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change_test Tests in context of measurement of change using LLTM.

Description

Computes gradient (GR), likelihood ratio (LR), Rao score (RS) and Wald (W) test statistics for
hypotheses on parameters expressing change between two time points.

Usage

change_test(X)

Arguments

X Data matrix containing the responses of n persons to 2k binary items. Columns
1 to k contain the responses to k items at time point 1, and columns (k+1) to 2k
the responses to the same k items at time point 2.
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Details

Assume all items be presented twice (2 time points) to the same persons. The data matrix X has
n rows (number of persons) and 2k columns considered as virtual items. Assume a constant shift
of item difficulties of each item between the 2 time points represented by one parameter. The shift
parameter is the only parameter of interest. Of interest is the test of the hypothesis that the shift
parameter equals 0 against the two-sided alternative that it is not equal to zero.

Value

A list of test statistics, degrees of freedom, and p-values.

test A numeric vector of gradient (GR), likelihood ratio (LR), Rao score (RS), and
Wald test statistics.

df Degrees of freedom.

pvalue A vector of corresponding p-values.

call The matched call.

References

Fischer, G. H. (1995). The Linear Logistic Test Model. In G. H. Fischer & I. W. Molenaar (Eds.),
Rasch models: Foundations, Recent Developments, and Applications (pp. 131-155). New York:
Springer.

Fischer, G. H. (1983). Logistic Latent Trait Models with Linear Constraints. Psychometrika, 48(1),
3-26.

See Also

invar_test, and LLTM_test.

Examples

## Not run:
# Numerical example with 400 persons and 4 items
# presented twice, thus 8 virtual items

# Data y generated under the assumption that shift parameter equals 0
# (no change from time point 1 to 2)

# design matrix W used only for example data generation
# (not used for estimating in change_test function)
W <- rbind(c(1,0,0,0,0),

c(0,1,0,0,0),
c(0,0,1,0,0),
c(0,0,0,1,0),
c(1,0,0,0,1),
c(0,1,0,0,1),
c(0,0,1,0,1),
c(0,0,0,1,1))

# eta Parameter, first 4 are nuisance, i.e. , easiness parameters of the 4 items
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# at time point 1, last one is the shift parameter.
eta <- c(-2,-1,1,2,0)

y <- eRm::sim.rasch(persons = rnorm(400), items = colSums(eta * t(W)))

res <- change_test(X = y)

res$test # test statistics
res$df # degrees of freedoms
res$pvalue # p-values

## End(Not run)

discr_test Testing item discriminations

Description

Computes gradient (GR), likelihood ratio (LR), Rao score (RS) and Wald (W) test of hypothesis
of equal item discriminations against the alternative that at least one item discriminates differently
(only for binary data).

Usage

discr_test(X)

Arguments

X Data matrix.

Details

The tests are based on the following model suggested in Draxler, Kurz, Gürer, and Nolte (2024)

logit
(
E(Y )

)
= τ + α+ δ(r − 1),

where E(Y ) ist the expected value of a binary response (of a person to an item), r = 1, . . . , k − 1
is the person score, i.e., number of correct responses of that person when responding to k items, τ
is the respective person parameter and α and δ are two parameters referring to the respective item.
The parameter α represents a baseline, i.e., the easiness or attractiveness of the respective item in
person score group r = 1. The parameter δ denotes the constant change of the attractiveness of that
item between successive person score groups. Thus, the model assumes a linear effect of the person
score r on the logit of the probability of a correct response.

The four test statistics are derived from a conditional likelihood function in which the τ parame-
ters are eliminated by conditioning on the observed person scores. The hypothesis to be tested is
formally given by setting all δ parameters equal to 0. The alternative assumes that at least one δ
parameter is not equal to 0.
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Value

A list of test statistics, degrees of freedom, and p-values.

test A numeric vector of gradient (GR), likelihood ratio (LR), Rao score (RS), and
Wald test statistics.

df A numeric vector of corresponding degrees of freedom.

pvalue A vector of corresponding p-values.

call The matched call.

References

Draxler, C., Kurz. A., Gürer, C., & Nolte, J. P. (2024). An improved inferential procedure to eval-
uate item discriminations in a conditional maximum likelihood framework. Manuscript submitted
for publication.

See Also

invar_test, change_test, and LLTM_test.

Examples

## Not run:
##### Dataset PISA Mathematics data.pisaMath {sirt} #####

library(sirt)
data(data.pisaMath)
y <- data.pisaMath$data[, grep(names(data.pisaMath$data), pattern = "M" )]

res <- discr_test(X = y)
# $test
# GR LR RS W
# 72.430 73.032 76.725 73.470
#
# $df
# GR LR RS W
# 10 10 10 10
#
# $pvalue
# GR LR RS W
# "< 0.001" "< 0.001" "< 0.001" "< 0.001"
#
# $call
# discr_test(X = y)

## End(Not run)
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invar_test Test of invariance of item parameters between two groups.

Description

Computes gradient (GR), likelihood ratio (LR), Rao score (RS) and Wald (W) test statistics for
hypothesis of equality of item parameters between two groups of persons against a two-sided alter-
native that at least one item parameter differs between the two groups.

Usage

invar_test(X, splitcr = "median", model = "RM")

Arguments

X Data matrix.

splitcr Split criterion which is either "mean", "median" or a numeric vector x.

"mean" Corresponds to division of the sample according to the mean of the
person score.

"median" Corresponds to division of the sample according to the median of
the person score.

x Has length equal to number of persons and contains zeros and ones. It indi-
cates group membership for every person.

model RM, PCM, RSM

Details

Note that items are excluded for the computation of GR, LR, and W due to inappropriate response
patterns within subgroups and for computation of RS due to inappropriate response patterns in the
total data. If the model is identified from the total data but not from one or both subgroups only RS
will be computed. If the model is not identified from the total data, no test statistic is computable.

Value

A list of test statistics, degrees of freedom, and p-values.

test A numeric vector of gradient (GR), likelihood ratio (LR), Rao score (RS), and
Wald test statistics.

df A numeric vector of corresponding degrees of freedom.

pvalue A vector of corresponding p-values.

deleted_items A list with numeric vectors of item numbers that were excluded before comput-
ing corresponding test statistics.

call The matched call.
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References

Draxler, C. (2010). Sample Size Determination for Rasch Model Tests. Psychometrika, 75(4),
708–724.

Draxler, C., & Alexandrowicz, R. W. (2015). Sample Size Determination Within the Scope of
Conditional Maximum Likelihood Estimation with Special Focus on Testing the Rasch Model.
Psychometrika, 80(4), 897–919.

Draxler, C., Kurz, A., & Lemonte, A. J. (2020). The Gradient Test and its Finite Sample Size
Properties in a Conditional Maximum Likelihood and Psychometric Modeling Context. Communi-
cations in Statistics-Simulation and Computation, 1-19.

Glas, C. A. W., & Verhelst, N. D. (1995a). Testing the Rasch Model. In G. H. Fischer & I. W.
Molenaar (Eds.), Rasch Models: Foundations, Recent Developments, and Applications (pp. 69–95).
New York: Springer.

Glas, C. A. W., & Verhelst, N. D. (1995b). Tests of Fit for Polytomous Rasch Models. In G. H. Fis-
cher & I. W. Molenaar (Eds.), Rasch Models: Foundations, Recent Developments, and Applications
(pp. 325-352). New York: Springer.

See Also

change_test, and LLTM_test.

Examples

## Not run:
##### Rasch Model #####
y <- eRm::sim.rasch(persons = rnorm(400), c(0,-3,-2,-1,0,1,2,3))
x <- c(rep(1,200),rep(0,200))

res <- invar_test(y, splitcr = x, model = "RM")

res$test # test statistics
res$df # degrees of freedoms
res$pvalue # p-values
res$deleted_items # excluded items

$test
GR LR RS W

14.492 14.083 13.678 12.972

$df
GR LR RS W
7 7 7 7

$pvalue
GR LR RS W

"0.043" "0.050" "0.057" "0.073"

$deleted_items
$deleted_items$GR
[1] "none"
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$deleted_items$LR
[1] "none"

$deleted_items$RS
[1] "none"

$deleted_items$W
[1] "none"

$call
invar_test(X = y, splitcr = x, model = "RM")

## End(Not run)

LLTM_test Testing linear restrictions on parameter space of item parameters of
RM.

Description

Computes gradient (GR), likelihood ratio (LR), Rao score (RS) and Wald (W) test statistics for
hypotheses defined by linear restrictions on parameter space of the item parameters of RM.

Usage

LLTM_test(X, W)

Arguments

X Data matrix.

W Design matrix of LLTM.

Details

The RM item parameters are assumed to be linear in the LLTM parameters. The coefficients of the
linear functions are specified by a design matrix W. In this context, the LLTM is considered as a
more parsimonious model than the RM. The LLTM parameters can be interpreted as the difficulties
of certain cognitive operations needed to respond correctly to psychological test items. The item
parameters of the RM are assumed to be linear combinations of these cognitive operations. These
linear combinations are defined in the design matrix W.
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Value

A list of test statistics, degrees of freedom, and p-values.

test A numeric vector of gradient (GR), likelihood ratio (LR), Rao score (RS), and
Wald test statistics.

df Degrees of freedom.

pvalue A vector of corresponding p-values.

call The matched call.

References

Fischer, G. H. (1995). The Linear Logistic Test Model. In G. H. Fischer & I. W. Molenaar (Eds.),
Rasch models: Foundations, Recent Developments, and Applications (pp. 131-155). New York:
Springer.

