
hhh4: An endemic-epidemic modelling framework

for infectious disease counts

Michaela Paul and Sebastian Meyer∗

Epidemiology, Biostatistics and Prevention Institute

University of Zurich, Zurich, Switzerland

8 February 2016

Abstract

The R package surveillance provides tools for the visualization, mod-
elling and monitoring of epidemic phenomena. This vignette is con-
cerned with the hhh4 modelling framework for univariate and mul-
tivariate time series of infectious disease counts proposed by Held
et al. (2005), and further extended by Paul et al. (2008), Paul and
Held (2011), Held and Paul (2012), and Meyer and Held (2014). The
implementation is illustrated using several built-in surveillance data
sets. The special case of spatio-temporal hhh4 models is also cov-
ered in Meyer et al. (2017, Section 5), which is available as the extra
vignette("hhh4_spacetime").

1 Introduction

To meet the threats of infectious diseases, many countries have established
surveillance systems for the reporting of various infectious diseases. The
systematic and standardized reporting at a national and regional level aims
to recognize all outbreaks quickly, even when aberrant cases are dispersed
in space. Traditionally, notification data, i.e. counts of cases confirmed ac-
cording to a specific definition and reported daily, weekly or monthly on a
regional or national level, are used for surveillance purposes.
The R-package surveillance provides functionality for the retrospective mod-
elling and prospective aberration detection in the resulting surveillance time
series. Overviews of the outbreak detection functionality of surveillance are
given by Höhle and Mazick (2010) and Salmon et al. (2016). This document
illustrates the functionality of the function hhh4 for the modelling of uni-
variate and multivariate time series of infectious disease counts. It is part
of the surveillance package as of version 1.3.

∗Author of correspondence: seb.meyer@fau.de (new affiliation)

1

mailto:seb.meyer@fau.de

The remainder of this vignette unfolds as follows: Section 2 introduces the
S4 class data structure used to store surveillance time series data within
the package. Access and visualization methods are outlined by means of
built-in data sets. In Section 3, the statistical modelling approach by Held
et al. (2005) and further model extensions are described. After the gen-
eral function call and arguments are shown, the detailed usage of hhh4 is
demonstrated in Section 4 using data introduced in Section 2.

2 Surveillance data

Denote by {yit; i = 1, . . . , I, t = 1, . . . , T} the multivariate time series of
disease counts for a specific partition of gender, age and location. Here,
T denotes the length of the time series and I denotes the number of units
(e.g geographical regions or age groups) being monitored. Such data are
represented using objects of the S4 class sts (surveillance time series).

The sts data class

The sts class contains the T ×I matrix of counts yit in a slot observed. An
integer slot epoch denotes the time index 1 ≤ t ≤ T of each row in observed.
The number of observations per year, e.g. 52 for weekly or 12 for monthly
data, is denoted by freq. Furthermore, start denotes a vector of length
two containing the start of the time series as c(year, epoch). For spatially
stratified time series, the slot neighbourhood denotes an I × I adjacency
matrix with elements 1 if two regions are neighbors and 0 otherwise. For map
visualizations, the slot map links the multivariate time series to geographical
regions stored in a "SpatialPolygons" object (package sp). Additionally,
the slot populationFrac contains a T × I matrix representing population
fractions in unit i at time t.
The sts data class is also described in Höhle and Mazick (2010, Section 2.1),
Salmon et al. (2016, Section 1.1), Meyer et al. (2017, Section 5.2), and on
the associated help page help("sts").

Some example data sets

The package surveillance contains a number of time series in the data di-
rectory. Most data sets originate from the SurvStat@RKI database1, main-
tained by the Robert Koch Institute (RKI) in Germany. Selected data sets
will be analyzed in Section 4 and are introduced in the following.
Note that many of the built-in datasets are stored in the S3 class data
structure disProg used in ancient versions of the surveillance package (until
2006). They can be easily converted into the new S4 sts data structure

1https://survstat.rki.de

2

https://survstat.rki.de

using the function disProg2sts. The resulting sts object can be accessed
similar as standard matrix objects and allows easy temporal and spatial
aggregation as will be shown in the remainder of this section.

