap procedure simulates the
AMSE criterion of the Hill estimator using an auxiliary statistic. Minimizing this statistic gives a
consistent estimator of the sample fraction k/n with k the optimal number of upper order statistics.
This number, denoted k@ here, is equivalent to the number of extreme values or, if you wish, the
number of exceedances in the context of a POT-model like the generalized Pareto distribution. k@
can then be associated with the unknown threshold u of the GPD by choosing u as the n-k@th upper
order statistic. For more information see references.

Value

second.order.par
gives an estimation of the second order parameter rho.

ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Hall, P. (1990). Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing Param-
eter in Nonparametric Problems. Journal of Multivariate Analysis, 32, 177-203.

Caeiro, F. and Gomes, M.I. (2014). On the bootstrap methodology for the estimation of the tail
sample fraction. Proceedings of COMPSTAT, 545-552.
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Examples

data(danish)
Himp(danish)

HW Minimizing the AMSE of the Hill estimator with respect to k

Description

An Implementation of the procedure proposed in Hall & Welsh (1985) for obtaining the optimal
number of upper order statistics k for the Hill estimator by minimizing the AMSE-criterion.

Usage
HW(data)

Arguments

data vector of sample data

Details

The optimal number of upper order statistics is equivalent to the number of extreme values or, if
you wish, the number of exceedances in the context of a POT-model like the generalized Pareto
distribution. This number is identified by minimizing the AMSE criterion with respect to k. The
optimal number, denoted k@ here, can then be associated with the unknown threshold u of the GPD
by choosing u as the n-k@th upper order statistic. For more information see references.

Value

second.order.par
gives an estimation of the second order parameter rho.

ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Hall, P. and Welsh, A.H. (1985). Adaptive estimates of parameters of regular variation. The Annals
of Statistics, 13(1), 331-341.

Examples

data(danish)
HW(danish)
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mindist Minimizing the distance between the empirical tail and a theoretical
Pareto tail with respect to k.

Description
An Implementation of the procedure proposed in Danielsson et al. (2016) for selecting the optimal
threshold in extreme value analysis.

Usage

mindist(data, ts = 0.15, method = "mad")

Arguments
data vector of sample data
ts size of the upper tail the procedure is applied to. Default is 15 percent of the
data
method should be one of ks for the "Kolmogorov-Smirnov" distance metric or mad for
the mean absolute deviation (default)
Details

The procedure proposed in Danielsson et al. (2016) minimizes the distance between the largest
upper order statistics of the dataset, i.e. the empirical tail, and the theoretical tail of a Pareto distri-
bution. The parameter of this distribution are estimated using Hill’s estimator. Therefor one needs
the optimal number of upper order statistics k. The distance is then minimized with respect to this k.
The optimal number, denoted k@ here, is equivalent to the number of extreme values or, if you wish,
the number of exceedances in the context of a POT-model like the generalized Pareto distribution.
k@ can then be associated with the unknown threshold u of the GPD by saying u is the n-k@th upper
order statistic. For the distance metric in use one could choose the mean absolute deviation called
mad here, or the maximum absolute deviation, also known as the "Kolmogorov-Smirnov" distance
metric (ks). For more information see references.

Value
ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index by plugging in k@ into the hill estimator
References

Danielsson, J. and Ergun, L.M. and de Haan, L. and de Vries, C.G. (2016). Tail Index Estimation:
Quantile Driven Threshold Selection.
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Examples

data(danish)
mindist(danish,method="mad")

PS Sample Path Stability Algorithm

Description
An Implementation of the heuristic algorithm for choosing the optimal sample fraction proposed in
Caeiro & Gomes (2016), among others.

Usage
PS(data, j = 1)

Arguments

data vector of sample data

] digits to round to. Should be @ or 1 (default)
Details

The algorithm searches for a stable region of the sample path, i.e. the plot of a tail index estimator
with respect to k. This is done in two steps. First the estimation of the tail index for every k
is rounded to j digits and the longest set of equal consecutive values is chosen. For this set the
estimates are rounded to j+2 digits and the mode of this subset is determined. The corresponding
biggest k-value, denoted k@ here, is the optimal number of data in the tail.

Value
ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail
threshold the corresponding threshold
tail.index the corresponding tail index
References

Caeiro, J. and Gomes, M.I. (2016). Threshold selection in extreme value analysis. Extreme Value
Modeling and Risk Analysis:Methids and Applications, 69-86.

Gomes, M.I. and Henriques-Rodrigues, L. and Fraga Alves, M.I. and Manjunath, B. (2013). Adap-
tive PORT-MVRB estimation: an empirical comparison of two heuristic algorithms. Journal of
Statistical Computation and Simulation, 83, 1129-1144.

Gomes, M.I. and Henriques-Rodrigues, L. and Miranda, M.C. (2011). Reduced-bias location-
invariant extreme value index estimation: a simulation study. Communications in Statistic-Simulation
and Computation, 40, 424-447.
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Examples

data(danish)
PS(danish)

ggestplot QQ-Estimator-Plot

Description

Plots the QQ-Estimator against the upper order statistics

Usage

ggestplot(data, kmin = 5, conf.int = FALSE)

Arguments
data vector of sample data
kmin gives the minimal k for which the graph is plotted. Default ist set to kmin=5
conf.int logical. If FALSE (default) no confidence intervals are plotted

Details

The QQ-Estimator is a Tail Index Estimator based on regression diagnostics. Assuming a Pareto tail
behaviour of the data at hand a QQ-Plot of the theoretical quantiles of an exponential distribution
against the empirical quantiles of the log-data should lead to a straight line above some unknown
upper order statistic k. The slope of this line is an estimator for the tail index. Computing this
estimator via linear regression for every k the plot should stabilize for the correct number of upper
order statistics, denoted ko here.

