Package 'swaRmverse'

October 10, 2024

Type Package

Title Swarm Space Creation

Version 0.1.1

Date 2024-10-10

Maintainer Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

Description Provides a pipeline for the comparative analysis of collective movement data (e.g. fish schools, bird flocks, baboon troops) by processing 2-dimensional positional data (x,y,t) from GPS trackers or computer vision tracking systems, discretizing events of collective motion, calculating a set of established metrics that characterize each event, and placing the events in a multi-dimensional swarm space constructed from these metrics. The swarm space concept, the metrics and data sets included are described in: Papadopoulou Marina, Furtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. (2023) <doi:10.1098/rstb.2022.0068>.

License GPL-3

Encoding UTF-8

LazyData true

URL https://marinapapa.github.io/swaRmverse/, https://github.com/marinapapa/swaRmverse

BugReports https://github.com/marinapapa/swaRmverse/issues

RoxygenNote 7.3.1

Depends R (>= 3.5)

Imports parallel, pbapply, Rtsne, trackdf, swaRm, geosphere

Suggests knitr, rmarkdown, ggplot2, testthat (>= 3.0.0), covr

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

```
Author Marina Papadopoulou [aut, cre]
```

```
(<https://orcid.org/0000-0002-6478-8365>),
Simon Garnier [ctb, cph] (<https://orcid.org/0000-0002-3886-3974>)
```

Repository CRAN

Date/Publication 2024-10-10 13:50:02 UTC

Contents

add_rel_pos_coords
add_set_vels
add_velocities
calc_dur_per_event
col_motion_metrics
col_motion_metrics_from_raw
define_events
events_dur
events_n
events_summary 13
event_metrics
expand_pca_swarm_space
frontness
get_event_ids
group_metrics
group_metrics_per_set 18
group_shape
moving_average
multi_species_metrics
multi_species_pca
multi_species_pca_data
new_species_metrics
nnba
nn_metrics
normalize_data
pairwise_metrics
pick_threshold
set_data_format
swaRmverse
swarm_space

Description

This function calculates the x and y coordinates of a neighbor in the reference frame of the focal individual.

Usage

```
add_rel_pos_coords(data, focal_heading = c(0, 1))
```

Arguments

data	Dataframe with the bearing angle and distance of each individual to specific neighbors. Column names must include: bangl, nnd.
focal_heading	The heading of the focal individual, default = $c(0,1)$ for plotting neighbor heading north.

Value

The input dataframe with additional nnx (nearest neighbor x coordinate) and nny (nearest neighbor y coordinate) columns.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

Examples

```
data <- data.frame(
bangl = runif(25, 0, pi),
nnd = runif(25)
)
data <- add_rel_pos_coords(data)</pre>
```

add_set_vels Add Velocity Timeseries

Description

This function calculates the headings and speeds of individuals based on two location points and the time taken to travel between those points.

Usage

```
add_set_vels(
   data,
   geo = FALSE,
   verbose = FALSE,
   parallelize = FALSE,
   independent_call = TRUE
)
```

Arguments

data	A dataframe with the time series of individuals' positions. Columns must include: t, id, x, y.	
geo	Logical, whether positions are geographic coordinates, default = TRUE.	
verbose	Logical, whether to post updates on progress, default = FALSE.	
parallelize	Logical, whether to run the function in parallel, default = FALSE.	
independent_call		
	Logical, whether the function is called by itself or as part of the package pipeline (through add_velocities). The default is set to TRUE, reflecting the direct call of the function by the user.	

Value

The input dataframe with a new speed and heading (rotational, in rads) columns.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

add_velocities

Examples

```
data <- data.frame(
x = rnorm(25, sd = 3),
y = rnorm(25, sd = 3),
t = as.POSIXct(1:25, origin = Sys.time()),
id = rep(1, 25)
)
data <- add_set_vels(data, geo = FALSE)</pre>
```

add_velocities

Description

This function calculates and adds the speed and heading of each individual over time in the dataset, and splits it in a list of dataframes based on the defined sets.