Example: Influenza and meningococcal disease, Germany, 2001–

2006

As a first example, the weekly number of influenza and meningococcal dis-
ease cases in Germany is considered.

> # load data

> data("influMen")

> # convert to sts class and print basic information about the time series

> print(fluMen <- disProg2sts(influMen))

-- An object of class sts --

freq: 52

start: 2001 1

dim(observed): 312 2

Head of observed:

influenza meningococcus

[1,] 7 4

Head of neighbourhood:

influenza meningococcus

influenza 0 1

The univariate time series of meningococcal disease counts can be obtained
with

> meningo <- fluMen[, "meningococcus"]

> dim(meningo)

[1] 312 1

The plot function provides ways to visualize the multivariate time series in
time, space and space-time, as controlled by the type argument:

> plot(fluMen, type = observed ~ time | unit, # type of plot (default)

+ same.scale = FALSE, # unit-specific ylim?

+ col = "grey") # color of bars

3

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

2003

II

2004

II

2005

II

2006

II

0
50

0
10

00
15

00
20

00
influenza

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

2003

II

2004

II

2005

II

2006

II

0
10

20
30

meningococcus

See help("stsplot") for a detailed description of the plot routines.

Example: Influenza, Southern Germany, 2001–2008

The spatio-temporal spread of influenza in the 140 Kreise (districts) of
Bavaria and Baden-Württemberg is analyzed using the weekly number of
cases reported to the RKI (Robert Koch-Institut, 2009) in the years 2001–
2008. An sts object containing the data is created as follows:

> # read in observed number of cases

> flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt",

+ package = "surveillance"),

+ check.names = FALSE))

> # read in 0/1 adjacency matrix (1 if regions share a common border)

> nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt",

+ package = "surveillance"),

+ check.names = FALSE))

> library("Matrix")

> print(image(Matrix(nhood)))

Dimensions: 140 x 140

Column

R
ow

20

40

60

80

100

120

20 40 60 80 100 120

4

> # read in population fractions

> popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt",

+ package = "surveillance"),

+ header = TRUE)$popFrac

> # create sts object

> flu <- sts(flu.counts, start = c(2001, 1), frequency = 52,

+ population = popfracs, neighbourhood = nhood)

These data are already included as data("fluBYBW") in surveillance. In
addition to the sts object created above, fluBYBW contains a map of the
administrative districts of Bavaria and Baden-Württemberg. This works
by specifying a "SpatialPolygons" representation of the districts as an
extra argument map in the above sts call. Such a "SpatialPolygons"

object can be obtained from, e.g, an external shapefile using the sf functions
st_read followed by as_Spatial. A map enables plots and animations of
the cumulative number of cases by region. For instance, a disease incidence
map of the year 2001 can be obtained as follows:

> data("fluBYBW")

> plot(fluBYBW[year(fluBYBW) == 2001,], # select year 2001

+ type = observed ~ unit, # total counts by region

+ population = fluBYBW@map$X31_12_01 / 100000, # per 100000 inhabitants

+ colorkey = list(title = "Incidence [per 100'000 inhabitants]"))

2001−W01 to 2001−W52

0.00 4.00 9.00 12.25 16.00 20.25 25.00 30.25 36.00

Incidence [per 100'000 inhabitants]

Example: Measles, Germany, 2005–2007

The following data set contains the weekly number of measles cases in the
16 German federal states, in the years 2005–2007. These data have been
analyzed by Herzog et al. (2011) after aggregation into bi-weekly periods.

