Package ‘tdsa’

May 15, 2025
Version 1.1-1
Date 2025-05-15
Title Time-Dependent Sensitivity Analysis
Depends R (>=3.5.0)
Imports deSolve (>= 1.10-6), mathjaxr (>= 0.8-3), numDeriv (>= 2006.4-1)
Suggests knitr, tinytest
RdMacros mathjaxr
VignetteBuilder knitr

Description Functions that can be used to calculate time-dependent state and parameter sensitivi-
ties for both continuous- and discrete-time deterministic mod-
els. See Ng et al. (2023) <doi:10.1086/726143> for more information about time-dependent sen-
sitivity analysis.

License GPL-3
URL https://github.com/weehaong/tdsa

BugReports https://github.com/weehaong/tdsa/issues

R topics documented:

PATM_SENS . . o o v v v i v e e e e e e e e e e e e e e e e e e e e 1
SEALE_SEIMS . . . . e e e e e e e e e e e e e e 4
Index 11
parm_sens Time-Dependent Parameter Sensitivities
Description

Function to calculate time-dependent parameter sensitivities.

Assume the same model and reward as described in state_sens. Unlike perturbations of the state
variables, since the model parameters are not treated as dynamic quantities (even if they may be
time-varying), an explicit perturbation of a parameter will only temporarily change the parameter
while the perturbation lasts. Now consider a very brief perturbation (i.e., a sharp spike or dip) of
the parameter b;, centered at time ¢. We define the time-dependent parameter sensitivity «;(t) as
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2 parm_sens

the sensitivity of the reward to such a perturbation. See Ng et al. (in press, submitted) for a more
precise definition.

This function uses the output returned by state_sens (which contain elements parms and times)
to calculate the sensitivity for every parameter in parms at every time step in times.

See state_sens for examples.

Note: parm_sens assumes that the reward function does not depend explicitly on the parameters
of interest, so any parameter perturbation will only affect the reward indirectly through its effects
on the state variables. If this assumption is not true, then there is an additional ’direct’ contribution
that needs to be added to the results; we will show how this can be done in a future vignette.

Usage

parm_sens(
state_sens_out,
numDeriv_arglist = list(),
verbose = TRUE

Arguments

state_sens_out Output returned by state_sens. List containing the elements model_type,
dynamic_fn, parms, dynamic_fn_arglist, times, state and tdss.
To make this help page easier to read, from now on, any time we mention
dynamic_fn, parms, etc., we refer to the corresponding elements in state_sens_out.
numDeriv_arglist
Optional list of arguments passed to the function jacobian from the numDeriv
package, when calculating derivatives. Can be used to specify the method, and
arguments controlling the method. For example, if the parameter sensitivities
take too long to calculate, try setting numDeriv_arglist = list(method="simple")
to replace Richardson’s extrapolation by a simple one-sided epsilon difference.

verbose Whether to display progress messages in the console. Either TRUE (the default)
or FALSE.

Details

Parameter sensitivities can be obtained from the state sensitivities using the following formulae.

¢ Continuous-time models:
zy: 89]‘ (t’ y(t)v b)

j=1

where )\; () is the state sensitivity of y; at time ¢.

¢ Discrete-time models:

< g, (t,y(t),b
3 9;(t,y(t),b)

rilt) = ab;

)‘j(t + 1)7
b=b(t)

Jj=1

where \;(t 4 1) is the state sensitivity of y; at time step ¢ + 1. This also means that the
parameter sensitivities are always zero at the final time step ¢1, because A; (¢t + 1) = 0 for all
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To apply these formulae, we need to calculate derivatives of dynamic_fn with respect to parms,
using the function jacobian from numDeriv. The main coding challenge that we have addressed
is to make this work even when the structure of parms is only under the relatively mild restrictions
imposed in state_sens.

Value
A list with the following elements:

times Time steps at which the parameter sensitivities are evaluated, a numeric vector.
Same as times from state_sens_out.

tdps Time-dependent parameter sensitivities. An object whose structure depends on
the structure of parms.

* If parms is a numeric object, then tdps is an array with one more index
than the object, so a vector becomes a matrix, a matrix becomes a 3-index
array, etc. The first index is new and is associated with the time step.

