Package 'survSNP'

January 25, 2023

Type Package Title Power Calculations for SNP Studies with Censored Outcomes Version 0.26 Date 2023-01-20 Author Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi Maintainer Alexander Sibley <dcibioinformatics@duke.edu> Description Conduct asymptotic and empirical power and sample size calculations for Single-Nucleotide Polymorphism (SNP) association studies with right censored time to event outcomes. **Depends** R (>= 3.0.0), survival (>= 2.36-9), Rcpp (>= 0.9.10), lattice (>= 0.20-0), foreach (>= 1.3.2), xtable (>= 1.7-0) SystemRequirements GNU GSL (>= 1.14) Suggests RColorBrewer, latticeExtra, knitr LinkingTo Rcpp License GPL-3 LazyLoad yes VignetteBuilder knitr NeedsCompilation yes **Repository** CRAN Date/Publication 2023-01-25 08:00:07 UTC

R topics documented:

survSNP-package	2
asypow	3
censbnd	4
hwe	5
sim.snp.expsurv.power	6
sim.snp.expsurv.sctest	8
surv.exp.gt.model	9
survSNP.power.table	10

12

Index

```
survSNP-package
```

Description

This package can be used to conduct asymptotic and empirical power and sample size calculations for Single-nucleotide Polymorphism (SNP) association studies with right censored time to event outcomes.

Details

Package:	survSNP
Type:	Package
Version:	0.26
Date:	2023-01-20
License:	GPL-3
LazyLoad:	yes

The functions sim.snp.expsurv.power and survSNP.power.table can be used to conduct power and sample size calculations. The package vignette serves as a tutorial for using this package. The technical details are provided in the reference cited below. It is highly recommended that the vignette along with this are reviewed before using this package. Currently, this package only supports additive risk models.

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

Examples

```
results[,c("n","erate","alpha","pow0")]
```

GHRs<-seq(1.05,1.5,by=0.05) ns<-c(100,500,700)

asypow

```
rafs<-c(0.1,0.3,0.5)
erates<-c(0.5,0.7,0.9)
res<-survSNP.power.table(GHRs,ns,rafs,erates,pilm=0.5,lm=1,model="additive",</pre>
                         test="additive",alpha=0.05)
# Create key for illustration
KEY=paste("q=",levels(factor(res$raf)),sep="")
KEY<-list(lines=list(col=1:length(KEY),lty=1:length(KEY)),</pre>
          text=list(labels=paste("q=",levels(factor(res$raf)),sep="")),
          column=3)
# Illustrate Power
print(xyplot(pow0~GHR|factor(erate)*factor(n),group=factor(raf),
             data=res,type="1",lty=KEY$lines$lty,col=KEY$lines$col,
             key=KEY,
             xlab="Genotype Hazard Ratio",ylab="Power"))
# Illustrate Power (restricted to n=100)
print(xyplot(pow0~GHR|factor(erate),group=factor(raf),
             data=subset(res,n==ns[1]),
             type="1",lty=KEY$lines$lty,col=KEY$lines$col,
             key=KEY,
             xlab="Genotype Hazard Ratio",ylab="Power",
             sub=paste("n=",ns[1],", alpha=",round(unique(res$alpha),2))))
```

Calculating the asymptotic power and variance

Description

This function calculates the asymptotic power and variance assuming that the survival distribution is a mixture of exponentials with rates and the censoring distribution is uniform on the interval (a,b).

Usage

```
asypow(n, theta, a, b, lambda0, q, p, alpha, z, exactvar)
```

n	Sample size
theta	Effect size (log genotype hazard ratio (GHR))
а	Censoring distribution parameter (assumed to be uniform on [a,b])
b	Censoring distribution parameter (assumed to be uniform on [a,b])
lambda0	Baseline exponential hazard rate
q	Relative risk allele frequency

censbnd

р	Relative genotype frequency
alpha	Nominal two-sided type I error rate
Z	Genotype scores (right now only additive scores AA=0,AB=1,BB=2 generate correct power)
exactvar	Indicator for using the exact variance formula

Details

This function is called by sim.snp.expsurv.power to calculate the asymptotic variance (exact and approximate) formulas. It is not intended to be called directly by the user. To conduct power calculations, use sim.snp.expsurv.power or the convenience wrapper function survSNP.power.table.

