Package 'symphony'

January 16, 2023

Title Efficient and Precise Single-Cell Reference Atlas Mapping

Version 0.1.1

Description Implements the Symphony single-cell reference building and query mapping algorithms and additional functions de-

scribed in Kang et al https://www.nature.com/articles/s41467-021-25957-x>.

License GPL (\geq = 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, ggthemes, ggrastr, ggrepel

LinkingTo Rcpp, RcppArmadillo

Imports methods, Rcpp, harmony, uwot, irlba, class, purrr, dplyr, ggplot2, stats, utils, magrittr, data.table, tibble, Matrix, tidyr, rlang, RColorBrewer, RANN

VignetteBuilder knitr

Depends R (>= 3.5)

NeedsCompilation yes

Author Joyce Kang [aut, cre] (<https://orcid.org/0000-0002-1962-1291>), Ilya Korsunsky [aut] (<https://orcid.org/0000-0003-4848-3948>), Soumya Raychaudhuri [aut] (<https://orcid.org/0000-0002-1901-8265>)

Maintainer Joyce Kang <joyce_kang@hms.harvard.edu>

Repository CRAN

Date/Publication 2023-01-16 19:30:02 UTC

R topics documented:

buildReference	2
buildReferenceFromHarmonyObj	3
calcknncorr	4
calcknncorrWithinQuery	5

buildReference

calcPerCellMappingMetric	6
calcPerClusterMappingMetric	7
evaluate	8
findVariableGenes	8
knnPredict	9
mapQuery	10
pbmcs_exprs_small	11
pbmcs_meta_small	11
plotReference	12
rowSDs	13
runPCAQueryAlone	13
scaleDataWithStats	14
symphony	14
vargenes_vst	14
	16

Index

buildReference	Function for building a Symphony reference starting from expression matrix

Description

Function for building a Symphony reference starting from expression matrix

```
buildReference(
 exp_ref,
 metadata_ref,
 vars = NULL,
 K = 100,
  verbose = FALSE,
 do_umap = TRUE,
 do_normalize = TRUE,
  vargenes_method = "vst",
  vargenes_groups = NULL,
  topn = 2000,
  tau = 0,
  theta = 2,
  save_uwot_path = NULL,
 d = 20,
  additional_genes = NULL,
 umap_min_dist = 0.1,
  seed = 111
)
```

Arguments

exp_ref	Reference gene expression (genes by cells)	
metadata_ref	Reference cell metadata (cells by attributes)	
vars	Reference variables to Harmonize over e.g. c('donor', 'technology')	
К	Number of soft cluster centroids in model	
verbose	Verbose output	
do_umap	Perform UMAP visualization on harmonized reference embedding	
do_normalize	Perform log(CP10K+1) normalization	
vargenes_metho	t	
	Variable gene selection method (either 'vst' or 'mvp')	
vargenes_groups		
	Name of metadata column specifying groups for variable gene selection. If not NULL, calculate topn variable genes in each group separately, then pool	
topn	Number of variable genes to subset by	
tau	Tau parameter for Harmony step	
theta	Theta parameter(s) for Harmony step	
<pre>save_uwot_path</pre>	Absolute path to save the uwot model (used if do_umap is TRUE)	
d	Number of PC dimensions	
additional_gene	es	
	Any custom genes (e.g. marker genes) to include in addition to variable genes	
umap_min_dist	umap parameter (see uwot documentation for details)	
seed	Random seed	

Value

Symphony reference object. Integrated embedding is stored in the \$Z_corr slot. Other slots include cell-level metadata (\$meta_data), variable genes means and standard deviations (\$vargenes), loadings from PCA (\$loadings), original PCA embedding (\$Z_orig), reference compression terms (\$cache), betas from Harmony integration (\$betas), cosine normalized soft cluster centroids (\$centroids), centroids in PC space (\$centroids_pc), and optional umap coordinates (\$umap\$embedding).

buildReferenceFromHarmonyObj

Function for building a Symphony reference from a Harmony object. Useful if you would like your code to be more modular. Note that you must have saved vargenes_means_sds and PCA loadings.

Description

Function for building a Symphony reference from a Harmony object. Useful if you would like your code to be more modular. Note that you must have saved vargenes_means_sds and PCA loadings.

