
Package ‘stylo’
April 4, 2024

Type Package

Title Stylometric Multivariate Analyses

Version 0.7.5

Date 2024-04-03

Author Maciej Eder [aut, cre],
Jan Rybicki [aut],
Mike Kestemont [aut],
Steffen Pielstroem [aut]

Maintainer Maciej Eder <maciejeder@gmail.com>

URL https://github.com/computationalstylistics/stylo

Depends R (>= 3.0)

Imports tcltk, tcltk2, ape, pamr, e1071, class, lattice, tsne

Suggests stringi, networkD3, readr

Description Supervised and unsupervised multivariate methods, supplemented by GUI and some visu-
alizations, to perform various analyses in the field of computational stylistics, authorship attribu-
tion, etc. For further reference, see Eder et al. (2016), <https:
//journal.r-project.org/archive/2016/RJ-2016-007/index.html>. You are also en-
couraged to visit the Computational Stylistics Group's web-
site <https://computationalstylistics.github.io/>, where a reasonable amount of infor-
mation about the package and related projects are provided.

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-03 23:50:02 UTC

R topics documented:
assign.plot.colors . 3
change.encoding . 4
check.encoding . 5
classify . 6

1

https://github.com/computationalstylistics/stylo
https://journal.r-project.org/archive/2016/RJ-2016-007/index.html
https://journal.r-project.org/archive/2016/RJ-2016-007/index.html
https://computationalstylistics.github.io/

2 R topics documented:

crossv . 9
define.plot.area . 12
delete.markup . 13
delete.stop.words . 14
dist.cosine . 15
dist.delta . 17
dist.entropy . 18
dist.minmax . 19
dist.simple . 20
dist.wurzburg . 21
galbraith . 23
gui.classify . 24
gui.oppose . 25
gui.stylo . 26
imposters . 27
imposters.optimize . 29
lee . 31
load.corpus . 32
load.corpus.and.parse . 33
make.frequency.list . 35
make.ngrams . 36
make.samples . 38
make.table.of.frequencies . 40
novels . 41
oppose . 42
parse.corpus . 44
parse.pos.tags . 46
perform.culling . 47
perform.delta . 49
perform.impostors . 51
perform.knn . 52
perform.naivebayes . 54
perform.nsc . 55
perform.svm . 57
performance.measures . 58
plot.sample.size . 60
rolling.classify . 62
rolling.delta . 65
samplesize.penalize . 66
stylo . 69
stylo.default.settings . 71
stylo.network . 73
stylo.pronouns . 74
txt.to.features . 75
txt.to.words . 76
txt.to.words.ext . 78
zeta.chisquare . 79
zeta.craig . 80

assign.plot.colors 3

zeta.eder . 81

Index 83

assign.plot.colors Assign colors to samples

Description

Function that assigns unique colors to each class represented in a corpus: used for graph auto-
coloring.

Usage

assign.plot.colors(labels, col = "colors", opacity = 1)

Arguments

labels a vector containing the names of the samples in a corpus; it is obligatory to use
an underscore as a class delimiter. Consider the following examples: c("Sterne_Tristram",
"Sterne_Sentimental", "Fielding_Tom", ...), where the classes are the authors’
names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day", "M_Conrad_Lord_Jim",
...), where the classes are M(ale) and F(emale) according to authors’ gender.
Note that only the part up to the first underscore in the sample’s name will be
included in the class label.

col an optional argument specifying the color palette to be used: "colors" for full-
color output (default), "greyscale" for greyscale (useful for preparing publish-
able pictures), and "black", if no colors should be used.

opacity optional argument to set transparency/opacity of the colors. 0 means full trans-
parency, 1 means full opacity (default).

Details

Function for graph auto-coloring; depending on the user’s choice it assigns either colors or greyscale
tones to matching strings of characters which stand for class identifiers. These metadata will typ-
ically be encoded in the texts’ filenames. (As class delimiter, the underscore character should be
used). Alternatively, all labels can be plotted in black.

Value

The function returns a vector of colors, using their conventional names (e.g. red, maroon4, mediumturquoise,
gold4, deepskyblue, ...), or numeric values if the greyscale option was chosen (e.g. #000000,
#000000, #595959, #B2B2B2, ...).

