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Introduction

Under NULL hypothesis assumptions, p-values are uniformly distributed on
the unit interval. The common p < 0.05 strategy for rejecting the NULL
hypothesis is justified by a probability for this, under the NULL, that equals
0.05. P-values are often misinterpreted. The notes that follow draw attention
to common misunderstandings, and compare and contrast p-values with the
insights likelihood based statistics provide.



The p-value probability p relates only to what can be expected under the NULL.
For tests that are based on t-statistics, a p-value that equals 0.05 translates to
a maximum likelihood ratio that, for degrees of freedom greater than 5, is less
than 5.

Decimal numbers that are shown on graphs are given to two significant figures.
In the text, they may be given three significant figures.

1 Basic properties of p-values

P-values are commonly used within a Null Hypothesis Significance Testing
(NHST) framework. This approach to statistical decision making sets up a choice
between a null hypothesis, commonly written Hg, and alternative Hy, with the
calculated p-value used to decide whether Hy should be rejected in favour of Hj.
Commonly, Hy is the hypothesis that a difference of means, or a mean difference,
has been drawn from a population with mean g = 0. In a medical context, a
treatment of interest may be compared with a placebo. Then

e Given Hy, the p-value is uniformly distributed on the interval 0 < p <1
— As a consequence, for any a, P[p < o | Hy] = «
e Under Hy, the p-value is designed to increase as the difference from Hj
increases.

More informative than to report p < 0.05 is to give a 95% confidence interval for
the mean. The NULL hypothesis is rejected at a level of a = 0.05 if and only if
the interval does not contain 0.

Figure 1 shows the distributions of values for five random samples drawn from
the uniform distribution on the interval from 1 to 0. The ordering from 1 to 0 is
designed to reflect the decrease in p-value with increasing absolute value of the ¢
or other such statistic.

Under Hy, a fraction a of p-values from independent replications of an experiment
will, on average, be less than a. Figure 1, with values less than 0.05 shown in
red, is designed to highlight this point for «=0.05 . The values in the first and
second samples that are < 0.05 are, to three decimal places.

0.047 0.044 0.038 0.02 0.017 0.007
0.029 0.024 0.007

Values that are less than « (in the figure, a=0.05) are sampled from a uniform
distribution on the interval from « to 0.

The calculated p-value provides more nuanced evidence than comes from merely
noting whether it is less than «, typically with @ = 0.05. A calculated value p
is, however, at the upper end of the range of values that under Hy occur with
probability p. It is, under Hy, the expected value for p-values that are in the
interval that extends from 0 to o = 2p. This suggests that
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Figure 1: Under the NULL hypothesis, and assuming distributional assumptions
are correct, p-values are uniformly distributed on the unit interval. The strip
plots each show the distribution of values in a random sample of p-values, under
NULL hypothesis assumptions. The ordering from 1 to 0 reflects the decrease
in the p-value, for commonly used test statistics, as the absolute value of the
test statistic increases. Values less than the commonly used 0.05 threshold are
shown in red.

o If p = 0.05, it is the expected value, under Under Hy, of values that range
from 0 to 0.1, and that occur with a frequency of 0.1 (or 10%).

o Note, however! Under Hy, the distribution is no longer uniform, and the
range of values for which a calculated value p is the expected value will
change.

— Doubling the calculated p-value, in order to get an equivalent that on
average corresponds to the “Reject Hy when p < « strategy will then,
on average, lead to a different rejection rate when the NULL is false!

Rather that making such sense as one can of of the calculated p-value, a better
approach is to work with likelihood ratios.

1.1 Wear comparison for two shoe materials

Data from an experiment that compares results from a treatment with a baseline
provides a relatively simple setting in which to probe the interpretation that
should be placed on a given p-value. Even in this ‘simple’ setting, the issues
that arise for the interpretation of a p-value, and its implication for the credence
that should be given to a claimed difference, are non-trivial.

The MASS: :shoes dataset compares, for each of ten boys, the wear on two
different shoe materials. Materials A and B were assigned at random to feet —
one to the left foot, and the other to the right. It will be used as a relatively
simple setting in which to probe the interpretation that should be placed on a
given p-value.