Usage

```
buildReferenceFromHarmonyObj(
    harmony_obj,
    metadata,
    vargenes_means_sds,
    pca_loadings,
    verbose = TRUE,
    do_umap = TRUE,
    save_uwot_path = NULL,
    umap_min_dist = 0.1,
    seed = 111
)
```

Arguments

harmony_obj	Harmony object (output from HarmonyMatrix())
metadata	Reference cell metadata (cells by attributes)
vargenes_means_sds	
	Variable genes in dataframe with columns named ('symbol', 'mean', 'stddev')
pca_loadings	Gene loadings from PCA (e.g. irlba(ref_exp_scaled, nv = 20)\$u)
verbose	Verbose output
do_umap	Perform UMAP visualization on harmonized reference embedding
<pre>save_uwot_path</pre>	Absolute path to save the uwot model (if do_umap is TRUE)
umap_min_dist	UMAP parameter (see uwot documentation for details)
seed	Random seed

Value

Symphony reference object. Integrated embedding is stored in the \$Z_corr slot. Other slots include cell-level metadata (\$meta_data), variable genes means and standard deviations (\$vargenes), loadings from PCA or other dimensional reduction such as CCA (\$loadings), original PCA embedding (\$Z_orig), reference compression terms (\$cache), betas from Harmony integration (\$betas), cosinenormalized soft cluster centroids (\$centroids), centroids in PC space (\$centroids_pc), and optional umap coordinates (\$umap\$embedding).

calcknncorr Calculates the k-NN correlation, which measures how well the sorted ordering of k nearest reference neighbors in a gold standard embedding correlate with the ordering for the same reference cells in an alternative embedding (i.e. from reference mapping). NOTE: it is very important for the order of reference cells (cols) in gold_ref matches that of alt_ref (same for matching columns of gold_query and alt_query).

4

Description

Calculates the k-NN correlation, which measures how well the sorted ordering of k nearest reference neighbors in a gold standard embedding correlate with the ordering for the same reference cells in an alternative embedding (i.e. from reference mapping). NOTE: it is very important for the order of reference cells (cols) in gold_ref matches that of alt_ref (same for matching columns of gold_query and alt_query).

Usage

```
calcknncorr(gold_ref, alt_ref, gold_query, alt_query, k = 500)
```

Arguments

gold_ref	Reference cells in gold standard embedding (PCs by cells)
alt_ref	Reference cells in alternative embedding (PCs by cells)
gold_query	Query cells in gold standard embedding (PCs by cells)
alt_query	Query cells in alternative embedding (PCs by cells)
k	Number of reference neighbors to use for kNN-correlation calculation

Value

Vector of k-NN correlations for query cells

```
calcknncorrWithinQuery
```

Calculates the k-NN correlation within the query cells only, which measures how well the sorted ordering of k nearest query neighbors in a query de novo PCA embedding correlate with the ordering for the cells in the reference mapping embedding.

Description

Calculates the k-NN correlation within the query cells only, which measures how well the sorted ordering of k nearest query neighbors in a query de novo PCA embedding correlate with the ordering for the cells in the reference mapping embedding.

```
calcknncorrWithinQuery(
  query,
  var = NULL,
  k = 100,
  topn = 2000,
  d = 20,
  distance = "euclidean"
)
```

Arguments

query	Query object (returned from mapQuery)
var	Query metadata batch variable (PCA is calculated within each batch separately); if NULL, do not split by batch
k	Number of neighbors to use for kNN-correlation calculation
topn	number of variable genes to calculate within each query batch for query PCA
d	number of dimensions for query PCA within each query batch
distance	either 'euclidean' or 'cosine'

Value

Vector of within-query k-NN correlations for query cells

```
calcPerCellMappingMetric
```

Per-cell Confidence Score: Calculates the weighted Mahalanobis distance for the query cells to reference clusters. Returns a vector of distance scores, one per query cell. Higher distance metric indicates less confidence.

Description

Per-cell Confidence Score: Calculates the weighted Mahalanobis distance for the query cells to reference clusters. Returns a vector of distance scores, one per query cell. Higher distance metric indicates less confidence.

Usage

```
calcPerCellMappingMetric(
  reference,
  query,
  Z_orig = TRUE,
  metric = "mahalanobis"
)
```

Arguments

reference	Reference object as returned by Symphony buildReference()
query	Query object as returned by Symphony mapQuery()
Z_orig	Define reference distribution using original PCA embedding or harmonized PC embedding
metric	Uses Mahalanobis by default, but added as a parameter for potential future use

Value

A vector of per-cell mapping metric scores for each cell.

calcPerClusterMappingMetric

Per-cluster Confidence Score: Calculates the Mahalanobis distance from user-defined query clusters to their nearest reference centroid after initial projection into reference PCA space. All query cells in a cluster get the same score. Higher distance indicates less confidence. Due to the instability of estimating covariance with small numbers of cells, we do not assign a score to clusters smaller than u * d, where d is the dimensionality of the embedding and u is specified.