Usage

```
add_velocities(data, geo = FALSE, verbose = FALSE, parallelize = FALSE)
```

Arguments

data	A data frame with time series of individual's positional data, as exported by the set_data_format function. Columns needed: set, t, id, x, y.
geo	Logical, whether positions are geographic coordinates, default = FALSE.
verbose	Logical, whether to post updates on progress, default = FALSE.
parallelize	Logical, whether to run the function in parallel over individuals, default = FALSE.

Value

A list of dataframes, an element per set from the input dataframe with new columns: head and speed.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

add_set_vels, set_data_format

```
data <- data.frame(
set = rep(1, 25),
x = rnorm(25, sd = 3),
y = rnorm(25, sd = 3),
t = as.POSIXct(1:25, origin = Sys.time()),
id = rep(1, 25)
)</pre>
```

Description

This function calculates the duration of each event of collective motion in a dataset.

Usage

calc_dur_per_event(data, step2time)

Arguments

data	A dataframe with an event column (added by get_event_ids), indicating the event ID that each timestep belongs to. Timesteps that are not part of an event should not be included in the data.
step2time	The sampling frequency of the dataframe (how many seconds are between each row of the data).

Value

A dataframe with two columns, event ID and duration in seconds.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

events_dur, get_event_ids

```
data <- data.frame(
set = c(rep('1', 50), rep('2', 50)),
event = c(rep(NA, 10), rep(1, 40), rep(2, 30), rep(NA, 20))
)
time_per_row <- 1 # seconds
calc_dur_per_event(data, time_per_row)</pre>
```

Description

This function calculates metrics of collective motion across sets and events.

Usage

```
col_motion_metrics(
   timeseries_data,
   global_metrics,
   step2time = 1,
   verbose = TRUE,
   speed_lim = NA,
   pol_lim = NA,
   noise_thresh = 0
)
```

Arguments

```
timeseries_data
```

A data frame with time series of individual's positional data through time with nearest neighbor analysis conducted

global_metrics	A data frame	with the global	metrics timeseries.
----------------	--------------	-----------------	---------------------

step2time	Numeric, the sampling frequency of the dataset (the relation between a time step and real time in seconds).
verbose	Logical, whether to post updates on progress.
speed_lim	Numeric, the threshold of speed for the definition of an event. For more info see: pick_threshold.
pol_lim	Numeric, the threshold of polarization for the definition of an event. For more info see: pick_threshold.
noise_thresh	Numeric, the limit of time difference between consecutive events to be considered the same event. Default value is 0 (no event merging).

Value

A dataframe with metrics of collective motion per event.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

define_events, group_metrics, pairwise_metrics

Examples

```
## A dataframe with group timeseries
g_df <- data.frame(</pre>
 t = as.POSIXct(1:25, origin = "2024-03-18 14:56:05"),
 set = rep(1, 25),
 pol = c(rnorm(25)),
 pol_av = c(rnorm(25)),
 speed = c(rnorm(25)),
 speed_av = c(rnorm(25)),
 shape = c(rnorm(25)),
 event = rep(1, 25),
 N = rep(3, 25)
 )
## A dataframe with individual timeseries
p_df <- data.frame(</pre>
 t = as.POSIXct(rep(1:25, 3), origin = "2024-03-18 14:56:05"),
 set = rep(1, 75),
 nnd = c(rnorm(75)),
 bangl = runif(75, 0, pi),
 id = c(rep(1, 25), rep(2, 25), rep(3, 25)),
 nn_id = c(
  sample(c(2,3), 25, replace = TRUE),
  sample(c(1,3), 25, replace = TRUE),
  sample(c(2,1), 25, replace = TRUE)),
 event = rep(1, 75)
)
p_df$only_time <- format(p_df$t, "%H:%M:%OS2")</pre>
metrics <- col_motion_metrics(</pre>
 timeseries_data = p_df,
 global_metrics = g_df,
 step2time = 1,
 speed_lim = 0,
 pol_lim = 0,
 noise_thresh = 1
)
```

Description

This function calculates metrics of collective motion across sets and events.