> data("measlesDE")

> measles2w <- aggregate(measlesDE, nfreq = 26)

5

> plot(measles2w, type = observed ~ time, # aggregate counts over all units

+ main = "Bi-weekly number of measles cases in Germany")

Bi−weekly number of measles cases in Germany

time

N
o.

 in
fe

ct
ed

2005

1

2006

1

2007

1

0
10

0
20

0
30

0

3 Model formulation

Retrospective surveillance aims to identify outbreaks and (spatio-)temporal
patterns through statistical modelling. Motivated by a branching process
with immigration, Held et al. (2005) suggest the following model for the anal-
ysis of univariate time series of infectious disease counts {yt; t = 1, . . . , T}.
The counts are assumed to be Poisson distributed with conditional mean

µt = λyt−1 + νt, (λ, νt > 0)

where λ and νt are unknown quantities. The mean incidence is decomposed
additively into two components: an epidemic or autoregressive component
λyt−1, and an endemic component νt. The former should be able to capture
occasional outbreaks whereas the latter explains a baseline rate of cases with
stable temporal pattern. Held et al. (2005) suggest the following parametric
model for the endemic component:

log(νt) = α+ βt+

{

S
∑

s=1

γs sin(ωst) + δs cos(ωst)

}

, (1)

where α is an intercept, β is a trend parameter, and the terms in curly brack-
ets are used to model seasonal variation. Here, γs and δs are unknown pa-
rameters, S denotes the number of harmonics to include, and ωs = 2πs/freq

are Fourier frequencies (e.g. freq = 52 for weekly data). For ease of inter-
pretation, the seasonal terms in (1) can be written equivalently as

γs sin(ωst) + δs cos(ωst) = As sin(ωst+ ϕs)

with amplitude As =
√

γ2
s + δ2

s describing the magnitude, and phase differ-
ence tan(ϕs) = δs/γs describing the onset of the sine wave.

6

To account for overdispersion, the Poisson model may be replaced by a neg-
ative binomial model. Then, the conditional mean µt remains the same but
the conditional variance increases to µt(1 + µtψ) with additional unknown
overdispersion parameter ψ > 0.
The model is extended to multivariate time series {yit} in Held et al. (2005)
and Paul et al. (2008) by including an additional neighbor-driven compo-
nent, where past cases in other (neighboring) units also enter as explanatory
covariates. The conditional mean µit is then given by

µit = λyi,t−1 + φ
∑

j ̸=i

wjiyj,t−1 + eitνt, (2)

where the unknown parameter φ quantifies the influence of other units j on
unit i, wji are weights reflecting between-unit transmission and eit corre-
sponds to an offset (such as population fractions at time t in region i). A
simple choice for the weights is wji = 1 if units j and i are adjacent and
0 otherwise. See Paul et al. (2008) for a discussion of alternative weights,
and Meyer and Held (2014) for how to estimate these weights in the spa-
tial setting using a parametric power-law formulation based on the order of
adjacency.
When analyzing a specific disease observed in, say, multiple regions or several
pathogens (such as influenza and meningococcal disease), the assumption of
equal incidence levels or disease transmission across units is questionable.
To address such heterogeneity, the unknown quantities λ, φ, and νt in (2)
may also depend on unit i. This can be done via

• unit-specific fixed parameters, e.g. log(λi) = αi (Paul et al., 2008);

• unit-specific random effects, e.g log(λi) = α0 +ai, ai
iid
∼ N (0, σ2

λ) (Paul
and Held, 2011);

• linking parameters with known (possibly time-varying) explanatory
variables, e.g. log(λi) = α0 + xiα1 with region-specific vaccination
coverage xi (Herzog et al., 2011).