Value

power	Asymptotic power based on exact variance formula
power0	Asymptotic power based on approximate variance formula
v1	First term of asymptotic variance
v2	Second term of asymptotic variance
v12	Third term of the asymptotic variance (covariance)
vapprox	Approximate asymptotic variance formula (=v1)
exact	Exact asymptotic variance formula (=v1+v2+v12)
diff	Difference between variances (=v2+v12)
ratio	Ratio of variances (=v1/(v1+v2+v12))

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

censbnd

Calculate bound for censoring distribution.

Description

This function computes the bound

Usage

```
censbnd(lambda, p, crate, rootint = c(0.1, 1000))
```

hwe

Arguments

lambda	Baseline exponential hazard rate
р	Relative genotype frequency
crate	Desired censoring rate
rootint	Interval to be searched for the root

Details

The time to event distribution T is assumed to be a mixture of exponentials with parameter lambda0, lambda1 and lambda2 with mixing proportion p0,p1 and p2. Suppose that the censoring distribution is uniform on the interval [0, b]. This function calculates b for a desired censoring rate. It is not intended to be called directly by the user. To conduct power calculations, use sim.snp.expsurv.power or the convenience wrapper function survSNP.power.table.

Value

This function returns a list from the uniroot function. The root component of this list in the

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

Examples

censbnd(0.1, hwe(0.1), 0.9) \$root

hwe

Relative genotypic frequencies under HWE

Description

Compute relative genotypic frequencies for a given relative allelic frequency

Usage

hwe(raf)

Arguments

raf

Relative minor allele frequency for the B allele.

For a bi-allelic SNP with genotypes AA, AB and BB, with a relative allele frequency q for the B allele, this function returns the corresponding relative genotypic frequencies. It is not intended to be called directly by the user. To conduct power calculations, use sim.snp.expsurv.power or the convenience wrapper function survSNP.power.table.

Value

A vector of length three relative genotypic frequencies.

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

Examples

censbnd(0.1,hwe(0.1),0.9)

sim.snp.expsurv.power Asymptotic and Empirical Power

Description

This function calculates asymptotic and empirical power for SNP association studies

Usage

GHR	Genotype Hazard Ratio
В	Number of simulation replicates (set to 0 if no empirical calculations are desired)
n	Sample size
raf	Relative risk allele frequency
erate	Event Rate
pilm	Probability that the time-to-event is greater than lm
lm	Landmark time used for powering the study

model	True genetic risk model (choices are "additive", "recessive" or "dominant". For the asymptotic calculations only the "additive" should be used until further no- tice)
test	Hypothesized genetic risk model (choices are "additive", "recessive" or "domi- nant". For the asymptotic calculations only the "additive" should be used until further notice)
alpha	Nominal two-sided type I error rate
exactvar	Indicator for using the exact variance formula
interval	Interval to search for baseline hazard rate
rootint	Interval to search for censoring bound

This function calculates asymptotic and empirical power for SNP association studies

Value

This function returns a data.frame with the following columns

В	Number of simulation replicates
raf	Relative allelic frequency of the B allele
q0	Relative genotypic frequency for AA
q1	Relative genotypic frequency for AB
q2	Relative genotypic frequency for BB
lam0	Exponential hazard rate for P(T>t AA)
lam1	Exponential hazard rate for P(T>t AB)
lam2	Exponential hazard rate for P(T>t BB)
GHR	Genotype Hazard Ratio
pilm	Probability that the time to event in the population exceeds the landmark lm: $P(T>lm)$
lm	Landmark (see pilm above)
model	The true genetic risk model
test	The hypothesized genetic risk model
а	Parameter for the censoring distribution (uniform on [a,b])
b	Parameter for the censoring distribution (uniform on [a,b])
erate	Event rate
n	Sample size
рожВ	Empirical Power
ром	Asymptotic Power based on the exact variance formula
pow0	Asymptotic Power based on the approximate variance formula
v1	First term of the variance (v1+v2+v12)
v2	Second term of the variance (v1+v2+v12)
v12	Third term (covariance) of the variance (v1+v2+v12)

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

See Also

survSNP.power.table

Examples

```
sim.snp.expsurv.sctest
```

Simulation of Cox Score Statistic

Description

This function simulates the asymptotic *P*-value for the Cox score statistic under a specified genetic risk model

Usage

```
sim.snp.expsurv.sctest(n, gtprev, lam, a, b, ztest, diag = FALSE)
```

n	Sample size
gtprev	Relative genotypic frequency
lam	Exponential hazard rates for conditional time to event survival functions
а	Lower bound for the uniform censoring bound
b	Upper bound for the uniform censoring bound
ztest	Assumed genetic model
diag	Set to TRUE if print out of diagnostics is desired

This function simulates the genotypes 0, 1 or 2 from relative genotypic frequencies. Then conditional on genotype, it simulates the time to event from an exponential distribution with parameter lambdag. The censoring time is drawn from a uniform law on the interval [a, b]. It is not intended to be called directly by the user. To conduct power calculations, use sim.snp.expsurv.power or the convenience wrapper function survSNP.power.table.