The measurements of wear, and the differences for each boy, were:



wear <- with(MASS: :shoes, rbind(A,B,d=B-A))
colnames (wear) <- rep("",10)

wear

A 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
B 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6
d 0.80.6 0.3 -0.1 1.1 -0.20.3 0.50.5 0.3

Here, the samples are paired The differences will be used for analysis, thus
reducing the analysis to that for a single sample t-test. The differences d;,i =
1,2,...,n are then used for analysis. The p-value for testing for no difference is
obtained by referring the ¢-statistic for the mean d of the d; to a t-distribution
with n — 1 degrees of freedom.

The calculation assumes that the differences d;,7 = 1,2, ...10 have been indepen-
dently drawn from the same normal distribution. The statistic /n d/s, where
d is the mean of the d;, and s is the sample standard deviation, can then be
treated as drawn from a t-distribution. The p-value for a 2-sided test is then,
assuming HO, and as any difference might in principle go in either direction

the probability of occurrence of values of the {-statistic ¢ that are
greater than or equal to y/nd/s in magnitude

Calculations proceed under the NULL hypothesis assumption that the differences
are a random sample from a normal distribution with mean zero:

Mean SD n SEM t pval df
0.41 0.387 10 0.122 3.35 0.00854 9

The p-value can then be interpreted in the following ways:

o We may have decided in advance to set a cutoff «, then lumping together
all values less than «

— With a = 0.05, p = 0.009 would count as an event, under Hy, with
probability 0.05

— With o = 0.01, this would count as an event, under Hy, with proba-
bility 0.01
e The calculated p-value presents a more nuanced picture. The probability
to which a value of magnitude p then relates is 2p rather than p.
— The calculated p is in the middle of the range from 2p to 0. The
probability that a p-value will appear in that range is, under the
NULL, 2p.

A 95% (two-sided) confidence interval for the B-A wear difference s is

shoeStats[['Mean']] £ qt(.97.5,9)*shoeStats[['SEM']]
i.e., 0.133 < pu < 0.687

A 99% confidence interval is 0.012 < p < 0.808



1.2

What p-values do not, and cannot, provide

e A p-value does not give the probability that the NULL is false.

e Nor does the p-value give the probability that the results occurred by

— It is calculated under the assumption that the NULL hypothesis is

true. It does not tell us whether that hypothesis is correct!

chance.

— In order to calculate this, one needs a prior estimate of the frequency
with which, over independent repeats of the process that generated

the data, true positives can be expected.

Resnick (2017) makes the point thus:

The tricky point is then, that the p-value does not show how rare
the results of an experiment are. It’s how rare the results would
be in the world where the null hypothesis is true. That is, it’s how
rare the results would be if nothing in your experiment worked, and
the difference ... was due to random chance alone. The p-value
quantifies this rareness.

What one can say is that

As the p-value becomes smaller, it becomes less likely that the NULL
hypothesis is true.

1.3 Strategies for the use of p-values

A binary choice is not always appropriate.

There are many circumstances where it makes more sense to treat the problem
as one of estimation, with the estimate accompanied with a measure of accuracy.

One experiment may not, on its own, be enough

Note comments from Fisher (1935), who introduced the use of p-values, on their

proper use:

In other words, use p-values as a screening device, to identify results that may
merit further investigation. This is very different from the way that p-values

No isolated experiment, however significant in itself, can suffice for
the experimental demonstration of any natural phenomenon; for the
‘one chance in a million’ will undoubtedly occur, with no less and
no more than its appropriate frequency, however surprised we may
be that it should occur to us. In order to assert that a natural
phenomenon is experimentally demonstrable we need, not an isolated
record, but a reliable method of procedure. In relation to the test
of significance, we may say that a phenomenon is experimentally
demonstrable when we know how to conduct an experiment which
will rarely fail to give us a statistically significant result.



have come to be used in most current scientific discourse. A p-value should be
treated as a measure of change in the weight of evidence, not a measure of the
absolute weight of evidence.

An independent repetition of the experiment provides checks that no statistical
analysis can provide. Such checks, which are widedly neglected, are important for
reasons that extend beyond checking whether the initial p < o was a fluke. For
experimental data, they provide a check on biases that may arise from mistakes
in procedure.