Author(s)

Maciej Eder

4 change.encoding

Examples

in this example, three discrete classes are specified,
for Tacitus, Caesar, and Livius
sample.names = c("Tacitus_Annales","Tacitus_Germania","Tacitus_Histories",

"Caesar_Civil_wars","Caesar_Gallic_wars",
"Livius_Ab_Urbe_Condita")

assign.plot.colors(sample.names)

as above, but using greyscale:
assign.plot.colors(sample.names, col = "greyscale")

change.encoding Change character encoding

Description

This function is a wrapper around iconv() that allows for converting character encoding of multiple
text files in a corpus folder, preferably into UTF-8.

Usage

change.encoding(corpus.dir = "corpus/", from, to = "utf-8",
keep.original = TRUE, output.dir = NULL)

Arguments

corpus.dir path to the folder containing the corpus.

from original character encoding. See the Details section (below) for some hints on
how to get the original encoding.

to character encoding to convert into.

keep.original shall the original files be stored?

output.dir folder for the reencoded files.

Details

Stylo works on UTF-8-enconded texts by default. This function allows you to convert your corpus,
if not yet encoded in UTF-8. To check the current encoding of text files in your corpus folder, you
can use the function check.encoding().

Value

The function saves reencoded text files.

Author(s)

Steffen Pielström

check.encoding 5

See Also

check.encoding

Examples

Not run:
To replace the old versions with the newly encoded, but retain them
in another folder:
change.encoding = function(corpus.dir = "~/corpora/example/",

from = "ASCII", to = "utf-8")

To place the new version in another folder called "utf8/":
change.encoding = function(corpus.dir = "~/corpora/example/",

from = "ASCII",
to = "utf-8",
output.dir = "utf8/")

To simply replace the old version:
change.encoding = function(corpus.dir = "~/corpora/example/",

from = "ASCII",
to = "utf-8",
keep.original = FALSE)

End(Not run)

check.encoding Check character encoding in corpus folder

Description

Using non-ASCII characters is never trivial, but sometimes unavoidable. Specifically, most of the
world’s languages use non-Latin alphabets or diacritics added to the standard Latin script. The
default character encoding in stylo is UTF-8, deviating from it can cause problems. This function
allows users to check the character encoding in a corpus. A summary is returned to the termial
and a detailed list reporting the most probable encodings of all the text files in the folder can be
written to a csv file. The function is basically a wrapper around the function guess_encoding()
from the ’readr’ package by Wickham et al. (2017). To change the encoding to UTF-8, try the
change.encoding() function.

Usage

check.encoding(corpus.dir = "corpus/", output.file = NULL)

Arguments

corpus.dir path to the folder containing the corpus.

output.file path to a csv file that reports the most probable encoding for each text file in the
corpus.

6 classify

Details

If no additional argument is passed, then the function tries to check the text files in the default
subdirectory corpus.

Value

The function returns a summary message and writes detailed results into a csv file.

Author(s)

Steffen Pielström

References

Wickham , H., Hester, J., Francois, R., Jylanki, J., and Jørgensen, M. (2017). Package: ’readr’.
<https://cran.r-project.org/web/packages/readr/readr.pdf>.

See Also

change.encoding

Examples

Not run:
standard usage from stylo working directory with a 'corpus' subfolder:
check.encoding()

specifying another folder:
check.encoding("~/corpora/example1/")

specifying an output file:
check.encoding(output.file = "~/experiments/charencoding/example1.csv")

End(Not run)

classify Machine-learning supervised classification

Description

Function that performs a number of machine-learning methods for classification used in compu-
tational stylistics: Delta (Burrows, 2002), k-Nearest Neighbors, Support Vector Machines, Naive
Bayes, and Nearest Shrunken Centroids (Jockers and Witten, 2010). Most of the options are derived
from the stylo function.

classify 7

Usage

classify(gui = TRUE, training.frequencies = NULL, test.frequencies = NULL,
training.corpus = NULL, test.corpus = NULL, features = NULL,
path = NULL, training.corpus.dir = "primary_set",
test.corpus.dir = "secondary_set", ...)