Value

A vector of length 2 containing the observed event rate and the asymptotic *P*-value for the Cox score test

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

surv.exp.gt.model Exponential Hazard Rates for a Genetic Risk Model

Description

This function calculates the exponential hazard rates for the conditional survival functions

Usage

```
surv.exp.gt.model(pilm, lm, gtprev, GRR, zmodel, interval)
```

Arguments

pilm	Probability that the time-to-event is greater than lm
lm	Landmark time used for powering the study
gtprev	Relative genotypic frequency
GRR	Genotype Hazard Ratio
zmodel	Genetic Risk Model (choices are "additive", "recessive" or "dominant")
interval	Interval to search for baseline hazard rate

Details

Determines the time to event distributions in the three component mixture model discussed in the reference below. It is not intended to be called directly by the user. To conduct power calculations, use sim.snp.expsurv.power or the convenience wrapper function survSNP.power.table.

Value

A vector of length three containing the exponential hazard rates

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

survSNP.power.table Table for Asymptotic and Empirical Power

Description

This function produces a table with the resulting empirical and asymptotic power over a given range of Genotype Hazard Ratios, relative allelic frequencies, sample sizes, and event rates.

Usage

GHRs	A vector of Genotype Hazard Ratios
ns	A vector of sample sizes
rafs	A vector of relative allelic frequencies (for the risk allele)
erates	A vector of event rates
pilm	Probability that the time-to-event is greater than lm
lm	Landmark time used for powering the study
model	True genetic risk model (choices are "additive", "recessive" or "dominant". For the asymptotic calculations only the "additive" should be used until further no- tice)
test	Hypothesized genetic risk model (choices are "additive", "recessive" or "domi- nant". For the asymptotic calculations only the "additive" should be used until further notice)
alpha	Nominal two-sided type I error rate
exactvar	Indicator for using the exact variance formula
В	Number of simulation replicates (set to 0 if no empirical calculations are desired)

This version only supports additive models.

Value

See output of sim.snp.expsurv.power.

Author(s)

Kouros Owzar, Zhiguo Li, Nancy Cox, Sin-Ho Jung and Chanhee Yi

References

Kouros Owzar, Zhiguo Li, Nancy Cox and Sin-Ho Jung. Power and Sample Size Calculations for SNP Association Studies with Censored Time-to-Event Outcomes. https://onlinelibrary.wiley.com/doi/full/10.1002/gepi.21645

Examples

```
GRRs<-seq(1.5,2,by=0.25)
ns<-c(100,500,1000)
rafs<-c(0.3,0.5,0.7)
erates=c(0.5,0.7,0.9)
res<-survSNP.power.table(GRRs,ns,rafs,erates,pilm=0.5,lm=1,model="additive",
                         test="additive",alpha=0.05)
# Create key for illustration
KEY=paste("q=",levels(factor(res$raf)),sep="")
KEY<-list(lines=list(col=1:length(KEY),lty=1:length(KEY)),</pre>
          text=list(labels=paste("q=",levels(factor(res$raf)),sep="")),
          column=3)
# Illustrate Power
print(xyplot(pow0~GHR|factor(erate)*factor(n),group=factor(raf),
             data=res,type="1",lty=KEY$lines$lty,col=KEY$lines$col,
             key=KEY,
             xlab="Genotype Hazard Ratio",ylab="Power"))
# Illustrate Power (restricted to n=100)
print(xyplot(pow0~GHR|factor(erate),group=factor(raf),
             data=subset(res,n==ns[1]),
             type="1",lty=KEY$lines$lty,col=KEY$lines$col,
             key=KEY,
             xlab="Genotype Hazard Ratio",ylab="Power",
             sub=paste("n=",ns[1],", alpha=",round(unique(res$alpha),2))))
```

Index

asypow, 3

censbnd, 4

hwe, 5

sim.snp.expsurv.power, 2, 4-6, 6, 9, 11
sim.snp.expsurv.sctest, 8
surv.exp.gt.model, 9
survSNP (survSNP-package), 2
survSNP-package, 2
survSNP.power.table, 2, 4-6, 8, 9, 10