When p-values are used to choose between a NULL and an alternative, the focus
is on how rare the “event” would be if the NULL hypothesis is true. There is no
attention to assessing how much more likely it would be if the NULL is false.
Likelihood ratios, which will now be discussed, do provide such a comparison.
While the detailed discussion will be based around tests and comparisons that
work with t-statistics, it will illustrate principles that apply more widely.

1.4 Small differences may be of no interest

Irrespective of the threshold set for finding a difference, both p and the likelihood
ratio will detect increasingly small differences from the NULL as the sample size
increases. A way around this is to set a cutoff for the minimum difference of
interest, and calculate the difference relative to that cutoff.

Effectiveness of soporofic drugs

The use of a cutoff will be illustrated using the dataset datasets::sleep. This
has the increase in sleeping hours, on the same set of patients, on each of the
two drugs. Consider first the result from a regular two-sided test Data, with
output from the ¢-test, are:

sleep2 <-with(sleep, Pair(extralgroup==2], extralgroup==11))
t <- t.test(sleep2 ~ 1, data = sleep)

The t-statistic is 4.06, with p = 0.0028. The p-value translates to a maximum
likelihood ratio that equals 894.2, which suggests a very clear difference in
effectiveness, in favour of drug 2.

It does then seem clear that drug B gives a bigger increase in hours of sleep.
How sure can we be that it is large enough to be of substantial consequence?

A test that sets ¢ = 0.8 hours as the baseline

Suppose, now, that 0.8 hours difference is set as the minimum that is of interest.
As we are satisfied that drug B gives a bigger increase, and we wish to check the
strength of evidence for an increase that is 0.8 hours of more, a one-sided test is
appropriate. Figure 2A compares the densities.

Calculations can be done thus:
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Figure 2: Panel A shows density curves for NULL and for the alternative, for
a one-sided test with ¢ = 2.01 on 9 degrees of freedom. This is the t-statistic
for the data on the effect of soporofic drugs when differences are ‘B-A-0.8‘, i.e.,
interest is in the strength of evidence that differences are at least 0.8 hours. A
vertical line is placed at the position that gives the p-value, here equal to 0.038.
Panel B shows the normal probability plot for the differences.

tinfo <- t.test(sleep2 ~ 1, mu=0.8, alternative = 'greater')
t <- tinfo[['statistic']]; df <- tinfo[['parameter']]
maxlrSleep.8 <-

with(tinfo, tTOmaxlik(t, df))

The t-statistic is 2.01, with p = 0.038. The maximum ratio of the likelihoods,
given in Figure 2A as 3.5, is much smaller than the value of % = 25.4.

The normal probability plot shows a clear departure from normality. At best,
the p-values give ballpark indications.

There are other ways to calculate a likelihood ratio. In principle, one might
calculate the average for all values where d is greater than the cutoff. This,
however, requires an assumed distribution for d under the alternative. It can
never exceed the maximum value, calculated as in Figure 2A

2 Likelihood ratio and false positive risk

2.1 What is the definitive question?

Comments in Berkson (1942) highlight the point that p-values relate only to
what can be expected under the NULL

If an event has occurred, the definitive question is not, ‘Is this an
event which would be rare if the null hypothesis is true?’ but ‘Is there
an alternative hypothesis under which the event would be relatively



frequent?’

By contrast, likelihood ratio statistics do address what Berkson identifies as “the
definitive question”.

2.2 Density curves, under the NULL, and under the alter-
native

Subsection 1.1 gave the following statistical summary information, for the ten
observations in the shoe wear dataset:

Mean SD n SEM t pval df
0.41 0.39 10 0.12 3.3 0.0085 9

Here, in order to obtain a graph where the features of interest show up more
clearly, we will take the first seven observations only from the shoe wear dataset.
This is done for purposes of illustration only — the analysis that properly reflects
the data is the analysis that is based on all 10 observations.

d 0.8 0.60.3-0.11.1-0.20.3
Mean SD n SEM t pval df
0.4 0.47 7 0.18 2.3 0.065 6

Figure 3 compares the density curves, under HO and under an alternative H1
for which the estimated mean of the t-distribution is t = y/nd/s. Under the
alternative, the t-statistic becomes the non-centrality parameter. Because this is
subject to sampling error, the distribution is positively skewed and the mode,
which gives the maximum likelihood, is to the left of the mean.