Usage

```
col_motion_metrics_from_raw(
   data,
   mov_av_time_window,
   step2time = 1,
   geo = FALSE,
   verbose = FALSE,
   speed_lim = NA,
   pol_lim = NA,
   parallelize_all = FALSE,
   noise_thresh = 0
)
```

Arguments

data	A data frame with time series of individual's positional data through time. Columns must include: id, set, t, x, y.	
<pre>mov_av_time_wir</pre>	ndow	
	Numeric, a time window to average over for speed and polarization timeseries (in timesteps).	
step2time	Numeric, the sampling frequency of the dateset (the relation between a time step and real time in seconds).	
geo	Logical, whether positions are geographic coordinates, default = FALSE.	
verbose	Logical, whether to post updates on progress, default = FALSE.	
speed_lim	Numeric, the threshold of speed for the definition of an event. For more info see: pick_threshold.	
pol_lim	Numeric, the threshold of polarization for the definition of an event. For more info see: pick_threshold.	
parallelize_all		
	Logical, whether or not to parallelize over timesteps.	
noise_thresh	Numeric, the limit of time difference between consecutive events to be considered the same event. Default value is 0 (no event merging).	

Value

A dataframe with metrics of collective motion per event.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

add_velocities, group_metrics, pairwise_metrics, moving_average

Examples

```
data <- data.frame(
    set = rep(1, 75),
    x = rnorm(75, sd = 3),
    y = rnorm(75, sd = 3),
    t = as.POSIXct(rep(1:25, 3), origin = Sys.time()),
    id = c(rep(1, 25), rep(2, 25), rep(3, 25))
    )

metrics <- col_motion_metrics_from_raw(data,
    mov_av_time_window = 5,
    step2time = 1,
    geo = FALSE,
    speed_lim = 0,
    pol_lim = 0,
    noise_thresh = 1
    )</pre>
```

define_events

Define Events of Collective Motion

Description

This function adds a keep TRUE/FALSE column in the input dataframe based on whether the average speed and polarization of the group is larger than the input thresholds, reflecting whether a timestep is considered part of a collective event or not.

Usage

```
define_events(df, sp_lim, pol_lim, step2time, noise_thresh = 0)
```

Arguments

df	A dataframe with a pol_av and speed_av columns for polarization and speed, respectively (as calculated by the group_metrics_per_set function).
sp_lim	The (lower) threshold of speed to use for defining which timesteps are part of an events of collective motion. In other words, during an event the group should have an average speed of at least sp_lim.
pol_lim	The (lower) threshold of polarization to use for defining which timesteps are part of an events of collective motion. In other words, during an event the group's polarization should be at least pol_lim.
step2time	Sampling frequency, i.e. the relation between time steps (rows) in the input dataframe and real time (in seconds).
noise_thresh	The limit of time difference between consecutive events to be considered the same event. The default value is 0 (no event merging).

events_dur

Value

the dataframe that was given as input with an extra keep column. The function also prints the number and duration of the defined events.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

pick_threshold, group_metrics_per_set

Examples

```
data <- data.frame(
set = rep('1', 50),
pol_av = rnorm(50, mean = 0.5, sd = 0.2),
speed_av = rnorm(50, mean = 5)
)
data <- define_events(data, sp_lim = 5, pol_lim = 0.4, step2time = 1)</pre>
```

events_dur

Total Duration of All Events

Description

This function calculates the total duration (in seconds) of events of collective motion in a dataset.

Usage

```
events_dur(data, step2time)
```

Arguments

data	A dataframe with a keep column, representing which rows are defined as events
	of collective motion (added by the define_events function).
step2time	The sampling frequency of the dataframe (how many seconds are between each row of the data).

Value

A numeric corresponding to the total duration of events in the dataset in seconds.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

define_events, events_n

events_n

Number of Events

Description

This function calculates the number of events of collective motion in a dataset.

Usage

events_n(data)

Arguments

data A dataframe with a keep column (representing which rows are defined as events of collective motion) and a set column.

Value

an integer with the number of events of collective motion (sequences of keep == TRUE).

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

define_events

Examples

```
data <- data.frame(
set = c(rep('1', 50), rep('2', 50)),
keep = c(rep(FALSE, 10), rep(TRUE, 70), rep(FALSE, 20))
)
events_n(data) ## 2 events</pre>
```

Description

This function summarizes the number of events and their total duration in the dataset.

Usage

events_summary(data, step2time)

Arguments

data	A dataframe with a keep column (representing which rows are defined as events of collective motion) and a set column.
step2time	The sampling frequency of the dataframe (how many seconds are between each row of the data).