In general, the parameters of all three model components may depend on
both time and unit. A call to hhh4 fits a Poisson or negative binomial model
with conditional mean

µit = λityi,t−1 + φit

∑

j ̸=i

wjiyj,t−1 + eitνit

to a (multivariate) time series of counts. Here, the three unknown quantities
are modelled as log-linear predictors

log(λit) = α0 + ai + u⊤
itα (ar)

log(φit) = β0 + bi + x⊤
itβ (ne)

log(νit) = γ0 + ci + z⊤
it γ (end)

7

where α0, β0, γ0 are intercepts, α,β,γ are vectors of unknown parameters
corresponding to covariate vectors uit,xit, zit, and ai, bi, ci are random ef-
fects. For instance, model (1) with S = 1 seasonal terms may be represented
as zit = (t, sin(2π/freq t), cos(2π/freq t))⊤. The stacked vector of all ran-
dom effects is assumed to follow a normal distribution with mean 0 and
covariance matrix Σ. In applications, each of the components ar, ne, and
end may be omitted in parts or as a whole.
If the model does not contain random effects, standard likelihood infer-
ence can be performed. Otherwise, inference is based on penalized quasi-
likelihood as described in detail in Paul and Held (2011).

4 Function call and control settings

The estimation procedure is called with

> hhh4(sts, control)

where sts denotes a (multivariate) surveillance time series and the model is
specified in the argument control in consistency with other algorithms in
surveillance. The control setting is a list of the following arguments (here
with default values):

> control = list(

+ ar = list(f = ~ -1, # formula for log(lambda_it)

+ offset = 1), # optional multiplicative offset

+ ne = list(f = ~ -1, # formula for log(phi_it)

+ offset = 1, # optional multiplicative offset

+ weights = neighbourhood(stsObj) == 1), # (w_ji) matrix

+ end = list(f = ~ 1, # formula for log(nu_it)

+ offset = 1), # optional multiplicative offset e_it

+ family = "Poisson", # Poisson or NegBin model

+ subset = 2:nrow(stsObj), # subset of observations to be used

+ optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules

+ regression = list(method = "nlminb"), # for penLogLik

+ variance = list(method = "nlminb")), # for marLogLik

+ verbose = FALSE, # level of progress reporting

+ start = list(fixed = NULL, # list with initial values for fixed,

+ random = NULL, # random, and

+ sd.corr = NULL), # variance parameters

+ data = list(t = epoch(stsObj)-1),# named list of covariates

+ keep.terms = FALSE # whether to keep the model terms

+)

The first three arguments ar, ne, and end specify the model components
using formula objects. By default, the counts yit are assumed to be Pois-
son distributed, but a negative binomial model can be chosen by setting
family = "NegBin1". By default, both the penalized and marginal log-
likelihoods are maximized using the quasi-Newton algorithm available via
the R function nlminb. The methods from optim may also be used, e.g.,

8

optimizer = list(variance = list(method="Nelder-Mead") is a useful
alternative for maximization of the marginal log-likelihood with respect to
the variance parameters. Initial values for the fixed, random, and variance
parameters can be specified in the start argument. If the model contains
covariates, these have to be provided in the data argument. If a covari-
ate does not vary across units, it may be given as a vector of length T .
Otherwise, covariate values must be given in a matrix of size T × I.
In the following, the functionality of hhh4 is demonstrated using the data
sets introduced in Section 2 and previously analyzed in Paul et al. (2008),
Paul and Held (2011) and Herzog et al. (2011). Selected results are repro-
duced. For a thorough discussion we refer to these papers.

Univariate modelling

As a first example, consider the univariate time series of meningococcal
infections in Germany, 01/2001–52/2006 (cf. Paul et al., 2008, Table 1). A
Poisson model without autoregression and S = 1 seasonal term is specified
as follows:

> # specify a formula object for the endemic component

> (f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52))

~1 + sin(2 * pi * t/52) + cos(2 * pi * t/52)

> # fit the Poisson model

> result0 <- hhh4(meningo, control = list(end = list(f = f_S1),

+ family = "Poisson"))

> summary(result0)

Call:

hhh4(stsObj = meningo, control = list(end = list(f = f_S1), family = "Poisson"))

Coefficients:

Estimate Std. Error

end.1 2.26478 0.01871

end.sin(2 * pi * t/52) 0.36195 0.02590

end.cos(2 * pi * t/52) 0.26055 0.02578

Log-likelihood: -872.09

AIC: 1750.19

BIC: 1761.41

Number of units: 1

Number of time points: 311

To fit the corresponding negative binomial model, we can use the convenient
update method:

> result1 <- update(result0, family = "NegBin1")

9

Note that the update method by default uses the parameter estimates from
the original model as start values when fitting the updated model; see
help("update.hhh4") for details.
We can calculate Akaike’s Information Criterion for the two models to check
whether accounting for overdispersion is useful for these data:

> AIC(result0, result1)

df AIC

result0 3 1750.187

result1 4 1708.344

Due to the default control settings with ar = list(f = ~ -1), the au-
toregressive component has been omitted in the above models. It can be
included by the following model update:

> # fit an autoregressive model

> result2 <- update(result1, ar = list(f = ~ 1))

To extract only the ML estimates and standard errors instead of a full model
summary, the coef method can be used:

> coef(result2, se = TRUE, # also return standard errors

+ amplitudeShift = TRUE, # transform sine/cosine coefficients

+ # to amplitude/shift parameters

+ idx2Exp = TRUE) # exponentiate remaining parameters

Estimate Std. Error

exp(ar.1) 0.16471293 0.05513307

exp(end.1) 8.05551496 0.55270775

end.A(2 * pi * t/52) 0.43157655 0.03793440

end.s(2 * pi * t/52) 0.65109457 0.04841228

overdisp 0.04917299 0.01168151

Here, exp(ar.1) is the autoregressive coefficient λ and can be interpreted
as the epidemic proportion of disease incidence (Held and Paul, 2012). Note
that the above transformation arguments amplitudeShift and idx2Exp

can also be used in the summary method. Many other standard methods are
implemented for "hhh4" fits, see, e.g., help("confint.hhh4").
A plot of the fitted model components can be easily obtained:

> plot(result2)

10

2001 2002 2003 2004 2005 2006 2007

0

10

20

30
N

o.
 in

fe
ct

ed

meningococcus

autoregressive
endemic

See the comprehensive help("plot.hhh4") for further options.

Bivariate modelling

Now, the weekly numbers of both meningococcal disease (MEN) and in-
fluenza (FLU) cases are analyzed to investigate whether influenza infections
predispose meningococcal disease (cf. Paul et al., 2008, Table 2). This re-
quires disease-specific parameters which are specified in the formula object
with fe(...). In the following, a negative binomial model with mean

(

µmen,t

µflu,t

)

=

(

λmen φ
0 λflu

)(

ment−1

flut−1

)

+

(

νmen,t

νflu,t

)

,

where the endemic component includes S = 3 seasonal terms for the FLU

data and S = 1 seasonal terms for the MEN data is considered. Here, φ
quantifies the influence of past influenza cases on the meningococcal disease
incidence. This model corresponds to the second model of Table 2 in Paul
et al. (2008) and is fitted as follows:

> # no "transmission" from meningococcus to influenza

> neighbourhood(fluMen)["meningococcus","influenza"] <- 0

> neighbourhood(fluMen)

influenza meningococcus

influenza 0 1

meningococcus 0 0

> # create formula for endemic component

> f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE),

+ # disease-specific intercepts

+ S = c(3, 1), # S = 3 for flu, S = 1 for men

+ period = 52)

> # specify model

> m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)),

+ ne = list(f = ~ 1, # phi, only relevant for meningococcus due to

11

+ weights = neighbourhood(fluMen)), # the weight matrix

+ end = list(f = f.end),

+ family = "NegBinM") # disease-specific overdispersion

> # fit model

> result <- hhh4(fluMen, control = m)

> summary(result, idx2Exp=1:3)

Call:

hhh4(stsObj = fluMen, control = m)

Coefficients:

Estimate Std. Error

exp(ar.1.influenza) 0.737592 0.050030

exp(ar.1.meningococcus) 0.095146 0.056894

exp(ne.1) 0.005425 0.001413

end.1.influenza 1.088286 0.165319

end.1.meningococcus 2.118598 0.066831

end.sin(2 * pi * t/52).influenza 1.186185 0.235984

end.sin(2 * pi * t/52).meningococcus 0.266606 0.039680

end.cos(2 * pi * t/52).influenza 1.509778 0.146707

end.cos(2 * pi * t/52).meningococcus 0.229044 0.035323

end.sin(4 * pi * t/52).influenza 0.919169 0.171502

end.cos(4 * pi * t/52).influenza -0.161599 0.179850

end.sin(6 * pi * t/52).influenza 0.369235 0.149980

end.cos(6 * pi * t/52).influenza -0.534546 0.161901

overdisp.influenza 0.294554 0.035769

overdisp.meningococcus 0.039497 0.010893

Log-likelihood: -1880.97

AIC: 3791.94

BIC: 3858.43

Number of units: 2

Number of time points: 311

A plot of the estimated mean components can be obtained as follows:

> plot(result, units = NULL, pch = 20, legend = 2, legend.args = list(

+ legend = c("influenza-driven", "autoregressive", "endemic")))

2001 2002 2003 2004 2005 2006 2007

0

500

1000

1500

2000

N
o.

 in
fe

ct
ed

influenza

2001 2002 2003 2004 2005 2006 2007

0

10

20

30

N
o.

 in
fe

ct
ed

meningococcus

influenza−driven
autoregressive
endemic

12

Alternatively, use the decompose argument to show the unit-specific contri-
butions to the fitted mean:

> plot(result, units = NULL, pch = 20, legend = 2,

+ decompose = TRUE, col = c(7, 4))

2001 2002 2003 2004 2005 2006 2007

0

500

1000

1500

2000

N
o.

 in
fe

ct
ed

influenza

2001 2002 2003 2004 2005 2006 2007

0

10

20

30

N
o.

 in
fe

ct
ed

meningococcus

meningococcus
influenza
endemic

Multivariate modelling

For disease counts observed in a large number of regions, say, (i.e. highly
multivariate time series of counts) the use of region-specific parameters to ac-
count for regional heterogeneity is no longer feasible as estimation and iden-
tifiability problems may occur. Here we illustrate two approaches: region-
specific random effects and region-specific covariates. For a more detailed
illustration of areal hhh4 models, see vignette("hhh4_spacetime"), which
uses data("measlesWeserEms") as an example.

Influenza, Southern Germany, 2001–2008

Paul and Held (2011) propose a random effects formulation to analyze the
weekly number of influenza cases in 140 districts of Southern Germany. For
example, consider a model with random intercepts in the endemic compo-

nent: ci
iid
∼ N (0, σ2

ν), i = 1, . . . , I. Such effects are specified as:

> f.end <- ~ -1 + ri(type = "iid", corr = "all")

The alternative type = "car" would assume spatially correlated random
effects; see Paul and Held (2011) for details. The argument corr = "all"

allows for correlation between region-specific random effects in different com-
ponents, e.g., random incidence levels ci in the endemic component and
random effects bi in the neighbor-driven component. The following call to
hhh4 fits such a random effects model with linear trend and S = 3 sea-
sonal terms in the endemic component, a fixed autoregressive parameter λ,
and first-order transmission weights wji = I(j ∼ i) – normalized such that

13

∑

iwji = 1 for all rows j – to the influenza data (cf. Paul and Held, 2011,
Table 3, model B2).