Description

Per-cluster Confidence Score: Calculates the Mahalanobis distance from user-defined query clusters to their nearest reference centroid after initial projection into reference PCA space. All query cells in a cluster get the same score. Higher distance indicates less confidence. Due to the instability of estimating covariance with small numbers of cells, we do not assign a score to clusters smaller than u * d, where d is the dimensionality of the embedding and u is specified.

Usage

```
calcPerClusterMappingMetric(
  reference,
  query,
  query_cluster_labels,
  metric = "mahalanobis",
  u = 2,
  lambda = 0
)
```

Arguments

reference	Reference object as returned by Symphony buildReference()	
query	Query object as returned by Symphony mapQuery()	
query_cluster_l	abels	
	Vector of user-defined labels denoting clusters / putative novel cell type to cal- culate the score for	
metric	Uses Mahalanobis by default, but added as a parameter for potential future use	
u	Do not assign scores to clusters smaller than u * d (see above description)	
lambda	Optional ridge parameter added to covariance diagonal to help stabilize numeric estimates	

Value

A data.frame of per-cluster mapping metric scores for each user-specified query cluster.

evaluate

Function for evaluating F1 by cell type, adapted from automated cell type identifiaction benchmarking paper (Abdelaal et al. Genome Biology, 2019)

Description

Function for evaluating F1 by cell type, adapted from automated cell type identifiaction benchmarking paper (Abdelaal et al. Genome Biology, 2019)

Usage

evaluate(true, predicted)

Arguments

true	vector of true labels
predicted	vector of predicted labels

Value

A list of results with confusion matrix (\$Conf), median F1-score (\$MedF1), F1 scores per class (\$F1), and accuracy (\$Acc).

findVariableGenes	Function to find variable genes using mean variance relation	onship
	method	

Description

Function to find variable genes using mean variance relationship method

```
findVariableGenes(
   X,
   groups,
   min_expr = 0.1,
   max_expr = Inf,
   min_dispersion = 0,
   max_dispersion = Inf,
   num.bin = 20,
   binning.method = "equal_width",
   return_top_n = 0
)
```

knnPredict

Arguments

Х	expression matrix
groups	vector of groups
min_expr	min expression cutoff
max_expr	max expression cutoff
<pre>min_dispersion</pre>	min dispersion cutoff
<pre>max_dispersion</pre>	max dispersion cutoff
num.bin	number of bins to use for scaled analysis
binning.method	how bins are computed
return_top_n	returns top n genes

Value

A data.frame of variable genes

knnPredict	Predict annotations	of query	cells from t	the reference	using k-NN
	method				

Description

Predict annotations of query cells from the reference using k-NN method

Usage

```
knnPredict(
  query_obj,
  ref_obj,
  train_labels,
  k = 5,
  save_as = "cell_type_pred_knn",
  confidence = TRUE,
  seed = 0
)
```

Arguments

query_obj	Symphony query object
ref_obj	Symphony reference object
train_labels	vector of labels to train
k	number of neighbors
save_as	string that result column will be named in query metadata
confidence	return k-NN confidence scores (proportion of neighbors voting for the predicted annotation)
seed	random seed (k-NN has some stochasticity in the case of ties)

Value

Symphony query object, with predicted reference labels stored in the 'save_as' slot of the query\$meta_data

mapQuery

Function for mapping query cells to a Symphony reference

Description

Function for mapping query cells to a Symphony reference

Usage

```
mapQuery(
   exp_query,
   metadata_query,
   ref_obj,
   vars = NULL,
   verbose = TRUE,
   do_normalize = TRUE,
   do_umap = TRUE,
   sigma = 0.1
)
```

Arguments

exp_query	Query gene expression (genes by cells)
metadata_query	Query metadata (cells by attributes)
ref_obj	Reference object as returned by Symphony buildReference()
vars	Query batch variable(s) to integrate over (column names in metadata)
verbose	Verbose output
do_normalize	Perform log(CP10K+1) normalization on query expression
do_umap	Perform umap projection into reference UMAP (if reference includes a uwot model)
sigma	Fuzziness parameter for soft clustering (sigma = 1 is hard clustering)

Value

Symphony query object. Mapping embedding is in the \$Z slot. Other slots include query expression matrix (\$exp), query cell-level metadata (\$meta_data), query cell embedding in pre-Harmonized reference PCs (\$Zq_pca), query cell soft cluster assignments (\$R), and query cells in reference UMAP coordinates (\$umap).