Value

A dataframe with 3 columns: set, ev_count (number of events), and dur (duration of events in seconds).

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

events_dur, events_n

```
data <- data.frame(
set = c(rep('1', 50), rep('2', 50)),
keep = c(rep(FALSE, 10), rep(TRUE, 70), rep(FALSE, 20))
)
time_per_row <- 1 # seconds
events_summary(data, time_per_row)</pre>
```

event_metrics

Description

This function calculates metrics of collective motion across sets and events.

Usage

event_metrics(global_df, pairwise_df)

Arguments

global_df	A data frame with time series of global group measurements. Columns must include: set, t, event, pol, shape, speed.
pairwise_df	A data frame with time series of pairwise measurements. Columns must include: set, t, id, nnd, bangl.

Value

A dataframe with 10 metrics per event.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

group_metrics, nn_metrics

```
## A dataframe with group timeseries
g_df <- data.frame(</pre>
t = 1:25,
set = rep(1, 25),
pol = c(rnorm(25)),
speed = c(rnorm(25)),
shape = c(rnorm(25)),
event = rep(1, 25),
N = rep(2, 25)
)
## A dataframe with individual timeseries
p_df <- data.frame(</pre>
t = rep(1:25, 2),
set = rep(1, 50),
nnd = c(rnorm(50)),
bangl = runif(25, 0, pi),
```

```
id = c(rep(1, 25), rep(2, 25)),
event = rep(1, 50)
)
events_dataframe <- event_metrics(g_df, p_df)</pre>
```

expand_pca_swarm_space

Expand Existing Swarm Space (PCA)

Description

This function predicts the positions of new event data in an existing PCA space using the stats::predict function.

Usage

```
expand_pca_swarm_space(metrics_data, pca_space, event_dur_limit = NA)
```

Arguments

metrics_data	A dataframe with the new metrics data to add in swarm space.	
pca_space	The PCA object to predict from, the output of the stats::prcomp function or the pca element of the list output of the swarm_space function.	
event_dur_limi	t	
	Numeric, capturing an event duration value in seconds. Used to filter out events that are shorter that this value. Default = NA, no filtering is applied.	
	and are shorter that this funder Derivative 141, no intering is uppred.	

Value

A dataframe with the x and y coordinates in the input swarm space per event of the new species.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

swarm_space

```
data(multi_species_metrics)
data(multi_species_pca)
ss <- expand_pca_swarm_space(multi_species_metrics,
multi_species_pca)</pre>
```

frontness

Description

Given the bearing angle of an object to another, this function calculates the frontness, a value that ranges from 0 to 1 and represents how in front the focal object is from its neighbor.

Usage

frontness(bs)

Arguments

bs

A vector of bearing angles (in rad) between objects.

Value

A vector of the same length as bs representing the frontness of a focal object to its neighbor.

Author(s)

Marina Papadopoulou, <m.papadopoulou.rug@gmail.com>

See Also

nnba

Examples

bs <- runif(25, max = pi)
frontness(bs)</pre>

get_event_ids Event Indexes

Description

This function returns a vector with the timeseries of event IDs according to the input keep column of the dataframe.

Usage

get_event_ids(df)

Arguments df

A dataframe with a set and a keep column to get the timeseries of event IDs. The keep column is added by the define_events function and represents whether each timestep is part of an event or not (whether it should be kept in for the rest of the analysis). Each set of the dataframe should be ordered in time.

Value

a vector of the same length as the rows of the input dataframe with the timeseries of event IDs.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

define_events

Examples

```
data <- data.frame(
set = c(rep('1', 50), rep('2', 50)),
keep = c(rep(FALSE, 10), rep(TRUE, 70), rep(FALSE, 20))
)
data$event <- get_event_ids(data)</pre>
```

group_metrics Group Metrics of Collective Motion

Description

This function calculates the average speed, polarization and shape of a group through time.

Usage

```
group_metrics(data, geo, step2time = 1, parallelize = FALSE)
```

Arguments

data	A dataframe of (ordered) time series of headings, positions, and speeds per in- dividual. The dataframe may contain several individuals. Should include the columns: id, t, speed, x, y, head, set.	
geo	Logical, whether positions are geographic coordinates, default = FALSE.	
step2time	Numeric, the sampling frequency of the data (the relation between a row in the data and real time in seconds).	
parallelize	Logical, whether to parallelize over time. Suggested only for very large datasets.	