Fischer, G. H. (1983). Logistic Latent Trait Models with Linear Constraints. Psychometrika, 48(1),
3-26.

See Also

change_test, and invar_test.

Examples

## Not run:
# Numerical example assuming no deviation from linear restriction

# design matrix W defining linear restriction
W <- rbind(c(1,0), c(0,1), c(1,1), c(2,1))

# assumed eta parameters of LLTM for data generation
eta <- c(-0.5, 1)

# assumed vector of item parameters of RM
b <- colSums(eta * t(W))

y <- eRm::sim.rasch(persons = rnorm(400), items = b - b[1]) # sum0 = FALSE

res <- LLTM_test(X = y, W = W )

res$test # test statistics
res$df # degrees of freedoms
res$pvalue # p-values

## End(Not run)
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post_hocChange Power analysis of tests in context of measurement of change using
LLTM

Description

Returns post hoc power of Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test
given data and probability of error of first kind α. The hypothesis to be tested states that the shift
parameter quantifying the constant change for all items between time points 1 and 2 equals 0. The
alternative states that the shift parameter is not equal to 0. It is assumed that the same items are
presented at both time points. See function change_test.

Usage

post_hocChange(data, alpha = 0.05)

Arguments

data Data matrix as required for function change_test.

alpha Probability of error of first kind.

Details

The power of the tests (Wald, LR, score, and gradient) is determined from the assumption that the
approximate distributions of the four test statistics are from the family of noncentral χ2 distributions
with df = 1 and noncentrality parameter λ. In case of evaluating the post hoc power, λ is assumed
to be given by the observed value of the test statistic. Given the probability of the error of the first
kind α the post hoc power of the tests can be determined from λ. More details about the distributions
of the test statistics and the relationship between λ, power, and sample size can be found in Draxler
and Alexandrowicz (2015).

In particular, let qα be the 1− α quantile of the central χ2 distribution with df = 1. Then,

power = 1− Fdf,λ(qα),

where Fdf,λ is the cumulative distribution function of the noncentral χ2 distribution with df = 1
and λ equal to the observed value of the test statistic.

Value

A list of results.

test A numeric vector of Wald (W), likelihood ratio (LR), Rao score (RS), and gra-
dient (GR) test statistics.

power Posthoc power value for each test.
observed deviation

CML estimate of shift parameter expressing observed deviation from hypothesis
to be tested.
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person score distribution

Relative frequencies of person scores. Uninformative scores, i.e., minimum and
maximum score, are omitted. Note that the person score distribution does also
have an influence on the power of the tests.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which power is determined.
It equals observed value of test statistic.

call The matched call.

References

Draxler, C., & Alexandrowicz, R. W. (2015). Sample size determination within the scope of con-
ditional maximum likelihood estimation with special focus on testing the Rasch model. Psychome-
trika, 80(4), 897-919.

Fischer, G. H. (1995). The Linear Logistic Test Model. In G. H. Fischer & I. W. Molenaar (Eds.),
Rasch models: Foundations, Recent Developments, and Applications (pp. 131-155). New York:
Springer.

Fischer, G. H. (1983). Logistic Latent Trait Models with Linear Constraints. Psychometrika, 48(1),
3-26.

See Also

sa_sizeChange, and powerChange.

Examples

## Not run:
# Numerical example with 200 persons and 4 items
# presented twice, thus 8 virtual items

# Data y generated under the assumption that shift parameter equals 0.5
# (change from time point 1 to 2)

# design matrix W used only for exmaple data generation
# (not used for estimating in change_test function)
W <- rbind(c(1,0,0,0,0), c(0,1,0,0,0), c(0,0,1,0,0), c(0,0,0,1,0),

c(1,0,0,0,1), c(0,1,0,0,1), c(0,0,1,0,1), c(0,0,0,1,1))

# eta parameter vector, first 4 are nuisance, i.e., item parameters at time point 1.
# (easiness parameters of the 4 items at time point 1),
# last one is the shift parameter
eta <- c(-2,-1,1,2,0.5)

y <- eRm::sim.rasch(persons=rnorm(150), items=colSums(-eta*t(W)))

res <- post_hocChange(data = y, alpha = 0.05)

# > res
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# $test
# W LR RS GR
# 9.822 10.021 9.955 10.088
#
# $power
# W LR RS GR
# 0.880 0.886 0.884 0.888
#
# $`observed deviation (estimate of shift parameter)`
# [1] 0.504
#
# $`person score distribution`
#
# 1 2 3 4 5 6 7
# 0.047 0.047 0.236 0.277 0.236 0.108 0.047
#
# $`degrees of freedom`
# [1] 1
#
# $`noncentrality parameter`
# W LR RS GR
# 9.822 10.021 9.955 10.088
#
# $call
# post_hocChange(alpha = 0.05, data = y)

## End(Not run)

post_hocPCM Power analysis of tests of invariance of item parameters between two
groups of persons in partial credit model

Description

Returns post hoc power of Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test
given data and probability of error of first kind α. The hypothesis to be tested assumes equal item-
category parameters of the partial credit model between two predetermined groups of persons. The
alternative states that at least one of the parameters differs between the two groups.

Usage

post_hocPCM(data, x, alpha = 0.05)

Arguments

data Data matrix with item responses (in ordered categories starting from 0).

x A numeric vector of length equal to number of persons that contains zeros and
ones indicating group membership of the persons.

alpha Probability of error of first kind.
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Details

The power of the tests (Wald, LR, score, and gradient) is determined from the assumption that the
approximate distributions of the four test statistics are from the family of noncentral χ2 distribu-
tions with df equal to the number of free item-category parameters in the partial credit model and
noncentrality parameter λ. In case of evaluating the post hoc power, λ is assumed to be given by
the observed value of the test statistic. Given the probability of the error of the first kind α the
post hoc power of the tests can be determined from λ. More details about the distributions of the
test statistics and the relationship between λ, power, and sample size can be found in Draxler and
Alexandrowicz (2015).

In particular, let qα be the 1− α quantile of the central χ2 distribution with df equal to the number
of free item-category parameters. Then,

power = 1− Fdf,λ(qα),

where Fdf,λ is the cumulative distribution function of the noncentral χ2 distribution with df equal to
the number of free item-category parameters and λ equal to the observed value of the test statistic.

Value

A list of results.

test A numeric vector of Wald (W), likelihood ratio (LR), Rao score (RS), and gra-
dient (GR) test statistics.

power Post hoc power value for each test.
observed global deviation

Observed global deviation from hypothesis to be tested represented by a single
number. It is obtained by dividing the test statistic by the informative sample
size. The latter does not include persons with minimum or maximum person
score.

observed local deviation

CML estimates of free item-category parameters in both groups of persons rep-
resenting observed deviation from hypothesis to be tested locally per item and
response category.

person score distribution in group 1

Relative frequencies of person scores in group 1. Uninformative scores, i.e.,
minimum and maximum score, are omitted. Note that the person score distribu-
tion does also have an influence on the power of the tests.

person score distribution in group 2

Relative frequencies of person scores in group 2. Uninformative scores, i.e.,
minimum and maximum score, are omitted. Note that the person score distribu-
tion does also have an influence on the power of the tests.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which power is determined.
It equals observed value of test statistic.

call The matched call.
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References

Draxler, C. (2010). Sample Size Determination for Rasch Model Tests. Psychometrika, 75(4),
708–724.

Draxler, C., & Alexandrowicz, R. W. (2015). Sample Size Determination Within the Scope of
Conditional Maximum Likelihood Estimation with Special Focus on Testing the Rasch Model.
Psychometrika, 80(4), 897–919.

Draxler, C., Kurz, A., & Lemonte, A. J. (2020). The Gradient Test and its Finite Sample Size
Properties in a Conditional Maximum Likelihood and Psychometric Modeling Context. Communi-
cations in Statistics-Simulation and Computation, 1-19.

Glas, C. A. W., & Verhelst, N. D. (1995a). Testing the Rasch Model. In G. H. Fischer & I. W.
Molenaar (Eds.), Rasch Models: Foundations, Recent Developments, and Applications (pp. 69–95).
New York: Springer.

Glas, C. A. W., & Verhelst, N. D. (1995b). Tests of Fit for Polytomous Rasch Models. In G. H. Fis-
cher & I. W. Molenaar (Eds.), Rasch Models: Foundations, Recent Developments, and Applications
(pp. 325-352). New York: Springer.

See Also

sa_sizePCM, and powerPCM.

Examples

## Not run:
# Numerical example for post hoc power analysis for PCM

y <- eRm::pcmdat2
n <- nrow(y) # sample size
x <- c( rep(0,n/2), rep(1,n/2) ) # binary covariate

res <- post_hocPCM(data = y, x = x, alpha = 0.05)

# > res
# $test
# W LR RS GR
# 11.395 11.818 11.628 11.978
#
# $power
# W LR RS GR
# 0.683 0.702 0.694 0.709
#
# $`observed global deviation`
# W LR RS GR
# 0.045 0.046 0.045 0.047
#
# $`observed local deviation`
# I1-C2 I2-C1 I2-C2 I3-C1 I3-C2 I4-C1 I4-C2
# group1 2.556 0.503 2.573 -2.573 -2.160 -1.272 -0.683
# group2 2.246 0.878 3.135 -1.852 -0.824 -0.494 0.941
#
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# $`person score distribution in group 1`
#
# 1 2 3 4 5 6 7
# 0.016 0.097 0.137 0.347 0.121 0.169 0.113
#
# $`person score distribution in group 2`
#
# 1 2 3 4 5 6 7
# 0.015 0.083 0.136 0.280 0.152 0.227 0.106
#
# $`degrees of freedom`
# [1] 7
#
# $`noncentrality parameter`
# W LR RS GR
# 11.395 11.818 11.628 11.978
#
# $call
# post_hocPCM(alpha = 0.05, data = y, x = x)

## End(Not run)

post_hocRM Power analysis of tests of invariance of item parameters between two
groups of persons in binary Rasch model

Description

Returns post hoc power of Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test
given data and probability of error of first kind α. The hypothesis to be tested assumes equal item
parameters between two predetermined groups of persons. The alternative states that at least one of
the parameters differs between the two groups.