Arguments

gui an optional argument; if switched on, a simple yet effective graphical user inter-
face (GUI) will appear. Default value is TRUE.

training.frequencies

using this optional argument, one can load a custom table containing frequen-
cies/counts for several variables, e.g. most frequent words, across a number of
text samples (for the training set). It can be either an R object (matrix or data
frame), or a filename containing tab-delimited data. If you use an R object,
make sure that the rows contain samples, and the columns – variables (words).
If you use an external file, the variables should go vertically (i.e. in rows): this
is because files containing vertically-oriented tables are far more flexible and
easily editable using, say, Excel or any text editor. To flip your table horizon-
tally/vertically use the generic function t().

test.frequencies

using this optional argument, one can load a custom table containing frequen-
cies/counts for the test set. Further details: immediately above.

training.corpus

another option is to pass a pre-processed corpus as an argument (here: the train-
ing set). It is assumed that this object is a list, each element of which is a vector
containing one tokenized sample. The example shown below will give you some
hints how to prepare such a corpus. Also, refer to help(load.corpus.and.parse)

test.corpus if training.corpus is used, then you should also prepare a similar R object
containing the test set.

features usually, a number of the most frequent features (words, word n-grams, charac-
ter n-grams) are extracted automatically from the corpus, and they are used as
variables for further analysis. However, in some cases it makes sense to use a
set of tailored features, e.g. the words that are associated with emotions or, say,
a specific subset of function words. This optional argument allows to pass ei-
ther a filename containing your custom list of features, or a vector (R object) of
features to be assessed.

path if not specified, the current directory will be used for input/output procedures
(reading files, outputting the results).

training.corpus.dir

the subdirectory (within the current working directory) that contains the training
set, or the collection of texts used to exemplify the differences between particu-
lar classes (e.g. authors or genres). The discriminating features extracted from
this training material will be used during the testing procedure (see below). If
not specified, the default subdirectory primary_set will be used.

8 classify

test.corpus.dir

the subdirectory (within the working directory) that contains the test set, or the
collection of texts that are used to test the effectiveness of the discriminative
features extracted from the training set. In the case of authorship attribution
e.g., this set might contain works of non-disputed authorship, in order to check
whether a classification procedure attribute the tets texts to their correct author.
This set contains ‘new’ or ‘unseen’ data (e.g. anonymous samples or samples
of disputed authorship in the case of authorship studies). If not specified, the
default subdirectory secondary_set will be used.

... any variable as produced by stylo.default.settings() can be set here to
overwrite the default values.

Details

There are numerous additional options that are passed to this function; so far, they are all loaded
when stylo.default.settings() is executed (it will be invoked automatically from inside this
function); the user can set/change them in the GUI.

Value

The function returns an object of the class stylo.results: a list of variables, including tables
of word frequencies, vector of features used, a distance table and some more stuff. Additionally,
depending on which options have been chosen, the function produces a number of files used to save
the results, features assessed, generated tables of distances, etc.

Author(s)

Maciej Eder, Mike Kestemont

References

Eder, M., Rybicki, J. and Kestemont, M. (2016). Stylometry with R: a package for computational
text analysis. "R Journal", 8(1): 107-21.

Burrows, J. F. (2002). "Delta": a measure of stylistic difference and a guide to likely authorship.
"Literary and Linguistic Computing", 17(3): 267-87.

Jockers, M. L. and Witten, D. M. (2010). A comparative study of machine learning methods for
authorship attribution. "Literary and Linguistic Computing", 25(2): 215-23.

Argamon, S. (2008). Interpreting Burrows’s Delta: geometric and probabilistic foundations. "Lit-
erary and Linguistic Computing", 23(2): 131-47.

See Also

stylo, rolling.delta, oppose

Examples

Not run:
standard usage (it builds a corpus from a collection of text files):
classify()

crossv 9

loading word frequencies from two tab-delimited files:
classify(training.frequencies = "table_with_training_frequencies.txt",

test.frequencies = "table_with_test_frequencies.txt")

using two existing sub-corpora (a list containing tokenized texts):
txt1 = c("now", "i", "am", "alone", "o", "what", "a", "slave", "am", "i")
txt2 = c("what", "do", "you", "read", "my", "lord")

setTRAIN = list(txt1, txt2)
names(setTRAIN) = c("hamlet_sample1","polonius_sample1")

txt4 = c("to", "be", "or", "not", "to", "be")
txt5 = c("though", "this", "be", "madness", "yet", "there", "is", "method")
txt6 = c("the", "rest", "is", "silence")

setTEST = list(txt4, txt5, txt6)
names(setTEST) = c("hamlet_sample2", "polonius_sample2", "uncertain_1")

classify(training.corpus = setTRAIN, test.corpus = setTEST)

using a custom set of features (words, n-grams) to be analyzed:
my.selection.of.function.words = c("the", "and", "of", "in", "if", "into",