Value

A dataframe with the group average timeseries, with columns: set, t, pol, speed, shape, N (number of individuals), missing_ind (whether some individuals are missing).

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

group_shape, add_velocities

Examples

```
data <- data.frame(
    set = rep("1", 50),
    t = as.POSIXct(rep(1:25, 2), origin = Sys.time()),
    id = c(rep(1, 25), rep(2, 25)),
    x = rnorm(50),
    y = rnorm(50),
    head = runif(50, 0, 2 * pi),
    speed = rnorm(50)
    )
gm <- group_metrics(data,
    geo = FALSE,
    step2time = 1)</pre>
```

group_metrics_per_set Group Metrics of Collective Motion in a Dataset

Description

This function calculates the timeseries of average speed, polarization and shape of all set in a dataset

Usage

```
group_metrics_per_set(
   data_list,
   mov_av_time_window,
   geo,
   step2time,
   parallelize = FALSE
)
```

Arguments

data_list	A list of dataframes with groups timeseries per set. Columns must include: id, t, set, head, x, y, speed.	
<pre>mov_av_time_window</pre>		
	Integer, timesteps to use as a sliding window for average speed and polarization.	
geo	Logical, whether positions are geographic coordinates, default = FALSE.	
step2time	Double, the sampling frequency of the data (the relation between a time step and real time in seconds).	
parallelize	Logical, whether or not to parallelize over the timesteps of each set.	

Value

A dataframe with the group average timeseries for each set, with columns: set, t, pol, speed, shape, N (number of individuals), missing_ind (whether some individuals are missing), pol_av (moving average of polarization based on input time window) and speed_av (moving average of speed based on input time window).

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

group_metrics, moving_average

```
data <- data.frame(
    set = rep("1", 50),
    t = as.POSIXct(rep(1:25, 2), origin = Sys.time()),
    id = c(rep(1, 25), rep(2, 25)),
    x = rnorm(50),
    y = rnorm(50,
    head = runif(50, 0, 2 * pi),
    speed = rnorm(50)
    )
gm <- group_metrics_per_set(list(data),
    mov_av_time_window = 5,
    geo = FALSE,
    step2time = 1
    )</pre>
```

group_shape

Description

Calculates how oblong the shape of a group is, relative to its average moving direction, along with the properties of the minimum object oriented bounding box (OOBB) around all objects.

Usage

group_shape(x, y, hs, geo = FALSE)

Arguments

х	A vector of x (or longitude) coordinates.
У	A vector of y (or latitude) coordinates.
hs	A vector of headings of the objects (in degrees).
geo	A logical value indicating whether the locations are defined by geographic co- ordinates (pairs of longitude/latitude values). Default: FALSE.

Value

A list with the estimate of how oblong the group is, and the details of the bounding box, i.e. its coordinates, height, width, and orientation of its longest side in degrees.

Author(s)

Marina Papadopoulou, <m.papadopoulou.rug@gmail.com>

```
x <- rnorm(25)
y <- rnorm(25, sd = 3)
h <- runif(25, 0, 2 * pi)
group_shape(x, y, h, geo = FALSE)</pre>
```

moving_average Moving Average

Description

This function calculates the moving average of a time series.

Usage

```
moving_average(timeseries, window)
```

Arguments

timeseries	Vector of doubles representing a timeseries.	
window	Double, the time-window to average over (in timesteps).	

Value

A vector of doubles (average over the window).