Usage

post_hocRM(data, x, alpha = 0.05)

Arguments

data Binary data matrix.

x A numeric vector of length equal to number of persons containing zeros and
ones indicating group membership of the persons.

alpha Probability of error of first kind.
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Details

The power of the tests (Wald, LR, score, and gradient) is determined from the assumption that the
approximate distributions of the four test statistics are from the family of noncentral χ2 distributions
with df equal to the number of items minus 1 and noncentrality parameter λ. In case of evaluating
the post hoc power, λ is assumed to be given by the observed value of the test statistic. Given the
probability of the error of the first kind α the post hoc power of the tests can be determined from λ.
More details about the distributions of the test statistics and the relationship between λ, power, and
sample size can be found in Draxler and Alexandrowicz (2015).

In particular, let qα be the 1− α quantile of the central χ2 distribution with df equal to the number
of items minus 1. Then,

power = 1− Fdf,λ(qα),

where Fdf,λ is the cumulative distribution function of the noncentral χ2 distribution with df equal
to the number of items reduced by 1 and λ equal to the observed value of the test statistic.

Value

A list of results.

test A numeric vector of Wald (W), likelihood ratio (LR), Rao score (RS), and gra-
dient (GR) test statistics.

power Post hoc power value for each test.
global deviation

Observed global deviation from hypothesis to be tested represented by a single
number. It is obtained by dividing the test statistic by the informative sample
size. The latter does not include persons with minimum or maximum person
score.

local deviation

CML estimates of free item parameters in both groups of persons (first item pa-
rameter set to 0 in both groups) representing observed deviation from hypothesis
to be tested locally per item.

person score distribution in group 1

Relative frequencies of person scores in group 1. Uninformative scores, i.e.,
minimum and maximum score, are omitted. Note that the person score distribu-
tion does also have an influence on the power of the tests.

person score distribution in group 2

Relative frequencies of person scores in group 2. Uninformative scores, i.e.,
minimum and maximum score, are omitted. Note that the person score distribu-
tion does also have an influence on the power of the tests.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which power is determined.
It equals observed value of test statistic.

call The matched call.
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See Also

sa_sizeRM, and powerRM.

Examples

## Not run:
# Numerical example for post hoc power analysis for Rasch Model

y <- eRm::raschdat1
n <- nrow(y) # sample size
x <- c( rep(0,n/2), rep(1,n/2) ) # binary covariate

res <- post_hocRM(data = y, x = x, alpha = 0.05)

# > res
# $test
# W LR RS GR
# 29.241 29.981 29.937 30.238
#
# $power
# W LR RS GR
# 0.890 0.900 0.899 0.903
#
# $`observed global deviation`
# W LR RS GR
# 0.292 0.300 0.299 0.302
#
# $`observed local deviation`
# I2 I3 I4 I5 I6 I7 I8 I9 I10 I11
# group1 1.039 0.693 2.790 2.404 1.129 1.039 0.864 1.039 2.790 2.244
# group2 2.006 0.945 2.006 3.157 1.834 0.690 0.822 1.061 2.689 2.260
# I12 I13 I14 I15 I16 I17 I18 I19 I20 I21
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# group1 1.412 3.777 3.038 1.315 2.244 1.039 1.221 2.404 0.608 0.608
# group2 0.945 2.962 4.009 1.171 2.175 1.472 2.091 2.344 1.275 0.690
# I22 I23 I24 I25 I26 I27 I28 I29 I30
# group1 0.438 0.608 1.617 3.038 0.438 1.617 2.100 2.583 0.864
# group2 0.822 1.275 1.565 2.175 0.207 1.746 1.746 2.260 0.822
#
# $`person score distribution in group 1`
#
# 1 2 3 4 5 6 7 8 9 10 11 12 13
# 0.02 0.02 0.02 0.06 0.02 0.10 0.10 0.06 0.10 0.12 0.08 0.12 0.12
# 14 15 16 17 18 19 20 21 22 23 24 25 26
# 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
# 27 28 29
# 0.00 0.00 0.00
#
# $`person score distribution in group 2`
#
# 1 2 3 4 5 6 7 8 9 10 11 12 13
# 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
# 14 15 16 17 18 19 20 21 22 23 24 25 26
# 0.08 0.12 0.10 0.16 0.06 0.04 0.10 0.12 0.08 0.02 0.02 0.02 0.08
# 27 28 29
# 0.00 0.00 0.00
#
# $`degrees of freedom`
# [1] 29
#
# $`noncentrality parameter`
# W LR RS GR
# 29.241 29.981 29.937 30.238
#
# $call
# post_hocRM(alpha = 0.05, data = y, x = x)

## End(Not run)

powerChange Power analysis of tests in context of measurement of change using
LLTM

Description

Returns power of Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test given
probability of error of first kind α, sample size, and a deviation from the hypothesis to be tested.
The latter states that the shift parameter quantifying the constant change for all items between time
points 1 and 2 equals 0. The alternative states that the shift parameter is not equal to 0. It is assumed
that the same items are presented at both time points. See function change_test.
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Usage

powerChange(n_total, eta, alpha = 0.05, persons = rnorm(10^6))

Arguments

n_total Total sample size for which power shall be determined.

eta A vector of eta parameters of the LLTM. The last element represents the constant
change or shift for all items between time points 1 and 2. The other elements of
the vector are the item parameters at time point 1. A choice of the eta parameters
constitutes a scenario of deviation from the hypothesis of no change.

alpha Probability of the error of first kind.

persons A vector of person parameters (drawn from a specified distribution). By default
106 parameters are drawn at random from the standard normal distribution. The
larger this number the more accurate are the computations. See Details.

Details

In general, the power of the tests is determined from the assumption that the approximate distribu-
tions of the four test statistics are from the family of noncentral χ2 distributions with df = 1 and
noncentrality parameter λ. The latter depends on a scenario of deviation from the hypothesis to be
tested and a specified sample size. Given the probability of the error of the first kind α the power of
the tests can be determined from λ. More details about the distributions of the test statistics and the
relationship between λ, power, and sample size can be found in Draxler and Alexandrowicz (2015).

As regards the concept of sample size a distinction between informative and total sample size has to
be made since the power of the tests depends only on the informative sample size. In the conditional
maximum likelihood context, the responses of persons with minimum or maximum person score
are completely uninformative. They do not contribute to the value of the test statistic. Thus, the
informative sample size does not include these persons. The total sample size is composed of all
persons.

In particular, the determination of λ and the power of the tests, respectively, is based on a simple
Monte Carlo approach. Data (responses of a large number of persons to a number of items presented
at two time points) are generated given a user-specified scenario of a deviation from the hypothesis
to be tested. The hypothesis to be tested assumes no change between time points 1 and 2. A scenario
of a deviation is given by a choice of the item parameters at time point 1 and the shift parameter,
i.e., the LLTM eta parameters, as well as the person parameters (to be drawn randomly from a
specified distribution). The shift parameter represents a constant change of all item parameters
from time point 1 to time point 2. A test statistic T (Wald, LR, score, or gradient) is computed
from the simulated data. The observed value t of the test statistic is then divided by the informative
sample size ninfsim observed in the simulated data. This yields the so-called global deviation
e = t/ninfsim, i.e., the chosen scenario of a deviation from the hypothesis to be tested being
represented by a single number. The power of the tests can be determined given a user-specified
total sample size denoted by ntotal. The noncentrality parameter λ can then be expressed by λ =
ntotal∗(ninfsim/ntotalsim)∗e, where ntotalsim denotes the total number of persons in the simulated
data and ninfsim/ntotalsim is the proportion of informative persons in the sim. data. Let qα be the
1− α quantile of the central χ2 distribution with df = 1. Then,

power = 1− Fdf,λ(qα),
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where Fdf,λ is the cumulative distribution function of the noncentral χ2 distribution with df = 1
and λ = ntotal ∗ (ninfsim/ntotalsim) ∗ e. Thereby, it is assumed that ntotal is composed of a
frequency distribution of person scores that is proportional to the observed distribution of person
scores in the simulated data.

Note that in this approach the data have to be generated only once. There are no replications needed.
Thus, the procedure is computationally not very time-consuming.

Since e is determined from the value of the test statistic observed in the simulated data it has to be
treated as a realized value of a random variable E. The same holds true for λ as well as the power
of the tests. Thus, the power is a realized value of a random variable that shall be denoted by P .
Consequently, the (realized) value of the power of the tests need not be equal to the exact power
that follows from the user-specified ntotal, α, and the chosen item parameters and shift parameter
used for the simulation of the data. If the CML estimates of these parameters computed from the
simulated data are close to the predetermined parameters the power of the tests will be close to the
exact value. This will generally be the case if the number of person parameters used for simulating
the data is large, e.g., 105 or even 106 persons. In such cases, the possible random error of the
computation procedure based on the sim. data may not be of practical relevance any more. That is
why a large number (of persons for the simulation process) is generally recommended.