Maximum Likelihood Ratio = 2/(2*0.0446) = 23
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Figure 3: Density curves for NULL and for the alternative, for a two-sided test
with ¢ = 2.26 on 6 degrees of freedom. Vertical lines are placed at the positions
that give the p-value, here equal to 0.065. Panel B shows the normal probability
plot for the ‘B-A‘ differences in the dataset.



The function tTOlr::tTOmaxlik() can be used to calculate the maximum
likelihood under the alternative, at the same time calculating the maximum
likelihood ratio. For Figure 3, degrees of freedom are 6, and the ¢-statistic is
2.256.

Calculations that give the maximum likelihood under the alternative, the maxi-
mum likelihood ratio, and other statistical information, then proceed thus:

stats7 <- list(t=2.256, df=6) # t is rounded to 2dp
maxlr7 <- with(stats7, tTOlr::tTOmaxlik(t, df))

The values returned, to three significant figures are:

maxlik tmax 1ikO0
2.033 2.033 0.0446

Whereas the t-statistic was 2.256, the maximum likelihood estimate for the
difference from the NULL, on the scale of the t-statistic, was 2.033

Likelihood ratios offer useful insights on what p-values may mean in practice.
In the absence of contextual information that gives an indication of the size of the
difference that is of practical importance, the ratio of the maximum likelihood
when the NULL is false to the likelihood when the NULL is true gives a sense of
the meaning that can be placed on a p-value. If information is available on the
prior probability, or if a guess can be made, it can be immediately translated
into a false positive risk statistic.

Likelihood ratio statistics directly address the question whether, under an
alternative hypothesis, the observed data would be relatively more likely. They
are, for this reason, in principle preferable to p-values. They are important, both
for the light that they shed on p-values, and as alternatives to p-values.

2.3 Maximum likelihood ratio versus p-value

As noted earlier, the maximum likelihood ratio is calculated by dividing the
maximum likelihood for the alternative by the likelihood for the NULL.

Figure 4 gives the maximum likelihood ratio equivalents of p-values, for a range
of sample sizes, for p-values that equal 0.05, 0.01, and 0.001, and for a range of
degrees of freedom. The comparison is always between a point NULL (here u=0)
and the alternative p > 0. For 6 or more degrees of freedom p = 0.05 translates
to a ratio that is less than 5.0, while it is less than 4.5 for 10 or more degrees of
freedom, and less than 4 for 13 or more degrees of freedom.

The ratio is higher for low degrees of freedom because of the way that the
shape of the distribution changes. Other uncertainties enter. Departures from
assumptions are of greatest consequence in those contexts where distributional
asssumptions will detect only the most extreme departures from assumptions —
i.e., when degrees of freedom are small. Experience with comparable historical
data can be especially useful in those circumstances.
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Figure 4: Ratio of the maximum likelihood under the alternative to the likelihood
under the NULL, for three different choices of p-value, for a range of sample
sizes, and for a range of degrees of freedom.

An observed p = 0.05 can be taken as representative of p-values that range from
a = 0.1 to 0, with odds against that are 9:1. This is commonly seen as providing
strong evidence in favour of the alternative. The case for rejecting the NULL
looks much less convincing when this is translated into a maximum likelihood
ratio of the order or 4 or 5 in favour of the alternative.

Rather than focusing on the maximum likelihood ratio, one can compare the point
NULL that we have been assuming with a point alternative, and a likelihood
ratio that will usually be smaller.

2.4 False positive risk versus p-value

The false positive risk is the probability, under one or other decision strategy,
that what is identified as a positive will be a false positive? False positive risk
calculations require an assessment of the prior probability prior = 7 of the
alternative H1, with 1-prior as the prior probability of HO. In the absence of
such an assessment, all that can be said is that the NULL hypothesis becomes
less likely as the p-value becomes smaller.

For any value of the maximum likelihood ratio 1r, the false positive risk can
then be calculated as (1-prior)/(l-prior+prior*lr).