¢ If parms is a function of the form function(t) that returns a numeric ob-
ject (i.e., time-varying parameters), then tdps is an array with one more
index than the returned object. Again, the first index is new and is associ-
ated with the time step.

* If parms is a list containing any combination of numeric objects and func-
tions, then tdps is a list of the same length, with the previous "rules" applied
element-wise.

As a concrete example, say parms is a matrix of dimension c(3,2), and times
a vector of length 50. Then tdps is a 3-index array of dimension c(50, 3, 2),
and the array element tdps[20,1,2] gives the sensitivity for the parameter
parms[1,2] at time step times[20].

Warning

The function parm_sens will calculate the sensitivities for every parameter in the argument parms
used by dynamic_fn. Hence, parms should not contain discrete parameters such as the length
of the vector or the dimensions of a matrix; otherwise jacobian (from the numDeriv package)
will attempt to numerically evaluate the derivative of dynamic_fn with respect to such a discrete
parameter and will hence almost invariably return an error message or nonsensical results. The
solution is instead to make use the fact that we allow dynamic_fn to take additional arguments . . .;
for example, we can define dynamic_fn to take an additional argument parms2 that will then be
used to hold these discrete parameters instead of parms.

References

Ng, W. H., Myers, C. R., McArt, S., & Ellner, S. P. (2023). A time for every purpose: using
time-dependent sensitivity analysis to help understand and manage dynamic ecological systems.
American Naturalist, 202, 630-654. doi: 10.1086/726143. eprint doi: 10.1101/2023.04.13.5367609.

Ng, W. H,, Myers, C. R., McArt, S., & Ellner, S. P. (2023). tdsa: An R package to perform time-
dependent sensitivity analysis. Methods in Ecology and Evolution, 14, 2758-2765. doi: 10.1111/
2041210X.14216.

See Also

state_sens for time-dependent state sensitivities.
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state_sens Time-Dependent State Sensitivities

Description

Function to calculate time-dependent state sensitivities. Both continuous- and discrete-time models
are supported.

* Continuous-time models: Assume that the dynamics of the system can be described by first-
order ordinary differential equations (and initial conditions)

d};Tit) =g(t,y(t),b(t)), y(to) = yo,

where y(¢) is the n,-dimensional state vector and b(t) the model parameters at time ¢. Also
assume there is some reward of interest (e.g., a management objective) that can be written as

g /t iy () dt+ Uy (h)),

where t( and ¢, are the initial and final times, and ¥ (y(t¢;)) represents a terminal payoff. (We
will explain how to deal with non-standard objectives that cannot be expressed in such a form
in a future vignette.)

* Discrete-time models: Choose the units of time so that the time steps take consecutive integer
values. Assume that the dynamics of the system can be described by first-order recurrence
equations (and initial conditions)

y(t+1) =gt y(),b(t), vy()=yo-

Also assume that the reward can be written as

t1—

J=3" f(t,yt))+U(y(t)).

t=to

We now consider a sudden perturbation of the ith state variable y; at time ¢. Even though the
perturbation only occurs explicitly at time ¢, it will "nudge" the system to a new state trajectory,
so all state variables after time ¢ will be affected. Hence the reward is affected by both the explicit
perturbation as well as the "downstream" changes. We define the time-dependent state sensitivity
A;(t) as the sensitivity of the reward to such a perturbation; the sensitivity is time-dependent because
it depends on the time ¢ at which the perturbation occurs. See Ng et al. (in press, submitted) for a
more precise definition.

This function calculates the sensitivity \;(t) for every ¢ from 1 to n,, at every ¢ between ¢y and
t1. Hence, the user can identify the state variable and the time of perturbation that would have the
largest impact on the reward.

The output of this function can also be used as the input argument of the function parm_sens to
calculate time-dependent parameter sensitivities.
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Usage

state_sens(
model_type,
dynamic_fn,
parms,
reward_fn,
terminal_fn,
y_o,
times,
interpol = "spline”,
dynamic_fn_arglist = list(),
reward_fn_arglist = list(),
terminal_fn_arglist = list(),
state_ode_arglist = list(),
adjoint_ode_arglist = list(),
numDeriv_arglist = list(),
verbose = TRUE

Arguments

model_type Whether the model is continuous- or discrete-time. Allowed values are "continuous”
and "discrete”.

dynamic_fn Dynamic equations of the state variables. Function of the form function(t,y,parms,...

with arguments

t Time ¢, a single number.
y State vector y, a numeric vector of length n,,.

parms Object used to specify the model parameters b(¢). Allowed structures
are:

* A numeric object. This can be a vector, matrix or array.