For theoretical reasons, the random error involved in computing the power of the tests can be pretty
well approximated. A suitable approach is the well-known delta method. Basically, it is a Taylor
polynomial of first order, i.e., a linear approximation of a function. According to it the variance of
a function of a random variable can be linearly approximated by multiplying the variance of this
random variable with the square of the first derivative of the respective function. In the present
problem, the variance of the test statistic T is (approximately) given by the variance of a noncentral
χ2 distribution. Thus, V ar(T ) = 2(df+2λ), with df = 1 and λ = t. Since the global deviation e =
(1/ninfsim) ∗ t it follows for the variance of the corresponding random variable E that V ar(E) =
(1/ninfsim)2 ∗ V ar(T ). The power of the tests is a function of e which is given by Fdf,λ(qα),
where λ = ntotal ∗ (ninfsim/ntotalsim) ∗ e and df = 1. Then, by the delta method one obtains (for
the variance of P )

V ar(P ) = V ar(E) ∗ (F ′
df,λ(qα))

2,

where F ′
df,λ is the derivative of Fdf,λ with respect to e. This derivative is determined numerically

and evaluated at e using the package numDeriv. The square root of V ar(P ) is then used to quantify
the random error of the suggested Monte Carlo computation procedure. It is called Monte Carlo
error of power.

Value

A list of results.

power Power value for each test.

MC error of power

Monte Carlo error of power computation for each test.

deviation Shift parameter estimated from the simulated data representing the constant shift
of item parameters between time points 1 and 2.
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person score distribution

Relative frequencies of person scores observed in simulated data. Uninformative
scores, i.e., minimum and maximum score, are omitted. Note that the person
score distribution does also have an influence on the power of the tests.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which power is determined.

call The matched call.

References
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ditional maximum likelihood estimation with special focus on testing the Rasch model. Psychome-
trika, 80(4), 897-919.
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Rasch models: Foundations, Recent Developments, and Applications (pp. 131-155). New York:
Springer.

Fischer, G. H. (1983). Logistic Latent Trait Models with Linear Constraints. Psychometrika, 48(1),
3-26.

See Also

sa_sizeChange, and post_hocChange.

Examples

## Not run:

# Numerical example: 4 items presented twice, thus 8 virtual items

# eta Parameter, first 4 are nuisance
# (easiness parameters of the 4 items at time point 1),
# last one is the shift parameter
eta <- c(-2,-1,1,2,0.5)
res <- powerChange(n_total = 150, eta = eta, persons=rnorm(10^6))

# > res
# $power
# W LR RS GR
# 0.905 0.910 0.908 0.911
#
# $`MC error of power`
# W LR RS GR
# 0.002 0.002 0.002 0.002
#
# $`deviation (estimate of shift parameter)`
# [1] 0.499
#
# $`person score distribution`
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#
# 1 2 3 4 5 6 7
# 0.034 0.093 0.181 0.249 0.228 0.147 0.068
#
# $`degrees of freedom`
# [1] 1
#
# $`noncentrality parameter`
# W LR RS GR
# 10.692 10.877 10.815 10.939
#
# $call
# powerChange(alpha = 0.05, n_total = 150, eta = eta, persons = rnorm(10^6))
#

## End(Not run)

powerPCM Power analysis of tests of invariance of item parameters between two
groups of persons in partial credit model

Description

Returns power of Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test given
probability of error of first kind α, sample size, and a deviation from the hypothesis to be tested. The
hypothesis to be tested assumes equal item-category parameters of the partial credit model between
two predetermined groups of persons. The alternative states that at least one of the parameters
differs between the two groups.

Usage

powerPCM(
n_total,
local_dev,
alpha = 0.05,
persons1 = rnorm(10^6),
persons2 = rnorm(10^6)

)

Arguments

n_total Total sample size for which power shall be determined.

local_dev A list consisting of two lists. One list refers to group 1, the other to group 2.
Each of the two lists contains a numeric vector per item, i.e., each list contains
as many vectors as items. Each vector contains the free item-cat. parameters of
the respective item. The number of free item-cat. parameters per item equals
the number of categories of the item minus 1.

alpha Probability of error of first kind.
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persons1 A vector of person parameters in group 1 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.

persons2 A vector of person parameters in group 2 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.

Details

In general, the power of the tests is determined from the assumption that the approximate distribu-
tions of the four test statistics are from the family of noncentral χ2 distributions with df equal to the
number of free item-category parameters and noncentrality parameter λ. The latter depends on a
scenario of deviation from the hypothesis to be tested and a specified sample size. Given the prob-
ability of the error of the first kind α the power of the tests can be determined from λ. More details
about the distributions of the test statistics and the relationship between λ, power, and sample size
can be found in Draxler and Alexandrowicz (2015).

As regards the concept of sample size a distinction between informative and total sample size has to
be made since the power of the tests depends only on the informative sample size. In the conditional
maximum likelihood context, the responses of persons with minimum or maximum person score
are completely uninformative. They do not contribute to the value of the test statistic. Thus, the
informative sample size does not include these persons. The total sample size is composed of all
persons.

In particular, the determination of λ and the power of the tests, respectively, is based on a simple
Monte Carlo approach. Data (responses of a large number of persons to a number of items) are
generated given a user-specified scenario of a deviation from the hypothesis to be tested. A scenario
of a deviation is given by a choice of the item-cat. parameters and the person parameters (to be
drawn randomly from a specified distribution) for each of the two groups. Such a scenario may be
called local deviation since deviations can be specified locally for each item-category. The relative
group sizes are determined by the choice of the number of person parameters for each of the two
groups. For instance, by default 106 person parameters are selected randomly for each group. In
this case, it is implicitly assumed that the two groups of persons are of equal size. The user can
specify the relative group sizes by choosing the length of the arguments persons1 and persons2
appropriately. Note that the relative group sizes do have an impact on power and sample size
of the tests. The next step is to compute a test statistic T (Wald, LR, score, or gradient) from
the simulated data. The observed value t of the test statistic is then divided by the informative
sample size ninfsim observed in the simulated data. This yields the so-called global deviation
e = t/ninfsim, i.e., the chosen scenario of a deviation from the hypothesis to be tested being
represented by a single number. The power of the tests can be determined given a user-specified
total sample size denoted by n_total. The noncentrality parameter λ can then be expressed by
λ = ntotal ∗ (ninfsim/ntotalsim) ∗ e, where ntotalsim denotes the total number of persons in the
simulated data and ninfsim/ntotalsim is the proportion of informative persons in the sim. data.
Let qα be the 1 − α quantile of the central χ2 distribution with df equal to the number of free
item-category parameters. Then,

power = 1− Fdf,λ(qα),
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where Fdf,λ is the cumulative distribution function of the noncentral χ2 distribution with df equal
to the number of free item-category parameters and λ = ntotal(ninfsim/ntotalsim) ∗ e. Thereby, it
is assumed that ntotal is composed of a frequency distribution of person scores that is proportional
to the observed distribution of person scores in the simulated data. The same holds true in respect
of the relative group sizes, i.e., the relative frequencies of the two person groups in a sample of size
ntotal are assumed to be equal to the relative frequencies of the two groups in the simulated data.

Note that in this approach the data have to be generated only once. There are no replications needed.
Thus, the procedure is computationally not very time-consuming.

Since e is determined from the value of the test statistic observed in the simulated data it has to be
treated as a realized value of a random variable E. The same holds true for λ as well as the power
of the tests. Thus, the power is a realized value of a random variable that shall be denoted by P .
Consequently, the (realized) value of the power of the tests need not be equal to the exact power
that follows from the user-specified ntotal, α, and the chosen item-category parameters used for the
simulation of the data. If the CML estimates of these parameters computed from the simulated data
are close to the predetermined parameters the power of the tests will be close to the exact value.
This will generally be the case if the number of person parameters used for simulating the data is
large, e.g., 105 or even 106 persons. In such cases, the possible random error of the computation
procedure based on the sim. data may not be of practical relevance any more. That is why a large
number (of persons for the simulation process) is generally recommended.

For theoretical reasons, the random error involved in computing the power of the tests can be pretty
well approximated. A suitable approach is the well-known delta method. Basically, it is a Taylor
polynomial of first order, i.e., a linear approximation of a function. According to it the variance of
a function of a random variable can be linearly approximated by multiplying the variance of this
random variable with the square of the first derivative of the respective function. In the present
problem, the variance of the test statistic T is (approximately) given by the variance of a noncentral
χ2 distribution with df equal to the number of free item-category parameters and noncentrality
parameter λ. Thus, V ar(T ) = 2(df+2λ), with λ = t. Since the global deviation e = (1/ninfsim)∗
t it follows for the variance of the corresponding random variable E that V ar(E) = (1/ninfsim)2∗
V ar(T ). The power of the tests is a function of e which is given by Fdf,λ(qα), where λ = ntotal ∗
(ninfsim/ntotalsim) ∗ e and df equal to the number of free item-category parameters. Then, by the
delta method one obtains (for the variance of P).

V ar(P ) = V ar(E) ∗ (F ′
df,λ(qα))

2,

where F ′
df,λ is the derivative of Fdf,λ with respect to e. This derivative is determined numerically

and evaluated at e using the package numDeriv. The square root of V ar(P ) is then used to quantify
the random error of the suggested Monte Carlo computation procedure. It is called Monte Carlo
error of power.