> # endemic component: iid random effects, linear trend, S=3 seasonal terms

> f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") +

+ I((t-208)/100),

+ S = 3, period = 52)

> # model specification

> model.B2 <- list(ar = list(f = ~ 1),

+ ne = list(f = ~ -1 + ri(type="iid", corr="all"),

+ weights = neighbourhood(fluBYBW),

+ normalize = TRUE), # all(rowSums(weights) == 1)

+ end = list(f = f.end, offset = population(fluBYBW)),

+ family = "NegBin1", verbose = TRUE,

+ optimizer = list(variance = list(method = "Nelder-Mead")))

> # default start values for random effects are sampled from a normal

> set.seed(42)

> # fit the model (takes about 35 seconds)

> result.B2 <- hhh4(fluBYBW, model.B2)

> summary(result.B2, maxEV = TRUE, idx2Exp = 1:3)

Call:

hhh4(stsObj = fluBYBW, control = model.B2)

Random effects:

Var Corr

ne.ri(iid) 0.9642

end.ri(iid) 0.5067 0.5652

Fixed effects:

Estimate Std. Error

exp(ar.1) 0.40986 0.01507

exp(ne.ri(iid)) 0.21927 0.02269

exp(end.I((t - 208)/100)) 1.77478 0.04199

end.sin(2 * pi * t/52) 2.17871 0.09808

end.cos(2 * pi * t/52) 2.33738 0.12134

end.sin(4 * pi * t/52) 0.45161 0.10427

end.cos(4 * pi * t/52) -0.37668 0.09404

end.sin(6 * pi * t/52) 0.30145 0.06452

end.cos(6 * pi * t/52) -0.24798 0.06294

end.ri(iid) 0.22344 0.10222

overdisp 1.08439 0.03392

Epidemic dominant eigenvalue: 0.71

Penalized log-likelihood: -18696.6

Marginal log-likelihood: -343.59

Number of units: 140

Number of time points: 415

14

Model choice based on information criteria such as AIC or BIC is well ex-
plored and understood for models that correspond to fixed-effects likeli-
hoods. However, in the presence of random effects their use can be problem-
atic. For model selection in time series models, the comparison of successive
one-step-ahead forecasts with the actually observed data provides a natural
alternative. In this context, Gneiting and Raftery (2007) recommend the
use of strictly proper scoring rules, such as the logarithmic score (logs) or
the ranked probability score (rps). See Czado et al. (2009) and Paul and
Held (2011) for further details.
One-step-ahead predictions for the last 2 years for model B2 could be ob-
tained as follows:

> pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52)

However, computing “rolling” one-step-ahead predictions from a random
effects model is computationally expensive, since the model needs to be
refitted at every time point. The above call would take approximately 45
minutes! So for the purpose of this vignette, we use the fitted model based
on the whole time series to compute all (fake) predictions during the last
two years:

> predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52,

+ type = "final")

The mean scores (logs and rps) corresponding to this set of predictions can
then be computed as follows:

> colMeans(scores(predfinal.B2, which = c("logs", "rps")))

logs rps

0.5430243 0.4165988

Using predictive model assessments, Meyer and Held (2014) found that
power-law transmission weights more appropriately reflect the spread of in-
fluenza than the previously used first-order weights (which actually allow
the epidemic to spread only to directly adjacent districts within one week).
These power-law weights can be constructed by the function W_powerlaw

and require the neighbourhood of the sts object to contain adjacency or-
ders. The latter can be easily obtained from the binary adjacency matrix
using the function nbOrder. See the corresponding help pages or Meyer
et al. (2017, Section 5) for illustrations.

Measles, German federal states, 2005–2007

As a last example, consider the number of measles cases in the 16 federal
states of Germany, in the years 2005–2007. There is considerable regional
variation in the incidence pattern which is most likely due to differences

15

in vaccination coverage. In the following, information about vaccination
coverage in each state, namely the log proportion of unvaccinated school
starters, is included as explanatory variable in a model for the bi-weekly
aggregated measles data. See Herzog et al. (2011) for further details.
Vaccination coverage levels for the year 2006 are available in the dataset
MMRcoverageDE. This dataset can be used to compute the 78 × 16 matrix
vac0 with adjusted proportions of unvaccinated school starters in each state
i used by Herzog et al. (2011). The first few entries of this matrix are shown
below:

> vac0[1:2, 1:6]