¢ A function of the form function(t), that returns a numeric object.
This is used for time-varying parameters. See "Details".

* A list containing any combination of the above.
* NULL if the user prefers to specify parameter values elsewhere.

We have imposed these restrictions to facilitate parameter sensitivity cal-
culations using parm_sens, but nonetheless they should be mild enough to
permit most use cases. See "Details."

. Additional arguments.
Function must return a list, whose first element is g(¢, y, b(t)), a numeric vector

of length n,,. Other elements of the returned list are optional, and correspond to
additional numeric quantities that the user wants to monitor at each time step.

Note to users of the deSolve package: Any function that can be used as func in
ode can be used as dynamic_fn, provided parms has one of the allowed struc-
tures described above.

parms Argument passed to dynamic_fn.

reward_fn Integrand (continuous-time model) or summand (discrete-time model) in reward
function. Function of the form function(t,y, ...), with arguments

t Time ¢, a single number.
y State vector y, a numeric vector of length n,,.
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. Additional arguments.
Function must return f(¢,y), a single number.

terminal_fn Terminal payoff in reward function. Function of the form function(y,...),
with arguments

y State vector y, a numeric vector of length n,,.
. Additional arguments.

Function must return ¥(y), a single number.
y_0 Initial conditions of the dynamical system yq, a numeric vector of length n,,.

times Numeric vector containing the time steps at which the state variables and sensi-
tivities will be evaluated. Must be in ascending order, and not contain duplicates.
The first and last time steps must be ¢ and ¢;.
For continuous-time models, this is the discretisation of the continuous interval
between t( and ¢, so the smaller the step sizes, the more accurate the numerical
results.
For discrete-time models, this must be a vector of consecutive integers, so tg
and t; must themselves be integers.

interpol Only used for continuous-time models. Whether to perform spline or linear in-
terpolation of the numerical solutions of the state variables. Allowed values are
"spline” (the default) and "linear”. The former uses the function splinefun,
while the latter uses the function approxfun, both from the stats package.

dynamic_fn_arglist, reward_fn_arglist, terminal_fn_arglist
Optional lists of arguments passed to dynamic_fn, reward_fn and terminal_fn.
Can be used to specify any additional arguments . .. that these functions were
designed to accept.

state_ode_arglist, adjoint_ode_arglist
Only used for continuous-time models. Optional lists of arguments passed to
the function ode from the deSolve package, when solving the dynamic and ad-
joint equations respectively. Can be used to specify the method, and arguments
controlling the method. See "Details" for the definition of the adjoint equa-
tions. (Discrete-time models will always use the "iteration" method, so these
arguments are ignored.)

numDeriv_arglist
Optional list of arguments passed to the functions grad and jacobian from the
numDeriv package, when calculating derivatives. Can be used to specify the
method, and arguments controlling the method. For example, if the adjoint equa-
tions take too long to solve, try setting numDeriv_arglist = list(method="simple")
to replace Richardson’s extrapolation by a simple one-sided epsilon difference.

verbose Whether to display progress messages in the console. Either TRUE (the default)
or FALSE.

Details

Algorithm: This function uses the adjoint method to calculate the sensitivity for every state
variable at every time step in times. It automates the following sequence of steps:

1. Obtain numerical solutions of the state variables at every time step, by solving the dynamic
equations dynamic_fn forward in time using ode from deSolve, with initial conditions y_@.
(Note that ode can also support discrete-time models using the "iteration" method.)

2. For continuous-time models, create a function that interpolates the numerical solutions of the
state variables, using either splinefun or approxfun from stats. This step is not required
for discrete-time models.
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3.