Value

A list of results.

power Power value for each test.
MC error of power

Monte Carlo error of power computation for each test.
global deviation

Global deviation computed from simulated data for each test. See Details.
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local deviation

CML estimates of free item-category parameters in both groups of persons ob-
tained from the simulated data expressing a deviation from the hypothesis to be
tested locally per item and response category.

person score distribution in group 1

Relative frequencies of person scores in group 1 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the power of
the tests.

person score distribution in group 2

Relative frequencies of person scores in group 2 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the power of
the tests.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which power is determined.

call The matched call.
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See Also

sa_sizePCM, and post_hocPCM.

Examples

## Not run:
# Numerical example

# free item-category parameters for group 1 and 2 with 5 items, with 3 categories each
local_dev <- list ( list(c( 0, 0), c( -1, 0), c( 0, 0), c( 1, 0), c( 1, 0.5)) ,
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list(c( 0, 0), c( -1, 0), c( 0, 0), c( 1, 0), c( 0, -0.5)) )

res <- powerPCM(n_total = 200, local_dev = local_dev)

# > res
# $power
# W LR RS GR
# 0.863 0.885 0.876 0.892
#
# $`MC error of power`
# W LR RS GR
# 0.002 0.002 0.002 0.002
#
# $`global deviation`
# W LR RS GR
# 0.102 0.107 0.105 0.109
#
# $`local deviation`
# I1-C2 I2-C1 I2-C2 I3-C1 I3-C2 I4-C1 I4-C2 I5-C1 I5-C2
# group1 0.002 -0.997 -0.993 0.006 0.012 1.002 1.007 1.006 1.508
# group2 -0.007 -1.005 -1.007 -0.006 -0.009 0.993 0.984 -0.006 -0.510
#
# $`person score distribution in group 1`
#
# 1 2 3 4 5 6 7 8 9
# 0.112 0.130 0.131 0.129 0.122 0.114 0.101 0.091 0.070
#
# $`person score distribution in group 2`
#
# 1 2 3 4 5 6 7 8 9
# 0.091 0.108 0.117 0.122 0.122 0.121 0.115 0.110 0.093
#
# $`degrees of freedom`
# [1] 9
#
# $`noncentrality parameter`
# W LR RS GR
# 18.003 19.024 18.596 19.403
#
# $call
# powerPCM(alpha = 0.05, n_total = 200, persons1 = rnorm(10^6),
# persons2 = rnorm(10^6), local_dev = local_dev)

## End(Not run)

powerRM Power analysis of tests of invariance of item parameters between two
groups of persons in binary Rasch model
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Description

Returns power of Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test given
probability of error of first kind α, sample size, and a deviation from the hypothesis to be tested.
The latter assumes equality of the item parameters in the Rasch model between two predetermined
groups of persons. The alternative states that at least one of the parameters differs between the two
groups.

Usage

powerRM(
n_total,
local_dev,
alpha = 0.05,
persons1 = rnorm(10^6),
persons2 = rnorm(10^6)

)

Arguments

n_total Total sample size for which power shall be determined.

local_dev A list of two vectors containing item parameters for the two person groups rep-
resenting a deviation from the hypothesis to be tested locally per item.

alpha Probability of error of first kind.

persons1 A vector of person parameters in group 1 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.

persons2 A vector of person parameters in group 2 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.

Details

In general, the power of the tests is determined from the assumption that the approximate distri-
butions of the four test statistics are from the family of noncentral χ2 distributions with df equal
to the number of items minus 1 and noncentrality parameter λ. The latter depends on a scenario
of deviation from the hypothesis to be tested and a specified sample size. Given the probability of
the error of the first kind α the power of the tests can be determined from λ. More details about
the distributions of the test statistics and the relationship between λ, power, and sample size can be
found in Draxler and Alexandrowicz (2015).

As regards the concept of sample size a distinction between informative and total sample size has to
be made since the power of the tests depends only on the informative sample size. In the conditional
maximum likelihood context, the responses of persons with minimum or maximum person score
are completely uninformative. They do not contribute to the value of the test statistic. Thus, the
informative sample size does not include these persons. The total sample size is composed of all
persons.
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In particular, the determination of λ and the power of the tests, respectively, is based on a simple
Monte Carlo approach. Data (responses of a large number of persons to a number of items) are
generated given a user-specified scenario of a deviation from the hypothesis to be tested. A scenario
of a deviation is given by a choice of the item parameters and the person parameters (to be drawn
randomly from a specified distribution) for each of the two groups. Such a scenario may be called
local deviation since deviations can be specified locally for each item. The relative group sizes
are determined by the choice of the number of person parameters for each of the two groups. For
instance, by default 106 person parameters are selected randomly for each group. In this case, it is
implicitly assumed that the two groups of persons are of equal size. The user can specify the relative
group sizes by choosing the length of the arguments persons1 and persons2 appropriately. Note that
the relative group sizes do have an impact on power and sample size of the tests. The next step is
to compute a test statistic T (Wald, LR, score, or gradient) from the simulated data. The observed
value t of the test statistic is then divided by the informative sample size ninfsim observed in the
simulated data. This yields the so-called global deviation e = t/ninfsim, i.e., the chosen scenario
of a deviation from the hypothesis to be tested being represented by a single number. The power
of the tests can be determined given a user-specified total sample size denoted by n_total. The
noncentrality parameter λ can then be expressed by λ = ntotal ∗ (ninfsim/ntotalsim) ∗ e, where
ntotalsim denotes the total number of persons in the simulated data and ninfsim/ntotalsim is the
proportion of informative persons in the sim. data. Let qα be the 1 − α quantile of the central χ2

distribution with df equal to the number items minus 1. Then,

power = 1− Fdf,λ(qα),

where Fdf,λ is the cumulative distribution function of the noncentral χ2 distribution with df equal
to the number of items minus 1 and λ = ntotal(ninfsim/ntotalsim) ∗ e. Thereby, it is assumed that
ntotal is composed of a frequency distribution of person scores that is proportional to the observed
distribution of person scores in the simulated data. The same holds true in respect of the relative
group sizes, i.e., the relative frequencies of the two person groups in a sample of size ntotal are
assumed to be equal to the relative frequencies of the two groups in the simulated data.

Note that in this approach the data have to be generated only once. There are no replications needed.
Thus, the procedure is computationally not very time-consuming.

Since e is determined from the value of the test statistic observed in the simulated data it has to be
treated as a realized value of a random variable E. The same holds true for λ as well as the power
of the tests. Thus, the power is a realized value of a random variable that shall be denoted by P .
Consequently, the (realized) value of the power of the tests need not be equal to the exact power that
follows from the user-specified ntotal, α, and the chosen item parameters used for the simulation
of the data. If the CML estimates of these parameters computed from the simulated data are close
to the predetermined parameters the power of the tests will be close to the exact value. This will
generally be the case if the number of person parameters used for simulating the data is large, e.g.,
105 or even 106 persons. In such cases, the possible random error of the computation procedure
based on the sim. data may not be of practical relevance any more. That is why a large number (of
persons for the simulation process) is generally recommended.

For theoretical reasons, the random error involved in computing the power of the tests can be pretty
well approximated. A suitable approach is the well-known delta method. Basically, it is a Taylor
polynomial of first order, i.e., a linear approximation of a function. According to it the variance of
a function of a random variable can be linearly approximated by multiplying the variance of this
random variable with the square of the first derivative of the respective function. In the present
problem, the variance of the test statistic T is (approximately) given by the variance of a noncentral
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χ2 distribution with df equal to the number of free item parameters and noncentrality parameter
λ. Thus, V ar(T ) = 2(df + 2λ), with λ = t. Since the global deviation e = (1/ninfsim) ∗ t it
follows for the variance of the corresponding random variable E that V ar(E) = (1/ninfsim)2 ∗
V ar(T ). The power of the tests is a function of e which is given by Fdf,λ(qα), where λ = ntotal ∗
(ninfsim/ntotalsim) ∗ e and df equal to the number of free item parameters. Then, by the delta
method one obtains (for the variance of P).

V ar(P ) = V ar(E) ∗ (F ′
df,λ(qα))

2,

where F ′
df,λ is the derivative of Fdf,λ with respect to e. This derivative is determined numerically

and evaluated at e using the package numDeriv. The square root of V ar(P ) is then used to quantify
the random error of the suggested Monte Carlo computation procedure. It is called Monte Carlo
error of power.

Value

A list of results.

power Power value for each test.
MC error of power

Monte Carlo error of power computation for each test.
global deviation

Global deviation computed from simulated data for each test. See Details.
local deviation

CML estimates of item parameters in both groups of persons obtained from the
simulated data expressing a deviation from the hypothesis to be tested locally
per item.

person score distribution in group 1

Relative frequencies of person scores in group 1 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the power of
the tests.

person score distribution in group 2

Relative frequencies of person scores in group 2 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the power of
the tests.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which power is determined.

call The matched call.
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See Also

sa_sizeRM, and post_hocRM.