10

pbmcs_exprs_small

Description

Log(CP10k+1) normalized counts matrix (genes by cells) for 10x PBMCs dataset for vignette.

Usage

pbmcs_exprs_small

Format

: Sparse matrix (dgCMatrix): dimensions 1,764 genes by 1,200 cells

pbmcs_meta_small Metadata for 10x PBMCs dataset for vignette.

Description

Metadata for 10x PBMCs dataset for vignette.

Usage

pbmcs_meta_small

Format

: A data frame with 1,200 cells and 7 metadata fields.

cell_id unique cell ID

donor dataset (3pv1, 3pv2, or 5p)

nUMI number of UMIs

nGene number of genes

percent_mito percent mito genes

cell_type cell type assigned in Symphony publication

cell_type_broad cell subtype assigned in Symphony publication

plotReference

Description

Function to plot reference, colored by cell type

Usage

```
plotReference(
  reference,
  as.density = TRUE,
  bins = 10,
  bandwidth = 1.5,
  title = "Reference",
  color.by = "cell_type",
  celltype.colors = NULL,
  show.legend = TRUE,
  show.labels = TRUE,
  show.centroids = FALSE
)
```

Arguments

reference	Symphony reference object (must have UMAP stored)
as.density	if TRUE, plot as density; if FALSE, plot as individual cells
bins	for density, nbins parameter for stat_density_2d
bandwidth	for density, bandwidth parameter for stat_density_2d
title	Plot title
color.by	metadata column name for phenotype labels
celltype.colors	5
	custom color mapping
show.legend	Show cell type legend
show.labels	Show cell type labels
show.centroids	Plot soft cluster centroid locations

Value

A ggplot object.

rowSDs

Description

Calculate standard deviations by row

Usage

rowSDs(A, row_means = NULL, weights = NULL)

Arguments

A	expression matrix (genes by cells)
row_means	row means
weights	weights for weighted standard dev calculation

Value

A vector of row standard deviations

runPCAQueryAlone	Runs a standard PCA pipeline on query (1 batch). Assumes query_exp
	is already normalized.

Description

Runs a standard PCA pipeline on query (1 batch). Assumes query_exp is already normalized.

Usage

runPCAQueryAlone(query_exp, topn = 2000, d = 20, seed = 1)

Arguments

query_exp	Query expression matrix (genes x cells)
topn	Number of variable genes to use
d	Number of dimensions
seed	random seed

Value

A matrix of PCs by cells

scaleDataWithStats Scale data with given mean and standard deviations

Description

Scale data with given mean and standard deviations

Usage

```
scaleDataWithStats(A, mean_vec, sd_vec, margin = 1, thresh = 10)
```

Arguments

expression matrix (genes by cells)
vector of mean values
vector of standard deviation values
1 for row-wise calculation
threshold to clip max values

Value

A matrix of scaled expression values.

Description

Efficient single-cell reference atlas mapping (Kang et al.)

vargenes_vst	Function to find variable genes using variance stabilizing transform
	(vst) method

Description

Function to find variable genes using variance stabilizing transform (vst) method

```
vargenes_vst(object, groups, topn, loess.span = 0.3)
```

vargenes_vst

Arguments

object	expression matrix
groups	finds variable genes within each group then pools
topn	Return top n genes
loess.span	Loess span parameter used when fitting the variance-mean relationship

Value

A data.frame of variable genes, with means and standard deviations.

Index

* datasets
 pbmcs_exprs_small, 11
 pbmcs_meta_small, 11

buildReference, 2
buildReferenceFromHarmonyObj, 3

```
calcknncorr,4
calcknncorrWithinQuery,5
calcPerCellMappingMetric,6
calcPerClusterMappingMetric,7
```

evaluate, 8

findVariableGenes, 8

knnPredict, 9

mapQuery, 10

pbmcs_exprs_small, 11
pbmcs_meta_small, 11
plotReference, 12

rowSDs, 13
runPCAQueryAlone, 13

scaleDataWithStats, 14
symphony, 14

vargenes_vst, 14