Figure 5 gives the false positive risk equivalents of p-values, for a range of sample
sizes, for p-values that equal 0.05, 0.01, and 0.001, for a range of degrees of
freedom, and for priors 7 = 0.1 and m = 0.5 for the probibility of H1.

10
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Figure 5: False positive risk, for three different choices of p-value, for a range of
sample sizes, and for a range of degrees of freedom.

3 Power — how well does a planned experiment
discriminate?

The discussion will assume that we are testing 1 = 0 against g > 0 (one-sided
test), or pu # 0 (two-sided test). (As noted earlier, it is often more appropriate
to use as the baseline a value of p that is non-zero. Working with a non-zero
baseline is simplest for a one-sided test.)

For purposes of designing an experiment, researchers should want confidence
that the experiment is capable of detecting differences in the mean, or (for an
experiment that generates one-sample data) the mean difference, that are more
than trivial in magnitude.

3.1 The power of a t or other statistical test

The power is the probability that, if H1 is true, the calculated p-value will be
smaller than a chosen threshold a. Experiments that have low power can waste
effort, to little purpose.

For designing an experiment, setting a power is usually done relative to a baseline
difference of 0. There is, however, no reason why power should not be set relative
to a baseline that is greater than 0. Once experimental results are in, what
is more relevant than the power is the minimum mean difference or (for a
two-sample test) difference in means that one would like to be able to detect.

Figure 6 is designed to illustrate the notion of power graphically. The densities

11
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Figure 6: This illustrates graphically, for a one-sided t-test, the t-statistic for
the difference in means required to achieve a given power. For this graph, the
t-statistic is calculated with 18 degrees of freedom. The two density curves are
separated by the amount that gives power = 0.8 for a = 0.05 .

shown are for a two-sample comparison (equal variances) with n = 19 in each
sample. Calculations proceed by first calculating the separation between means
required, with a = 0.05, to give a power that equals 0.8, and from this the
non-centrality parameter, thus:

n <- 19; df <- 2*(n-1); sd <- 1.5; sed <- sd*sqrt(2/n)
## Calculate difference delta between means that gives power=0.8
delta <- power.t.test(n=19, sd=sd, sig.level=0.05,
power=0.8, type="two.sample",
alternative = "one.sided")[['delta']]
## Calculate the non-centrality parameter ncp
ncp <- delta/sed # sed is Standard Error of Difference

The comparison is between densities of ¢-statistics, both with degrees of free-
dom 36, the first with noncentrality parameter ncp = 0, and the second with
noncentrality parameter ncp = delta/sed = 2.535 .

The same graph will result irrespective of the standard deviation. It is at the
same time the graph that will be obtained for a single sample t-test with n = 37,
now with delta equal to the mean difference rather than the difference in means.
The two density curves are in each case separated, on the scale of the t-statistic,
by the amount required for the test to have a power that equals 0.8 for a = 0.05.

Here are the calculations:

Once experimental results are obtained and a p-value has been calculated, the
alternative of interest is the minimum difference § in means (or, in the one-sample

12



case, mean difference) that was set before the experiment as of interest to the
researcher.

As an example of a power calculation, suppose that we want to have an 80%
probability of detecting, at the o = 0.05 level, a difference § of 1.4 or more.
Assume, for purposes of an example, that the experiment will give us data for
a two-sample two=sided test. Assume further that the standard deviation of
treatment measurements is thought to be around 1. As this is just a guesstimate,
we build in a modest margin of error, and take the standard deviation to be 1.5
for purposes of calculating the sample size. We then do the calculation:

power.t.test(type='two.sample', alternative='two.sided', power=0.8,
sig.level=0.05, sd=1.5, delta=1.4)[['n']]
[1] 19.03024

With the results in, the relevant alternative to HO, for purposes of calculating a
likelihood ratio, has § = 1.4. Suppose, then, that the experimental results yield
a standard deviation of 1.2, assuming that the standard deviation is the same
for both treatments.

Figure 7 (left panel) plots maximum likelihood ratios, and likelihood ratios, for
the choices § = 1.0 and § = 1.4, against p-values. Results are for a two-sample
two-sided test with n = 19 in each sample. Results are presented for § = 1.0 as
well as for § = 1.4, in order to show how the likelihood ratio changes when ¢
changes.