Examples

## Not run:
# Numerical example

res <- powerRM(n_total = 130, local_dev = list( c(0, -0.5, 0, 0.5, 1) , c(0, 0.5, 0, -0.5, 1)))

# > res
# $power
# W LR RS GR
# 0.824 0.840 0.835 0.845
#
# $`MC error of power`
# W LR RS GR
# 0.002 0.002 0.002 0.002
#
# $`global deviation`
# W LR RS GR
# 0.118 0.122 0.121 0.124
#
# $`local deviation`
# Item2 Item3 Item4 Item5
# group1 -0.499 0.005 0.500 1.001
# group2 0.501 0.003 -0.499 1.003
#
# $`person score distribution in group 1`
#
# 1 2 3 4
# 0.249 0.295 0.269 0.187
#
# $`person score distribution in group 2`
#
# 1 2 3 4
# 0.249 0.295 0.270 0.186



sa_sizeChange 31

#
# $`degrees of freedom`
# [1] 4
#
# $`noncentrality parameter`
# W LR RS GR
# 12.619 13.098 12.937 13.264
#
# $call
# powerRM(n_total = 130, local_dev = list(c(0, -0.5, 0, 0.5, 1),
# c(0, 0.5, 0, -0.5, 1)))

## End(Not run)

sa_sizeChange Sample size planning for tests in context of measurement of change
using LLTM

Description

Returns sample size for Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test
given probabilities of errors of first and second kinds α and β as well as a deviation from the
hypothesis to be tested. The hypothesis to be tested states that the shift parameter quantifying the
constant change for all items between time points 1 and 2 equals 0. The alternative states that the
shift parameter is not equal to 0. It is assumed that the same items are presented at both time points.
See function change_test.

Usage

sa_sizeChange(eta, alpha = 0.05, beta = 0.05, persons = rnorm(10^6))

Arguments

eta A vector of eta parameters of the LLTM. The last element represents the constant
change or shift for all items between time points 1 and 2. The other elements of
the vector are the item parameters at time point 1. A choice of the eta parameters
constitutes a scenario of deviation from the hypothesis of no change.

alpha Probability of error of first kind.

beta Probability of error of second kind.

persons A vector of person parameters (drawn from a specified distribution). By default
106 parameters are drawn at random from the standard normal distribution. The
larger this number the more accurate are the computations. See Details.
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Details

In general, the sample size is determined from the assumption that the approximate distributions of
the four test statistics are from the family of noncentral χ2 distributions with df = 1 and noncen-
trality parameter λ. The latter is, inter alia, a function of the sample size. Hence, the sample size
can be determined from the condition λ = λ0, where λ0 is a predetermined constant which depends
on the probabilities of the errors of the first and second kinds α and β (or power). More details
about the distributions of the test statistics and the relationship between λ, power, and sample size
can be found in Draxler and Alexandrowicz (2015).

In particular, the determination of λ and the sample size, respectively, is based on a simple Monte
Carlo approach. As regards the concept of sample size a distinction between informative and to-
tal sample size has to be made. In the conditional maximum likelihood context, the responses of
persons with minimum or maximum person score are completely uninformative. They do not con-
tribute to the value of the test statistic. Thus, the informative sample size does not include these
persons. The total sample size is composed of all persons. The Monte Carlo approach used in the
present problem to determine λ and informative (and total) sample size can briefly be described
as follows. Data (responses of a large number of persons to a number of items presented at two
time points) are generated given a user-specified scenario of a deviation from the hypothesis to be
tested. The hypothesis to be tested assumes no change between time points 1 and 2. A scenario of
a deviation is given by a choice of the item parameters at time point 1 and the shift parameter, i.e.,
the LLTM eta parameters, as well as the person parameters (to be drawn randomly from a specified
distribution). The shift parameter represents a constant change of all item parameters from time
point 1 to time point 2. A test statistic T (Wald, LR, score, or gradient) is computed from the sim-
ulated data. The observed value t of the test statistic is then divided by the informative sample size
ninfsim observed in the simulated data. This yields the so-called global deviation e = t/ninfsim,
i.e., the chosen scenario of a deviation from the hypothesis to be tested being represented by a single
number. Let the informative sample size sought be denoted by ninf (thus, this is not the informa-
tive sample size observed in the sim. data). The noncentrality parameter λ can be expressed by the
product ninf ∗ e. Then, it follows from the condition λ = λ0 that

ninf ∗ e = λ0

and

ninf = λ0/e.

Note that the sample of size ninf is assumed to be composed only of persons with informative
person scores, where the relative frequency distribution of these informative scores is considered to
be equal to the observed relative frequency distribution of the informative scores in the simulated
data. The total sample size ntotal is then obtained from the relation ninf = ntotal ∗ pr, where pr
is the proportion or relative frequency of persons observed in the simulated data with a minimum
or maximum score. Basing the tests given a level α on an informative sample of size ninf the
probability of rejecting the hypothesis to be tested will be at least 1− β if the true global deviation
≥ e.

Note that in this approach the data have to be generated only once. There are no replications needed.
Thus, the procedure is computationally not very time-consuming.

Since e is determined from the value of the test statistic observed in the simulated data it has to be
treated as a realized value of a random variable E. Consequently, ninf is also a realization of a
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random variable Ninf . Thus, the (realized) value ninf need not be equal to the exact value of the
informative sample size that follows from the user-specified (predetermined) α, β, and scenario of
a deviation from the hypothesis to be tested, i.e., the selected item parameters and shift parameter
used for the simulation of the data. If the CML estimates of these parameters computed from the
simulated data are close to the predetermined parameters ninf will be close to the exact value. This
will generally be the case if the number of person parameters used for simulating the data is large,
e.g., 105 or even 106 persons. In such cases, the possible random error of the computation procedure
of ninf based on the sim. data may not be of practical relevance any more. That is why a large
number (of persons for the simulation process) is generally recommended.

For theoretical reasons, the random error involved in computing ninf can be pretty well approxi-
mated. A suitable approach is the well-known delta method. Basically, it is a Taylor polynomial
of first order, i.e., a linear approximation of a function. According to it the variance of a func-
tion of a random variable can be linearly approximated by multiplying the variance of this random
variable with the square of the first derivative of the respective function. In the present problem,
the variance of the test statistic T is (approximately) given by the variance of a noncentral χ2

distribution. Thus, V ar(T ) = 2(df + 2λ), with df = 1 and λ = t. Since the global devia-
tion e = (1/ninfsim) ∗ t it follows for the variance of the corresponding random variable E that
V ar(E) = (1/ninfsim)2 ∗ V ar(T ). Since ninf = f(e) = λ0/e one obtains by the delta method
(for the variance of the corresponding random variable Ninf )

V ar(Ninf ) = V ar(E) ∗ (f ′(e))2,

where f ′(e) = −λ0/e
2 is the derivative of f(e). The square root of V ar(Ninf ) is then used to

quantify the random error of the suggested Monte Carlo computation procedure. It is called Monte
Carlo error of informative sample size.

Value

A list results.

informative sample size

Informative sample size for each test, omitting persons with min. and max score.
MC error of sample size

Monte Carlo error of sample size computation for each test.

deviation Shift parameter estimated from the simulated data representing the constant shift
of item parameters between time points 1 and 2.

person score distribution

Relative frequencies of person scores observed in simulated data. Uninformative
scores, i.e., minimum and maximum score, are omitted. Note that the person
score distribution does also have an influence on the sample size.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which sample size is deter-
mined.

total sample size

Total sample size for each test. See Details.

call The matched call.
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See Also

powerChange, and post_hocChange.

Examples

## Not run:
# Numerical example 4 items presented twice, thus 8 virtual items

# eta Parameter, first 4 are nuisance
# (easiness parameters of the 4 items at time point 1),
# last one is the shift parameter
eta <- c(-2,-1,1,2,0.5)

res <- sa_sizeChange(eta = eta)

# > res
# $`informative sample size`
# W LR RS GR
# 177 174 175 173
#
# $`MC error of sample size`
# W LR RS GR
# 1.321 1.287 1.299 1.276
#
# $`deviation (estimate of shift parameter)`
# [1] 0.501
#
# $`person score distribution`
#
# 1 2 3 4 5 6 7
# 0.034 0.094 0.181 0.249 0.227 0.147 0.068
#
# $`degrees of freedom`
# [1] 1
#
# $`noncentrality parameter`
# [1] 12.995
#
# $`total sample size`
# W LR RS GR
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# 182 179 180 178
#
# $call
# sa_sizeChange(alpha = 0.05, beta = 0.05, eta = eta, persons = rnorm(10^6))

## End(Not run)

sa_sizePCM Sample size planning for tests of invariance of item-category parame-
ters between two groups of persons in partial credit model

Description

Returns sample size for Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test
given probabilities of errors of first and second kinds α and β as well as a deviation from the
hypothesis to be tested. The hypothesis to be tested assumes equal item-category parameters in the
partial credit model between two predetermined groups of persons. The alternative assumes that at
least one parameter differs between the two groups.

Usage

sa_sizePCM(
local_dev,
alpha = 0.05,
beta = 0.05,
persons1 = rnorm(10^6),
persons2 = rnorm(10^6)

)

Arguments

local_dev A list consisting of two lists. One list refers to group 1, the other to group 2.
Each of the two lists contains a numerical vector per item, i.e., each list contains
as many vectors as items. Each vector contains the free item-cat. parameters of
the respective item. The number of free item-cat. parameters per item equals
the number of categories of the item minus 1.

alpha Probability of the error of first kind.

beta Probability of the error of second kind.

persons1 A vector of person parameters for group 1 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details. .

persons2 A vector of person parameters for group 2 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.
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Details

In general, the sample size is determined from the assumption that the approximate distributions of
the four test statistics are from the family of noncentral χ2 distributions with df = l, where l is the
number of free item-category parameters in the partial credit model, and noncentrality parameter λ.
The latter is, inter alia, a function of the sample size. Hence, the sample size can be determined from
the condition λ = λ0, where λ0 is a predetermined constant which depends on the probabilities of
the errors of the first and second kinds α and β (or power). More details about the distributions of
the test statistics and the relationship between λ, power, and sample size can be found in Draxler
and Alexandrowicz (2015).