"within", "on", "upon", "since")
classify(features = my.selection.of.function.words)

loading a custom set of features (words, n-grams) from a file:
classify(features = "wordlist.txt")

batch mode, custom name of corpus directories:
my.test = classify(gui = FALSE, training.corpus.dir = "TrainingSet",

test.corpus.dir = "TestSet")
summary(my.test)

batch mode, character 3-grams requested:
classify(gui = FALSE, analyzed.features = "c", ngram.size = 3)

End(Not run)

crossv Function to Perform Cross-Validation

Description

Function for performing a classification iteratively, while in each iteration the composition of the
train set and the test set is re-shuffled. There are a few cross-validation flavors available; the current
function supports (i) stratified cross-validation, which means that in N iterations, the train/test sets

10 crossv

are assigned randomly, but the exact number of texts representing the original classes in the train
set are keept unchanged; (ii) leave-one-out cross-validation, which moves one sample from the train
set to the test set, performs a classification, and then repeates the same procedure untill the available
samples are exhausted.

Usage

crossv(training.set, test.set = NULL,
cv.mode = "leaveoneout", cv.folds = 10,
classes.training.set = NULL, classes.test.set = NULL,
classification.method = "delta", ...)

Arguments

training.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of text samples (for the training set). Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

test.set a table containing frequencies/counts for the training set. The variables used
(i.e. columns) must match the columns of the training set. If the leave-one-out
cross-validation flavor was chosen, then the test set is not obligatory: it will be
created automatically. If the test set is present, however, it will be used as a
"new" dataset for predicting its classes. It might seem a bit misleading – new
versions will distinguish more precisely the (i) train set, (ii) validation set and
(iii) test set in the strict sense.

cv.mode choose "leaveoneout" to perform leave-one-out cross-validation; choose "strat-
ified" to perform random selection of train samples in N iterations (see the
cv.folds parameter below) out of the all the available samples, provided that
the very number of samples representing the classes in the original train set is
keept in each iterations.

cv.folds the number of train/test set swaps, or cross-validation folds. A standard solution
in the exact sciences seems to be a 10-fold cross-validation. It has been shown,
however (Eder and Rybicki 2013) that in text analysis setups, this might be not
enough. This option is immaterial with leave-one-out cross-validation, since the
number of folds is always as high as the number of train samples.

classes.training.set

a vector containing class identifiers for the training set. When missing, the row
names of the training set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.test.set

a vector containing class identifiers for the test set. When missing, the row
names of the test set table will be used (see above).

crossv 11

classification.method

the function invokes one of the classification methods provided by the package
stylo. Choose one of the following: "delta", "svm", "knn", "nsc", "naivebayes".

... further parameters can be passed; they might be needed by particular classifica-
tion methods. See perform.delta, perform.svm, perform.nsc, perform.knn,
perform.naivebayes for further results.

Value

The function returns a vector of accuracy scores across specified cross-validation folds. The at-
tributes of the vector contain a list of misattributed samples (attr "misattributions") and a list of
confusion matrices for particular cv folds (attr "confusion_matrix").

Author(s)

Maciej Eder

See Also

perform.delta, perform.svm, perform.nsc, perform.knn, perform.naivebayes

Examples

Not run:
standard usage:
crossv(training.set, test.set)

End(Not run)

text categorization

specify a table with frequencies
data(lee)
perform a leave-one-out classification using kNN
results = crossv(lee, classification.method = "knn")
inspect final results
performance.measures(results)

stratified cross-validation

specity a table with frequencies
data(galbraith)
freqs = galbraith
specify class labels:
training.texts = c("coben_breaker", "coben_dropshot", "lewis_battle",

"lewis_caspian", "rowling_casual", "rowling_chamber",
"tolkien_lord1", "tolkien_lord2")

train.classes = match(training.texts,rownames(freqs))

select the training samples:

12 define.plot.area

training.set = freqs[train.classes,]
select remaining rows as test samples:
test.set = freqs[-train.classes,]

crossv(training.set, test.set, cv.mode = "stratified")

classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))

crossv(train, test, cv.mode = "stratified", cv.folds = 10,
train.classes, test.classes)

define.plot.area Define area for scatterplots

Description

Function that determines the size of a scatterplot, taking into consideration additional margin to fit
longer labels appearing on a graph (if applicable), optional margin defined by user, and some space
to offset scatterplot labels from points (if applicable).