Define a function (internally called adjoint_fn) that returns the RHS of the adjoint equa-
tions.
* Continuous-time models: The adjoint equations are the first-order ordinary differential
equations
dxi(t) _ Of(ty)

dt 6yL

dg;(t,y)
3%‘

— > ()
y=y(t) j

y=y(t)
* Discrete-time models: The adjoint equations are the first-order recurrence equations

of(t—1,y) "‘Z)\j(t) 0g;(t—1,y)

ANi(t—1) =
( ) Ay y=y(t-1) 9y

y=y(t—1)

Inside adjoint_fn, we use jacobian and grad from numDeriv to evaluate the Jacobian
and gradient of dynamic_fn and reward_fn. For discrete-time models, the values of the
state variables (at which these derivatives are evaluated) come directly from the numerical
solutions from Step 1. For continuous-time model, ODE solvers need adjoint_fn to work
at any time ¢ and not just those in times, so the values of the state variables instead come
from the interpolation function from Step 2.

Calculate the terminal conditions of the adjoint system

M) = 22 :

Ay y=y(t1)

using grad to evaluate the gradient of terminal_fn.

Obtain numerical solutions of the adjoint variables, by solving the adjoint equations back-
ward in time using ode, with the terminal conditions from Step 4. The values of the adjoint
variables are equal to the time-dependent state sensitivities.

Parameters in dynamic_fn: As mentioned earlier, the output of state_sens can be used as
the input argument of the function parm_sens to calculate parameter sensitivities. The following
points are important if the user wants to do so, and can be ignored otherwise.

Value

There are four ways to specify parameters in dynamic_fn: (1) using parms, (2) using the
additional arguments ..., (3) within the environment of dynamic_fn itself, and (4) in the
global environment. The function parm_sens will calculate sensitivities for all the param-
eters specified using (1), and none of the parameters specified using (2), (3) or (4). These
calculations involve taking numerical derivatives of dynamic_fn with respect to the param-
eters, which is why we have imposed some (relatively mild) restrictions on the structure of
parms.

The usual way to implement time-varying parameters is to have parms be a function of time
(or a list containing such a function), which is then evaluated at t within dynamic_fn itself to
return the current parameter values. When calculating parameter sensitivities, it is important
that the evaluation be at t and not at a shifted time like t-1. This is because to us the user-
specified dynamic_fn is a "black box", so there is no way we would know if dynamic_fn
is using an evaluation like parms(t-1) to obtain the current parameter values instead of
parms(t).

A list with the following elements:

model_type, dynamic_fn, parms, dynamic_fn_arglist, times

Same as the input arguments. Included in the output because they are needed
for parameter sensitivity calculations using parm_sens.
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References
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Numerical solutions of the state variables evaluated at times. Matrix with as
many rows as the length of times, and as many columns as n, (and possibly
more; see below). The ith row corresponds to (y1 (), y2(t), ..., Yn, (t)), where ¢
is the time step times[i].

If there are additional numeric quantitities that the user wants to monitor at each
time step (these are the optional elements in the list returned by dynamic_fn),
they will appear as additional columns to the right.

Note to users of the deSolve package: state is the usual output returned by
ode, except with the first column (corresponding to times) removed. This is for
consistency with the output returned by parm_sens.

Time-dependent state sensitivities evaluated at times. Matrix with as many rows
as the length of times, and as many columns as n,,. The ith row corresponds to
(A1(t), A2(t), ..., A, (t)), where ¢ is the time step times[i].

Ng, W. H., Myers, C. R., McArt, S., & Ellner, S. P. (2023). A time for every purpose: using
time-dependent sensitivity analysis to help understand and manage dynamic ecological systems.
American Naturalist, 202, 630-654. doi: 10.1086/726143. eprint doi: 10.1101/2023.04.13.536769.

Ng, W. H,, Myers, C. R., McArt, S., & Ellner, S. P. (2023). tdsa: An R package to perform time-
dependent sensitivity analysis. Methods in Ecology and Evolution, 14, 2758-2765. doi: 10.1111/
2041210X.14216.

See Also

parm_sens for time-dependent parameter sensitivities.

Examples

# Load the TDSA package.
library(tdsa)

* =

ETE T T T N R S

We will con
sink habita

sider an example involving the translocation of individuals into a
t that is being restored.