In particular, the determination of λ and the sample size, respectively, is based on a simple Monte
Carlo approach. As regards the concept of sample size a distinction between informative and to-
tal sample size has to be made. In the conditional maximum likelihood context, the responses of
persons with minimum or maximum person score are completely uninformative. They do not con-
tribute to the value of the test statistic. Thus, the informative sample size does not include these
persons. The total sample size is composed of all persons. The Monte Carlo approach used in the
present problem to determine λ and informative (and total) sample size can briefly be described as
follows. Data (responses of a large number of persons to a number of items) are generated given a
user-specified scenario of a deviation from the hypothesis to be tested. The hypothesis to be tested
assumes equal item-category parameters between the two groups of persons. A scenario of a de-
viation is given by a choice of the item-cat. parameters and the person parameters (to be drawn
randomly from a specified distribution) for each of the two groups. Such a scenario may be called
local deviation since deviations can be specified locally for each item-category. The relative group
sizes are determined by the choice of the number of person parameters for each of the two groups.
For instance, by default 106 person parameters are selected randomly for each group. In this case, it
is implicitly assumed that the two groups of persons are of equal size. The user can specify the rel-
ative groups sizes by choosing the length of the arguments persons1 and persons2 appropriately.
Note that the relative group sizes do have an impact on power and sample size of the tests. The next
step is to compute a test statistic T (Wald, LR, score, or gradient) from the simulated data. The ob-
served value t of the test statistic is then divided by the informative sample size ninfsim observed
in the simulated data. This yields the so-called global deviation e = t/ninfsim, i.e., the chosen
scenario of a deviation from the hypothesis to be tested being represented by a single number. Let
the informative sample size sought be denoted by ninf (thus, this is not the informative sample size
observed in the sim. data). The noncentrality parameter λ can be expressed by the product ninf ∗ e.
Then, it follows from the condition λ = λ0 that

ninf ∗ e = λ0

and

ninf = λ0/e.

Note that the sample of size ninf is assumed to be composed only of persons with informative
person scores in both groups, where the relative frequency distribution of these informative scores
in each of both groups is considered to be equal to the observed relative frequency distribution of
informative scores in each of both groups in the simulated data. Note also that the relative sizes
of the two person groups are assumed to be equal to the relative sizes of the two groups in the
simulated data. By default, the two groups are equal-sized in the simulated data, i.e., one yields
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ninf/2 persons (with informative scores) in each of the two groups. The total sample size ntotal is
obtained from the relation ninf = ntotal ∗ pr, where pr is the proportion or relative frequency of
persons observed in the simulated data with a minimum or maximum score. Basing the tests given
a level α on an informative sample of size ninf the probability of rejecting the hypothesis to be
tested will be at least 1− β if the true global deviation ≥ e.

Note that in this approach the data have to be generated only once. There are no replications needed.
Thus, the procedure is computationally not very time-consuming.

Since e is determined from the value of the test statistic observed in the simulated data it has to
be treated as a realization of a random variable E. Consequently, ninf is also a realization of a
random variable Ninf . Thus, the (realized) value ninf need not be equal to the exact value of the
informative sample size that follows from the user-specified (predetermined) α,β, and scenario of a
deviation from the hypothesis to be tested, i.e., the selected item-category parameters used for the
simulation of the data. If the CML estimates of these parameters computed from the simulated data
are close to the predetermined parameters ninf will be close to the exact value. This will generally
be the case if the number of person parameters used for simulating the data, i.e., the lengths of the
vectors persons1 and persons2, is large, e.g., 105 or even 106 persons. In such cases, the possible
random error of the computation procedure of ninf based on the sim. data may not be of practical
relevance any more. That is why a large number (of persons for the simulation process) is generally
recommended.

For theoretical reasons, the random error involved in computing n_inf can be pretty well approxi-
mated. A suitable approach is the well-known delta method. Basically, it is a Taylor polynomial
of first order, i.e., a linear approximation of a function. According to it the variance of a func-
tion of a random variable can be linearly approximated by multiplying the variance of this random
variable with the square of the first derivative of the respective function. In the present problem,
the variance of the test statistic T is (approximately) given by the variance of a noncentral χ2

distribution. Thus, V ar(T ) = 2(df + 2λ), with df = l and λ = t. Since the global devia-
tion e = (1/ninfsim) ∗ t it follows for the variance of the corresponding random variable E that
V ar(E) = (1/ninfsim)2 ∗ V ar(T ). Since ninf = f(e) = λ0/e one obtains by the delta method
(for the variance of the corresponding random variable Ninf )

V ar(Ninf ) = V ar(E) ∗ (f ′(e))2,

where f ′(e) = −λ0/e
2 is the derivative of f(e). The square root of V ar(Ninf ) is then used to

quantify the random error of the suggested Monte Carlo computation procedure. It is called Monte
Carlo error of informative sample size.

Value

A list of results.

informative sample size

Informative sample size for each test, omitting persons with min. and max score.

MC error of sample size

Monte Carlo error of informative sample size for each test.

global deviation

Global deviation computed from simulated data. See Details.
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local deviation

CML estimates of free item-category parameters in both group of persons ob-
tained from the simulated data expressing a deviation from the hypothesis to be
tested locally per item and response category.

person score distribution in group 1

Relative frequencies of person scores in group 1 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the sample size.

person score distribution in group 2

Relative frequencies of person scores in group 2 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the sample size.

degrees of freedom

Degrees of freedom df .

noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which sample size is deter-
mined.

total sample size in group 1

Total sample size in group 1 for each test. See Details.

total sample size in group 1

Total sample size in group 2 for each test. See Details.

call The matched call.
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See Also
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Examples

## Not run:
##### Sample size of PCM Model #####

# free item-category parameters for group 1 and 2 with 5 items, with 3 categories each
local_dev <- list ( list(c( 0, 0), c( -1, 0), c( 0, 0), c( 1, 0), c( 1, 0.5)) ,

list(c( 0, 0), c( -1, 0), c( 0, 0), c( 1, 0), c( 0, -0.5)) )

res <- sa_sizePCM(alpha = 0.05, beta = 0.05, persons1 = rnorm(10^6),
persons2 = rnorm(10^6), local_dev = local_dev)

# > res
# $`informative sample size`
# W LR RS GR
# 234 222 227 217
#
# $`MC error of sample size`
# W LR RS GR
# 1.105 1.018 1.053 0.988
#
# $`global deviation`
# W LR RS GR
# 0.101 0.107 0.104 0.109
#
# $`local deviation`
# I1-C2 I2-C1 I2-C2 I3-C1 I3-C2 I4-C1 I4-C2 I5-C1 I5-C2
# group1 -0.001 -1.000 -1.001 -0.003 -0.011 0.997 0.998 0.996 1.492
# group2 0.001 -0.998 -0.996 -0.007 -0.007 0.991 1.001 0.004 -0.499
#
# $`person score distribution in group 1`
#
# 1 2 3 4 5 6 7 8 9
# 0.111 0.130 0.133 0.129 0.122 0.114 0.101 0.091 0.070
#
# $`person score distribution in group 2`
#
# 1 2 3 4 5 6 7 8 9
# 0.090 0.109 0.117 0.121 0.121 0.121 0.116 0.111 0.093
#
# $`degrees of freedom`
# [1] 9
#
# $`noncentrality parameter`
# [1] 23.589
#
# $`total sample size in group 1`
# W LR RS GR
# 132 125 128 123
#
# $`total sample size in group 2`
# W LR RS GR
# 133 126 129 123
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#
# $call
# sa_sizePCM(alpha = 0.05, beta = 0.05, persons1 = rnorm(10^6),
# persons2 = rnorm(10^6), local_dev = local_dev)

## End(Not run)

sa_sizeRM Sample size planning for tests of invariance of item parameters be-
tween two groups of persons in binary Rasch model

Description

Returns sample size for Wald (W), likelihood ratio (LR), Rao score (RS) and gradient (GR) test
given probabilities of errors of first and second kinds α and β as well as a deviation from the hy-
pothesis to be tested. The hypothesis to be tested assumes equal item parameters between two
predetermined groups of persons. The alternative assumes that at least one parameter differs be-
tween the two groups.

Usage

sa_sizeRM(
local_dev,
alpha = 0.05,
beta = 0.05,
persons1 = rnorm(10^6),
persons2 = rnorm(10^6)

)

Arguments

local_dev A list consisting of two vectors containing item parameters for the two person
groups representing a deviation from the hypothesis to be tested locally per item.

alpha Probability of the error of first kind.

beta Probability of the error of second kind.

persons1 A vector of person parameters for group 1 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.

persons2 A vector of person parameters for group 2 (drawn from a specified distribution).
By default 106 parameters are drawn at random from the standard normal dis-
tribution. The larger this number the more accurate are the computations. See
Details.
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Details

In general, the sample size is determined from the assumption that the approximate distributions
of the four test statistics are from the family of noncentral χ2 distributions with df equal to the
number of items minus 1, and noncentrality parameter λ. The latter is, inter alia, a function of the
sample size. Hence, the sample size can be determined from the condition λ = λ0, where λ0 is a
predetermined constant which depends on the probabilities of the errors of the first and second kinds
α and β (or power). More details about the distributions of the test statistics and the relationship
between λ, power, and sample size can be found in Draxler and Alexandrowicz (2015).