Baden-Wuerttemberg Bavaria Berlin Brandenburg Bremen Hamburg

[1,] 0.1000115 0.113261 0.099989 0.0605575 0.115963 0.0999685

[2,] 0.1000115 0.113261 0.099989 0.0605575 0.115963 0.0999685

We fit a Poisson model, which links the autoregressive parameter with this
covariate and contains S = 1 seasonal term in the endemic component (cf.
Herzog et al., 2011, Table 3, model A0):

> # endemic component: Intercept + sine/cosine terms

> f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26)

> # autoregressive component: Intercept + vaccination coverage information

> model.A0 <- list(ar = list(f = ~ 1 + logVac0),

+ end = list(f = f.end, offset = population(measles2w)),

+ data = list(t = epoch(measles2w), logVac0 = log(vac0)))

> # fit the model

> result.A0 <- hhh4(measles2w, model.A0)

> summary(result.A0, amplitudeShift = TRUE)

Call:

hhh4(stsObj = measles2w, control = model.A0)

Coefficients:

Estimate Std. Error

ar.1 3.00578 0.51652

ar.logVac0 1.38314 0.22642

end.1 1.77568 0.06031

end.A(2 * pi * t/26) 0.66021 0.08411

end.s(2 * pi * t/26) -0.09829 0.12184

Log-likelihood: -1778.06

AIC: 3566.12

BIC: 3591.71

Number of units: 16

Number of time points: 77

16

5 Conclusion

As part of the R package surveillance, the function hhh4 provides a flexible
tool for the modelling of multivariate time series of infectious disease counts.
The presented count data model is able to account for serial and spatio-
temporal correlation, as well as heterogeneity in incidence levels and disease
transmission.

References

Czado, C., Gneiting, T., and Held, L. (2009). Predictive model assessment for
count data. Biometrics, 65(4):1254–1261.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378.

Held, L., Höhle, M., and Hofmann, M. (2005). A statistical framework for the anal-
ysis of multivariate infectious disease surveillance counts. Statistical Modelling,
5(3):187–199.

Held, L. and Paul, M. (2012). Modeling seasonality in space-time infectious disease
surveillance data. Biometrical Journal, 54(6):824–843.

Herzog, S. A., Paul, M., and Held, L. (2011). Heterogeneity in vaccination coverage
explains the size and occurrence of measles epidemics in German surveillance
data. Epidemiology and Infection, 139(4):505–515.

Höhle, M. and Mazick, A. (2010). Aberration detection in R illustrated by Danish
mortality monitoring. In Kass-Hout, T. and Zhang, X., editors, Biosurveillance:

Methods and Case Studies, chapter 12, pages 215–238. Chapman & Hall/CRC.

Meyer, S. and Held, L. (2014). Power-law models for infectious disease spread.
Annals of Applied Statistics, 8(3):1612–1639.

Meyer, S., Held, L., and Höhle, M. (2017). Spatio-temporal analysis of epidemic
phenomena using the R package surveillance. Journal of Statistical Software,
77(11):1–55.

Paul, M. and Held, L. (2011). Predictive assessment of a non-linear random ef-
fects model for multivariate time series of infectious disease counts. Statistics in

Medicine, 30(10):1118–1136.

Paul, M., Held, L., and Toschke, A. M. (2008). Multivariate modelling of infectious
disease surveillance data. Statistics in Medicine, 27(29):6250–6267.

Robert Koch-Institut (2009). SurvStat@RKI. https://survstat.rki.de/. Ac-
cessed March 2009.

Salmon, M., Schumacher, D., and Höhle, M. (2016). Monitoring count time series
in R: Aberration detection in public health surveillance. Journal of Statistical

Software, 70(10):1–35.

17

https://survstat.rki.de/

	Introduction
	Surveillance data
	The sts data class
	Some example data sets

	Model formulation
	Function call and control settings
	Univariate modelling
	Bivariate modelling
	Multivariate modelling

	Conclusion