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

Examples

bs <- rnorm(20, mean = 10, sd = 1)
moving_average(bs, 5)</pre>

multi_species_metrics Multi-Species Collective Motion Metrics

Description

A dataset containing the metrics of collective motion for 4 species: stickleback fish, homing pigeons, goats, and chacma baboons. They were used for the construction of the initial swarm space in:

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

Usage

```
data('multi_species_metrics')
```

Format

A dataframe with 118 rows and 12 columns:

mean_mean_nnd Average nearest neighbor distance

mean_sd_nnd Average within-group variation in nearest neighbor distance

sd_mean_nnd Temporal variation in average nearest neighbor distance

mean_pol Average polarization

sd_pol Temporal variation in polarization

stdv_speed Temporal variation in speed

mean_sd_front Average within-group variation in frontness

mean_mean_bangl Average bearing angle

mean_shape Average group shape (rads)

sd_shape Temporal variation in group shape (rads)

species Species id

event Event id

References

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

multi_species_pca Multi-Species PCA

Description

The swarm space PCA of 4 species: stickleback fish, homing pigeons, goats and chacma baboons. First published as part of:

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

Usage

```
data('multi_species_pca')
```

Format

A list of 5 elements, exported by the stats::prcomp function.

References

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

See Also

multi_species_pca_data

multi_species_pca_data

Multi-Species PCA Data

Description

The positions of events from 4 species: stickleback fish, homing pigeons, goats and chacma baboons, in the PCA swarm space (see multi_species_pca. First published as part of:

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

Usage

```
data('multi_species_pca_data')
```

Format

A dataframe of 3 columns: species, PC1, PC2, PC3.

References

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

See Also

multi_species_pca

new_species_metrics The Collective Motion Metrics of a New Species

Description

The output dataset of vignette 2, containing the metrics of collective motion for a new species.

Usage

```
data('new_species_metrics')
```

Format

An object of class data. frame with 60 rows and 16 columns.

nnba

Bearing Angle to Nearest Neighbor

Description

Given the locations and headings of different objects, this function determines the angle between the heading of each object and the position to the nearest neighboring object.

Usage

nnba(x, y, hs, geo = FALSE)

Arguments

Х	A vector of x (or longitude) coordinates.
У	A vector of y (or latitude) coordinates.
hs	A vector of headings (angle in rads).
geo	A logical value indicating whether the locations are defined by geographic co- ordinates (pairs of longitude/latitude values). Default: FALSE.

Value

A vector of the same length as x and y representing the distance to the nearest neighboring object for each object.

Author(s)

Simon Garnier, <garnier@njit.edu>, Marina Papadopoulou, <m.papadopoulou.rug@gmail.com>

nn_metrics

Examples

```
x <- rnorm(25)
y <- rnorm(25, sd = 3)
hs <- rnorm(25, sd = 1)
nnba(x, y, hs)</pre>
```

```
nn_metrics
```

Nearest Neighbour Metrics

Description

This function calculates the bearing angle and distance from all focal individuals in a group to their nearest neighbor over time.

Usage

```
nn_metrics(
   data,
   add_coords = FALSE,
   geo = FALSE,
   verbose = FALSE,
   parallelize = FALSE
)
```

Arguments

data	A dataframe with the group's positional timeseries for one set. Column names must include: id, t, head, x, y. The calculations are based on the swaRm package.
add_coords	Logical, whether the data on relative positions of nearest neighbours should be converted into coordinates in the reference frame of the focal individual (nnx, nny). This can be useful for visualization purposes but it is not used in the package pipeling. Default = 'FALSE'.
geo	Logical, whether positions are geographic coordinates, default = FALSE.
verbose	Logical, whether to post updates on progress.
parallelize	Logical, whether to parallelize the function over time.

Value

The input dataframe with new columns for nearest neighbor id (nn_id), bearing angle (bangl), and distance (nnd). If add_coords is TRUE, the columns nnx and nny are added.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

add_rel_pos_coords, group_metrics

Examples

```
data <- data.frame(
    set = rep("1", 50),
    t = as.POSIXct(rep(1:25, 2), origin = Sys.time()),
    id = c(rep(1, 25), rep(2, 25)),
    x = rnorm(50),
    y = rnorm(50),
    head = runif(50, 0, 2 * pi)
    )
nnm <- nn_metrics(data, geo = FALSE)</pre>
```

normalize_data Normalize Data

Description

This function rescales a vector to values between 0 and 1.

Usage

```
normalize_data(vec)
```

Arguments

vec A numerical vector to normalize.

Value

A vector of doubles, the normalized values of the input vector.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

Examples

d <- rnorm(20, mean = 10, sd = 1)
normalize_data(d)</pre>

pairwise_metrics Pairwise Metrics of Collective Motion in a Dataset

Description

This function calculates the bearing angle and distance from each focal individual of a group to its nearest neighbor over time, across the sets of a dataset.