Maximum —— 5=1 5=14 -———-
0.001 0.002 0.005 0.01 0.02 0.05 0.1
One-sided Two-sided

likelihood ratio

0.001 0.002 0.005 0.01 0.02 0.05 0.1
p-value

Figure 7: Ratio of likelihood under the alternative to the likelihood under the
NULL, as a function of the calculated p-value, with n = 9 in each sample in a
two-sample test, and with § = 0.6s set as the minimum difference of interest.
The graph may, alternatively, be interpreted as for n = 19 in a one-sample test,
now with § = 1.225s. The left panel is for one-sided tests, while the right panel
is for two-sided tests.
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The power, calculated relative to a specific choice of «, is an important consid-
eration when an experiment is designed. The aim is, for a simple randomized
trial of the type considered here, to ensure an acceptably high probability that
a treatment effect ¢ that is large enough to be of scientific interest, will be de-
tectable given a threshold « for the resultant p-value. Once experimental results
are available, the focus should shift to assessing the strength of the evidence
that the treatment effect is large enough to be of scientific interest, i.e., that it
is of magnitude d or more.

Any treatment effect, however small, contributes to shifting the balance of
probability between the NULL and the alternative. By contrast, the maximum
likelihood ratio depends only on the estimated treatment effect. What is really
of interest, as has just been noted, is the strength of evidence that the treatment
effect is of magnitude § or more.

3.2 False positive risk, when « is used as cutoff

The use of a cutoff a, as a basis for a decision-making strategy, is a less nuanced
use of the evidence than when there is attention to the specific p-value or,
equivqlently, to the t-statistic. Assume that experiments are designed to have a
power P, to accept H1 when p <= «. Then the false positive risk is:

a(l —m)
a(l —7)+ 7P,

In the case where m = 0.5, and P, is 0.8 or more, this is always less than 1.25
«a. Note again that what is modeled here are the properties of a strategy for
choosing between HO and H1. Thus, with o = 0.5, it makes no distinction
between, for example, p = 0.05 and p = 0.01 or less.

What choices of cutoff a, and of power, make sense?

The conventional choice has been o = 0.05, with 0.8 for the power. In recent
years, in the debate over reproducibility in science, a strong case has been made
for a choice of @ = 0.01 or a = 0.005 for the cutoff. Such a more stringent cutoff
makes sense for purposes of deciding on the required sample size. It does not
deal with the larger problem of binary decision making on the basis of a single
experiment.

A higher power alters the tradeoff between the type I error «, and the type II
error § =1 - P,, where P, is the power. In moving from P, = 0.8 to P, = 0.9
while holding the sample size constant, one is increasing the separation between
the distribution for the NULL and the distribution for the alternative H1.

14



4 How should results be reported?

P-values have come to have a central role in the reporting of scientific results. It
is commonly assumed that an individual p-value that equals 0.05 provides 19 to
1 evidence against the NULL hypothesis, and in favour of the alternative. Two
points are

e The probability to which it most directly relates is the probability of
obtaining such a result, given the NULL
o For this purpose, the relevant probability is 0.1, not 0.05

The maximum likelihood ratio for the alternative against the NULL depends on
the degrees of freedom. It is less than 4.5 for degrees of freedom greater than 5.

Results should come with evidence of relevant checks on distributional assump-
tions. Where degrees of freedom are small (e.g., 4 or less), and there is no
evidence from comparable data from earlier studies on which to rely, checks are
in general unlikely to be effective. The uncertainty that this generates should be
acknowledged.

Meaningful data are a richer source of information than can be satisfactorily
summarized in a single statistic. Consider the use of multiple forms of statistical
summary, each offering its own perspective, and supported by relevant graphs.

5 Further reading and references

See especially Colquhoun (2017), Wasserstein, Schirm, and Lazar (2019), and
other papers in the American Statistician supplement in which Wasserstein’s
editorial appeared. Code used for the calculations is based on David Colquhoun’s
code that is available from https://ndownloader.figshare.com/files/9795781.
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