In particular, the determination of λ and the sample size, respectively, is based on a simple Monte
Carlo approach. As regards the concept of sample size a distinction between informative and to-
tal sample size has to be made. In the conditional maximum likelihood context, the responses of
persons with minimum or maximum person score are completely uninformative. They do not con-
tribute to the value o f the test statistic. Thus, the informative sample size does not include these
persons. The total sample size is composed of all persons. The Monte Carlo approach used in the
present problem to determine λ and informative (and total) sample size can briefly be described as
follows. Data (responses of a large number of persons to a number of items) are generated given a
user-specified scenario of a deviation from the hypothesis to be tested. The hypothesis to be tested
assumes equal item parameters between the two groups of persons. A scenario of a deviation is
given by a choice of the item parameters and the person parameters (to be drawn randomly from
a specified distribution) for each of the two groups. Such a scenario may be called local deviation
since deviations can be specified locally for each item. The relative group sizes are determined by
the choice of the number of person parameters for each of the two groups. For instance, by default
106 person parameters are selected randomly for each group. In this case, it is implicitly assumed
that the two groups of persons are of equal size. The user can specify the relative groups sizes by
choosing the lengths of the arguments persons1 and persons2 appropriately. Note that the relative
group sizes do have an impact on power and sample size of the tests. The next step is to compute a
test statistic T (Wald, LR, score, or gradient) from the simulated data. The observed value t of the
test statistic is then divided by the informative sample size ninfsim observed in the simulated data.
This yields the so-called global deviation e = t/ninfsim, i.e., the chosen scenario of a deviation
from the hypothesis to be tested being represented by a single number. Let the informative sample
size sought be denoted by ninf (thus, this is not the informative sample size observed in the sim.
data). The noncentrality parameter λ can be expressed by the product ninf ∗ e. Then, it follows
from the condition λ = λ0 that

ninf ∗ e = λ0

and

ninf = λ0/e.

Note that the sample of size ninf is assumed to be composed only of persons with informative
person scores in both groups, where the relative frequency distribution of these informative scores
in each of both groups is considered to be equal to the observed relative frequency distribution of
informative scores in each of both groups in the simulated data. Note also that the relative sizes
of the two person groups are assumed to be equal to the relative sizes of the two groups in the
simulated data. By default, the two groups are equal-sized in the simulated data, i.e., one yields
ninf/2 persons (with informative scores) in each of the two groups. The total sample size ntotal is
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obtained from the relation ninf = ntotal ∗ pr, where pr is the proportion or relative frequency of
persons observed in the simulated data with a minimum or maximum score. Basing the tests given
a level α on an informative sample of size ninf the probability of rejecting the hypothesis to be
tested will be at least 1− β if the true global deviation ≥ e.

Note that in this approach the data have to be generated only once. There are no replications needed.
Thus, the procedure is computationally not very time-consuming.

Since e is determined from the value of the test statistic observed in the simulated data it has to be
treated as a realization of a random variable E. Consequently, ninf is also a realization of a random
variable Ninf . Thus, the (realized) value ninf need not be equal to the exact value of the informative
sample size that follows from the user-specified (predetermined) α, β, and scenario of a deviation
from the hypothesis to be tested, i.e., the selected item parameters used for the simulation of the
data. If the CML estimates of these parameters computed from the simulated data are close to the
predetermined parameters ninf will be close to the exact value. This will generally be the case if the
number of person parameters used for simulating the data, i.e., the lengths of the vectors persons1
and persons2, is large, e.g., 105 or even 106 persons. In such cases, the possible random error of the
computation procedure of ninf based on the sim. data may not be of practical relevance any more.
That is why a large number (of persons for the simulation process) is generally recommended.

For theoretical reasons, the random error involved in computing ninf can be pretty well approxi-
mated. A suitable approach is the well-known delta method. Basically, it is a Taylor polynomial of
first order, i.e., a linear approximation of a function. According to it the variance of a function of a
random variable can be linearly approximated by multiplying the variance of this random variable
with the square of the first derivative of the respective function. In the present problem, the variance
of the test statistic T is (approximately) given by the variance of a noncentral χ2 distribution. Thus,
V ar(T ) = 2(df + 2λ), with df equal to the number of items minus 1 and λ = t. Since the global
deviation e = (1/ninfsim) ∗ t it follows for the variance of the corresponding random variable E
that V ar(E) = (1/ninfsim)2 ∗ V ar(T ). Since ninf = f(e) = λ0/e one obtains by the delta
method (for the variance of the corresponding random variable Ninf )

V ar(Ninf ) = V ar(E) ∗ (f ′(e))2,

where f ′(e) = −λ0/e
2 is the derivative of f(e). The square root of V ar(Ninf ) is then used to

quantify the random error of the suggested Monte Carlo computation procedure. It is called Monte
Carlo error of informative sample size.

Value

A list of results.

informative sample size

Informative sample size for each test omitting persons with min. and max score.
MC error of sample size

Monte Carlo error of informative sample size for each test.
global deviation

Global deviation computed from simulated data. See Details.
local deviation

CML estimates of free item parameters in both groups obtained from the simu-
lated data. First item parameter set 0 in both groups.
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person score distribution in group 1

Relative frequencies of person scores in group 1 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the sample size.

person score distribution in group 2

Relative frequencies of person scores in group 2 observed in simulated data.
Uninformative scores, i.e., minimum and maximum score, are omitted. Note
that the person score distribution does also have an influence on the sample size.

degrees of freedom

Degrees of freedom df .
noncentrality parameter

Noncentrality parameter λ of χ2 distribution from which sample size is deter-
mined.

total sample size in group 1

Total sample size in group 1 for each test. See Details.
total sample size in group 1

Total sample size in group 2 for each test. See Details.

call The matched call.

References

Draxler, C. (2010). Sample Size Determination for Rasch Model Tests. Psychometrika, 75(4),
708–724.

Draxler, C., & Alexandrowicz, R. W. (2015). Sample Size Determination Within the Scope of
Conditional Maximum Likelihood Estimation with Special Focus on Testing the Rasch Model.
Psychometrika, 80(4), 897–919.

Draxler, C., Kurz, A., & Lemonte, A. J. (2020). The Gradient Test and its Finite Sample Size
Properties in a Conditional Maximum Likelihood and Psychometric Modeling Context. Communi-
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Molenaar (Eds.), Rasch Models: Foundations, Recent Developments, and Applications (pp. 69–95).
New York: Springer.
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See Also

powerRM, and post_hocRM.

Examples

## Not run:
##### Sample size of Rasch Model #####

res <- sa_sizeRM(local_dev = list( c(0, -0.5, 0, 0.5, 1) , c(0, 0.5, 0, -0.5, 1)))
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# > res
# $`informative sample size`
# W LR RS GR
# 159 153 155 151
#
# $`MC error of sample size`
# W LR RS GR
# 0.721 0.682 0.695 0.670
#
# $`global deviation`
# W LR RS GR
# 0.117 0.122 0.120 0.123
#
# $`local deviation`
# Item2 Item3 Item4 Item5
# group1 -0.502 -0.005 0.497 1.001
# group2 0.495 -0.006 -0.501 0.994
#
# $`person score distribution in group 1`
#
# 1 2 3 4
# 0.249 0.295 0.268 0.188
#
# $`person score distribution in group 2`
#
# 1 2 3 4
# 0.249 0.295 0.270 0.187
#
# $`degrees of freedom`
# [1] 4
#
# $`noncentrality parameter`
# [1] 18.572
#
# $`total sample size in group 1`
# W LR RS GR
# 97 93 94 92
#
# $`total sample size in group 2`
# W LR RS GR
# 97 93 94 92
#
# $call
# sa_sizeRM(local_dev = list(c(0, -0.5, 0, 0.5, 1),
# c(0, 0.5, 0, -0.5, 1)))

## End(Not run)

tcl_hessian Computation of Hessian matrix.
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Description

Uses function hessian() from numDeriv package to compute (approximate numerically) Hessian
matrix evaluated at arbitrary values of item easiness parameters.

Usage

tcl_hessian(X, eta, W, model = "RM")

Arguments

X data matrix.

eta numeric vector of item easiness parameters.

W design matrix.

model RM, PCM, RSM, LLTM.

Value

Hessian matrix evaluated at eta

References

Gilbert, P., Gilbert, M. P., & Varadhan, R. (2016). numDeriv: Accurate Numerical Derivatives. R
package version 2016.8-1.1. url: https://CRAN.R-project.org/package=numDeriv

Examples

## Not run:
# Rasch model with beta_1 restricted to 0
y <- eRm::raschdat1
res <- eRm::RM(X = y, sum0 = FALSE)
mat <- tcl_hessian(X = y, eta = res$etapar, model = "RM")

## End(Not run)

tcl_scorefun Computation of score function.

Description

Uses function jacobian() from numDeriv package to compute (approximate numerically) score
function (first order partial derivatives of conditional log likelihood function) evaluated at arbitrary
values of item easiness parameters.

Usage

tcl_scorefun(X, eta, W, model = "RM")
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Arguments

X data matrix.

eta numeric vector of item easiness parameters.

W design matrix.

model RM, PCM, RSM, LLTM.

Value

Score function evaluated at eta

References

Gilbert, P., Gilbert, M. P., & Varadhan, R. (2016). numDeriv: Accurate Numerical Derivatives. R
package version 2016.8-1.1. url: https://CRAN.R-project.org/package=numDeriv

Examples

## Not run:
# Rasch model with beta_1 restricted to 0
y <- eRm::raschdat1
res <- eRm::RM(X = y, sum0 = FALSE)
scorefun <- tcl_scorefun(X = y, eta = res$etapar, model = "RM")

## End(Not run)
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