Usage

```
pairwise_metrics(
  data_list,
  geo = FALSE,
  verbose = FALSE,
  parallelize = FALSE,
  add_coords = FALSE
)
```

Arguments

data_list	A list of dataframes with groups timeseries per set. Columns must include: id, t, set, head, x, y.
geo	Logical, whether positions are geographic coordinates, default = FALSE.
verbose	Logical, whether to post updates on progress, default = FALSE.
parallelize	Logical, whether to run the function in parallel over timesteps, default = FALSE.
add_coords	Logical, whether data on relative positions are converted into geographic coordinates, default = 'FALSE'.

Value

A dataframe format of the input list, with new columns for nearest neighbor id (nn_id), bearing angles (bang1), and distances (nnd). If add_coords is TRUE, the columns nnx and nny are also added.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

nn_metrics, group_metrics_per_set

Examples

```
data <- data.frame(
    set = rep("1", 50),
    t = as.POSIXct(rep(1:25, 2), origin = Sys.time()),
    id = c(rep(1, 25), rep(2, 25)),
    x = rnorm(50),
    y = rnorm(50),
    head = runif(50, 0, 2 * pi)
    )
pm <- pairwise_metrics(list(data), geo = FALSE)</pre>
```

pick_threshold Pick a Threshold for the Events' Definition

Description

An interactive function that calculates and prints the quantiles of the input distribution and asks the user to input the threshold value they want to keep. If a threshold is given as input, then the function checks that the threshold type is correct and returns it. In the swaRmverse framework, the timesteps with lower values than the threshold will be labelled as not part of an event.

Usage

pick_threshold(data_distr, var, threshold = NA)

Arguments

data_distr	A numeric vector to pick a threshold for. In the package's pipeline it is the timeseries of polarization and average speed of a group.
var	A string, the of the distribution to use at the interactive step to ask the user for input.
threshold	If NA (the default), the function runs in interactive mode and the user inputs a given value to return. If numeric, the function just returns this input (interactive case is off).

Value

the selected or input value of the user for the lower threshold, of the variable to be used for the definition of an event.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

set_data_format

See Also

define_events

Examples

```
d <- rnorm(25, sd = 1)
d_variable_name <- "a variable"
the_threshold <- 0
pick_threshold(d, d_variable_name, threshold = the_threshold)
## If the threshold is not known, run the interactive version
## without giving a threshold as input.</pre>
```

set_data_format Data Formatting

Description

This function is a wrapper for the track function of the trackdf package.

Usage

```
set_data_format(
  raw_x,
  raw_y,
  raw_t,
  raw_id,
  origin,
  period,
  tz,
  proj,
  format,
   ...
)
```

Arguments

raw_x	A numeric vector representing the x coordinates of individual(s).
raw_y	A numeric vector representing the y coordinates of individual(s).
raw_t	A numeric vector that can be coerced to date-time objects by as datetime repre- senting the times (or frames) at which each location was recorded.
raw_id	A vector representing the identity of each coordinate recording.
origin	Something that can be coerced to a date-time object by as_datetime representing the start date and time of the observations when t is a numeric vector.
period	A character vector in a shorthand format (e.g. "1 second") or ISO 8601 spec- ification. This is used when t is a numeric vector to represent time unit of the observations.

tz	A time zone name. See OlsonNames.
proj	A character string or a sp::CRS object representing the projection of the coor- dinates. Leave empty if the coordinates are not projected (e.g., output of video tracking). "+proj=longlat" is suitable for the output of most GPS trackers.
format	A character string indicating the formatting of 't'. See strptime for how to spec- ify this parameter.
•••	Additional vectors representing categories that the data should be split by. If none, only the date will be used as a unit of data separation.