Value

The plot shows the values of the QQ-Estimator with respect to k. See references for more informa-
tion.

References

Kratz, M. and Resnick, S.I. (1996). The QQ-estimator and heavy tails. Stochastic Models, 12(4),
699-724.

Examples

data(danish)
ggestplot(danish)
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gqgpd QQ-Plot against the generalized Pareto distribution for given number
of exceedances

Description

Plots the empirical observations above a given threshold against the theoretical quantiles of a gen-
eralized Pareto distribution.

Usage

qggpd(data, nextremes, scale, shape)

Arguments
data vector of sample data
nextremes number of exceedances
scale scale parameter of GPD
shape shape parameter of GPD
Details

If the fitted GPD model provides a reasonable approximation of the underlying sample data the
empirical and theoretical quantiles should coincide. So plotting them against each other should
result in a straight line. Deviations from that line speak for a bad model fit and against a GPD
assumption.

Value

The straight red line gives the line of agreement. The dashed lines are simulated 95 percent con-
fidence intervals. Therefor the fitted GPD model is simulated 1000 times using Monte Carlo. The
sample size of each simulation equals the number of exceedances.

Examples

data=rexp(1000) #GPD with scale=1, shape=0
qggpd(data, 1000,1,0)
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RT Adaptive choice of the optimal sample fraction in tail index estimation

Description

An implementation of the minimization criterion proposed in Reiss & Thomas (2007).

Usage

RT(data, beta = @, kmin = 2)

Arguments
data vector of sample data
beta a factor for weighting the expression below. Default is set to beta=0
kmin gives a minimum value for k. Default ist set to kmin=2

Details

The procedure proposed in Reiss & Thomas (2007) chooses the lowest upper order statistic k to
minimize the expression 1/k sum_i=1"k i*beta |gamma_i-median(gamma_1,...,gamma_k)| or
an alternative of that by replacing the absolute deviation with a squared deviation and the median
just with gamma_k, where gamma denotes the Hill estimator

Value
ko optimal number of upper order statistics, i.e. number of exceedances or data in
the tail for both metrics, i.e. the absolute and squared deviation.
threshold the corresponding thresholds.
tail.index the corresponding tail indices
References

Reiss, R.-D. and Thomas, M. (2007). Statistical Analysis of Extreme Values: With Applications to
Insurance, Finance, Hydrology and Other Fields. Birkhauser, Boston.

Examples

data(danish)
RT(danish)
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sumplot Sum Plot

Description

An implementation of the so called sum plot proposed in de Sousa & Michailidis (2004)

Usage

sumplot(data, kmin = 5)

Arguments

data vector of sample data

kmin gives the minimal k for which the graph is plotted. Default ist set to kmin=5.
Details

The sum plot is based on the plot (k,S_k) with S_k:=k*gamma_k where gamma_k denotes the Hill
estimator. So the sum plot and the Hill plot are statistically equivalent. The sum plot should be
approximately linear for the k-values where gamma_k=gamma. So the linear part of the graph can
be used as an estimator of the (inverse) tail index. The sum plot leads to the estimation of the
slope while the classical Hill plot leads to estimation of the intercept. The optimal number of order
statistics, also known as the threshold, can then be derived as the value k where the plot differs from
a straight line with slope gamma. See references for more information.

Value

The plot shows the values of S_k=kxgamma_k for different k. See references for more information.

References

De Sousa, Bruno and Michailidis, George (2004). A diagnostic plot for estimating the tail index of
a distribution. Journal of Computational and Graphical Statistics 13(4), 1-22.

Examples

data(danish)
sumplot(danish)



26 TH

TH Sequential Goodness of Fit Testing for the Generalized Pareto Distri-
bution

Description

An implementation of the sequential testing procedure proposed in Thompson et al. (2009) for
automated threshold selection

Usage

TH(data, thresholds)

Arguments

data vector of sample data

thresholds a sequence of pre-defined thresholds to check for GPD assumption
Details

The procedure proposed in Thompson et al. (2009) is based on sequential goodness of fit testing.
First, one has to choose a equally spaced grid of posssible thresholds. The authors recommend 100
thresholds between the 50 percent and 98 percent quantile of the data, provided there are enough
observations left (about 100 observations above the last pre-defined threshold). Then the parame-
ters of a GPD for each threshold are estimated. One can show that the differences of subsequent
scale parameters are approximately normal distributed. So a Pearson chi-squared test for normality
is applied to all the differences, striking the smallest thresholds out until the test is not rejected

anymore.
Value

threshold the threshold used for the test

num. above the number of observations above the given threshold

p.values raw p-values for the thresholds tested

ForwardStop transformed p-values according to the ForwardStop criterion. See G’Sell et al
(2016) for more information

StrongStop transformed p-values according to the StrongStop criterion. See G’Sell et al
(2016) for more information

est.scale estimated scale parameter for the given threshold

est.shape estimated shape parameter for the given threshold
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References

Thompson, P. and Cai, Y. and Reeve, D. (2009). Automated threshold selection methods for extreme
wave analysis. Coastal Engineering, 56(10), 1013-1021.

G’Sell, M.G. and Wager, S. and Chouldechova, A. and Tibshirani, R. (2016). Sequential selection
procedures and false discovery rate control. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 78(2), 423—444.

Examples

data=rexp(1000)
u=seq(quantile(data,.1),quantile(data,.9),,100)
A=TH(data,u);A
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