Consider an organism in a sink habitat, where the per-capita loss rate
(mortality and emigration combined) exceeds the per-capita unregulated birth
rate, so the population is only maintained through immigration. However, the
mortality rate is expected to decrease over time due to ongoing habitat
restoration efforts, so the population should eventually become
self-sustaining. The population dynamics is hence given by

dy(t)/dt = bxy(t)*x(1 - axy(t)) - mu(t)*y(t) + sigma,

where y(t) is the population at time t, b the unregulated per-capita birth
rate, a the coefficient for reproductive competition, mu(t) the time-varying
per-capita loss rate, and sigma the immigration rate. We assume that mu(t)
starts off above b (so it is a sink habitat), but decreases as a sigmoidal
and eventually falls below b (so the population becomes self-sustaining).


https://doi.org/10.1086/726143
https://doi.org/10.1101/2023.04.13.536769
https://doi.org/10.1111/2041-210X.14216
https://doi.org/10.1111/2041-210X.14216

state_sens

The organism provides an important ecosystem service. Over a management period
from t_@ to t_1, we ascribe an economic value to the organism

J = integrate(w y(t), lower=t_0, upper=t_1)

Here, w is the per-capita rate at which the service is provided, so the
integral gives the total value of the service accumulated over the period.
However, we also want to ascribe value to maintaining a large population at
the end of the management period, so the second term corresponds to a terminal
payoff where v is the ascribed value per individual.

Say we want to translocate individuals to the habitat to speed up the
population recovery and increase the reward J. What is the best time to do so
in order to maximise the increase in the reward? As early as possible? Or only
when the loss rate has become low enough that the population can sustain
itself? A one-off translocation causes a small, sudden increase in the
population size, so it is useful to look at the time-dependent state
sensitivity. Alternatively, we can interpret the translocation as a brief
spike in the immigration rate sigma, so we can also look at the time-dependent
parameter sensitivity of sigma.

e R E E E E E E E E E E E E E E E R E

# ______________________________
# Preparing the input arguments.

# Parameter values for the dynamic equations.
parms = list(

b=1, # Per-capita birth rate.
a=2@0.1, # Competition coefficient.
mu = function(t){0.5 + 1/(1 + exp((t-10)/2))}, # Per-capita loss rate.
sigma = 0.2 # Immigration rate.

)

# Function that returns the dynamic equations.
dynamic_fn = function(t, y, parms){

b = parms[["b"]]

a = parms[["a"]1]

sigma = parms[["sigma"]]

mu = parms[["mu"]1(t)

dy = bxyx(1- axy) - muxy + sigma
return( list(dy) )

# Initial conditions.
y_0 = 0.37 # Approximate steady-state population before restoration efforts.

# Function that returns the reward integrand.

reward_fn = function(t, y){
w =1 # Per-capita rate at which the ecosystem service is provided.
return( w x y )

}
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# Function that returns the terminal payoff.

terminal_fn = function(y){
v = 1.74 # Ascribed value per individual at the end of the period.
return( v * y )

}

# Time steps over management period. We discretise it into 1001 time steps
# (so the step size is 0.03).
times = seq(@, 30, length.out=1001)

# _______________________________________________
# Calculating time-dependent state sensitivities
# _______________________________________________
state_sens_out = state_sens(

model_type = "continuous”,

dynamic_fn = dynamic_fn,
parms = parms,

reward_fn = reward_fn,
terminal_fn = terminal_fn,
y_0 =y_o,

times = times

# Plot the per-capita unregulated birth and loss rates.
plot(times, parms[["mu”]](times), type="1", 1lwd=2,
xlab="Time (year)", ylab="Demographic rate (/year)")
abline(h=parms[["b"]], col="red"”, lwd=2)
legend("topright”, col=c("red”, "black"), lwd=2, bty="n",
legend=c("Birth rate”, "Loss rate”))

# Plot the population size.
plot(times, state_sens_out[["state"”]][,1], type="1", lwd=2,
xlab="Time (year)", ylab="Population size y")

# Plot the time-dependent state sensitivity. Peaks at around t=10, which is
# roughly when mu and b intersects, so the population has just become
# self-sustaining.
plot(times, state_sens_out[["tdss"]][,1], type="1", lwd=2,
xlab="Time (year)", ylab="State sensitivity of y")

parm_sens_out = parm_sens(
state_sens_out = state_sens_out

# Plot the parameter sensitivity of sigma.
plot(times, parm_sens_out[["tdps"]11[["sigma”11[,1]1, type="1", 1lwd=2,
xlab="Time (year)", ylab="Param. sensitivity of sigma")

state_sens
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