Value

A track dataframe table, which is a colloquial term for an object of class track.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

Examples

```
raw_data <- data.frame(
  frame = rep(1:25, 3),
  x = rnorm(75),
  j = rnorm(75),
  id = c(rep(1, 25), rep(2, 25), rep(3, 25))
)

data <- set_data_format(
  raw_x = raw_data_x,
  raw_y = raw_data_x,
  raw_t = raw_data_sframe,
  raw_id = raw_data_id,
  period = 1,
  origin = Sys.time(),
  tz = "Africa/Windhoek"
  )</pre>
```

swaRmverse

swaRmverse: Swarm Space Creation

Description

The swaRmverse package provides a pipeline for the comparative analysis of collective movement data (e.g. fish schools, bird flocks, baboon troops) by processing 2-dimensional positional data (x,y,t) from GPS trackers or computer vision tracking systems, discretizing events of collective motion, calculating a set of established metrics that characterize each event, and placing the events in a multi-dimensional 'swarm space' constructed from these metrics.

Details

Package:	swaRmverse
Type:	Package
Version:	0.1.0
Date:	2024-02-29
License:	GPL-3

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

Simon Garnier <garnier@njit.edu>

Maintainer: Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

References

Papadopoulou Marina, Fürtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. 2023. Dynamics of collective motion across time and species. Phil. Trans. R. Soc. B 378: 20220068. http://doi.org/10.1098/rstb.2022.0068

See Also

Useful links:

- https://marinapapa.github.io/swaRmverse/
- https://github.com/marinapapa/swaRmverse
- Report bugs at https://github.com/marinapapa/swaRmverse/issues

swarm_space

Create a Swarm Space

Description

This function runs a PCA (Principal component analysis) or a t-SNE (t-distributed Stochastic Neighbor Embedding) over the global and pairwise metrics of collective motion per each event to produce a swarm space. The PCA is computed with the stats::prcomp function and the t-SNE with the Rtsne::Rtsne function.

Usage

```
swarm_space(
  metrics_data,
  space_type = "pca",
  event_dur_limit = NA,
  tsne_rand_seed = NA,
  tsne_perplexity = 25
)
```

Arguments

metrics_data	A dataframe with metrics of collective motion per event.
space_type	A string, stating the choice between PCA ("pca") and t-SNE ("tsne"), default = "pca".
event_dur_limit	
	Numeric, capturing an event duration value in seconds. Used to filter out events that are shorter that this value. Default = NA, no filtering is applied.
tsne_rand_seed	Numeric, the random seed for the t-SNE analysis, to ensure reproducibility. De- fault = NA, but a value should be given if the t-SNE analysis is selected.
tsne_perplexity	
	Numeric, the perplexity parameter for the t-SNE analysis. Usually between 10-
	50, $default = 25$.

Value

A list with 3 elements: a dataframe representing the swarm space (x and y coordinates per event of each species), a reference dataframe (ref) including all the additional event information from the input metric data dataframe, a dataframe for the t-SNE analysis (tsne_setup) that includes the input parameters used, and a list for the PCA analysis (pca) with the output of the stats::prcomp command.

Author(s)

Marina Papadopoulou <m.papadopoulou.rug@gmail.com>

See Also

group_metrics, pairwise_metrics, nn_metrics, col_motion_metrics

Examples

```
data(multi_species_metrics)
ss <- swarm_space(multi_species_metrics)</pre>
```

Index

* datasets multi_species_metrics, 21 multi_species_pca, 22 multi_species_pca_data, 23 new_species_metrics, 24 add_rel_pos_coords, 3, 26 add_set_vels, 3, 5 add_velocities, 4, 5, 9, 18 calc_dur_per_event, 6 col_motion_metrics, 7, 32 col_motion_metrics_from_raw, 8 define_events, 7, 10, 11, 12, 17, 29 event_metrics, 14 events_dur, 6, 11, 13 events_n, 12, 12, 13 events_summary, 13 expand_pca_swarm_space, 15 frontness, 16 get_event_ids, 6, 16 group_metrics, 7, 9, 14, 17, 19, 26, 32 group_metrics_per_set, 10, 11, 18, 27 group_shape, 18, 20 moving_average, 9, 19, 21 multi_species_metrics, 21 multi_species_pca, 22, 23 multi_species_pca_data, 23, 23 new_species_metrics, 24 nn_metrics, 14, 25, 27, 32 nnba, 16, 24 normalize_data, 26 pairwise_metrics, 7, 9, 27, 32 pick_threshold, 7, 9, 11, 28

set_data_format, 5, 29
swarm_space, 15, 31
swaRmverse, 30
swaRmverse-package (swaRmverse), 30