Usage

define.plot.area(x.coord, y.coord, xymargins = 2, v.offset = 0)

Arguments

x.coord a vector of x coordinates, optionally with names.

y.coord a vector of y coordinates.

xymargins additional margins (expressed as a % of the actual plot area).

v.offset label offset (expressed as a % of the actual plot area).

Details

Function that finds out the coordinates of scatterplots: it computes the extreme x and y values, adds
margins, and optionally extends the top margin if a plot uses sample labels. Automatic margin
extension will only take place if the x coordinates are supplemented by their names (i.e. labels of
points to be shown on scatterplot).

delete.markup 13

Author(s)

Maciej Eder

See Also

assign.plot.colors, stylo

Examples

to determine the plotting area for 4 points:
define.plot.area(c(1,2,3,4), c(-0.001,0.11,-0.023,0.09))

to determine plot coordinates, taking into consideration
the objects' names
my.points = cbind(c(1,2,3,4),c(-0.001,0.11,-0.023,0.09))
rownames(my.points) = c("first","second","third","very_long_fourth")
define.plot.area(my.points[,1], my.points[,2])

delete.markup Delete HTML or XML tags

Description

Function for removing markup tags (e.g. HTML, XML) from a string of characters. All XML
markup is assumed to be compliant with the TEI guidelines (https://tei-c.org/).

Usage

delete.markup(input.text, markup.type = "plain")

Arguments

input.text any string of characters (e.g. vector) containing markup tags that have to be
deleted.

markup.type any of the following values: plain (nothing will happen), html (all <tags>
will be deleted as well as HTML header), xml (TEI header, all strings between
<note> </note> tags, and all the tags will be deleted), xml.drama (as above;
but, additionally, speaker’s names will be deleted, or strings within each the
<speaker> </speaker> tags), xml.notitles (as above; but, additionally, all the
chapter/section (sub)titles will be deleted, or strings within each the <head>
</head> tags).

Details

This function needs to be used carefully: while a document formatted in compliance with the TEI
guidelines will be parsed flawlessly, the cleaning up of an HTML page harvested randomly on the
web might cause some side effects, e.g. the footers, disclaimers, etc. will not be removed.

https://tei-c.org/

14 delete.stop.words

Author(s)

Maciej Eder, Mike Kestemont

See Also

load.corpus, txt.to.words, txt.to.words.ext, txt.to.features

Examples

delete.markup("Gallia est omnis <i>divisa</i> in partes tres",
markup.type = "html")

delete.markup("Gallia<note>Gallia: Gaul.</note> est omnis
<emph>divisa</emph> in partes tres", markup.type = "xml")

delete.markup("<speaker>Hamlet</speaker>Words, words, words...",
markup.type = "xml.drama")

delete.stop.words Exclude stop words (e.g. pronouns, particles, etc.) from a dataset

Description

Function for removing custom words from a dataset: it can be the so-called stop words (frequent
words without much meaning), or personal pronouns, or other custom elements of a dataset. It can
be used to cull certain words from a vector containing tokenized text (particular words as elements
of the vector), or to exclude unwanted columns (variables) from a table with frequencies. See
examples below.

Usage

delete.stop.words(input.data, stop.words = NULL)

Arguments

input.data either a vector containing words (actually, any countable features), or a data
matrix/frame. The former in case of culling stop words from running text, the
latter for culling them from tables of frequencies (then particular columns are
excluded). The table should be oriented to contain samples in rows, variables in
columns, and variables’ names should be accessible via colnames(input.table).

stop.words a vector of words to be excluded.

Details

This function might be usefull to perform culling, or automatic deletion of the words that are too
characteristic for particular texts. See help(culling) for further details.

dist.cosine 15

Author(s)

Maciej Eder

See Also

stylo.pronouns, perform.culling

Examples

(i) excluding stop words from a vector
my.text = c("omnis", "homines", "qui", "sese", "student", "praestare",

"ceteris", "animalibus", "summa", "ope", "niti", "decet", "ne",
"vitam", "silentio", "transeant", "veluti", "pecora", "quae",
"natura", "prona", "atque", "ventri", "oboedientia", "finxit")

delete.stop.words(my.text, stop.words = c("qui", "quae", "ne", "atque"))

(ii) excluding stop words from tabular data
#
assume there is a matrix containing some frequencies
(be aware that these counts are fictional):
t1 = c(2, 1, 0, 8, 9, 5, 6, 3, 4, 7)
t2 = c(7, 0, 5, 9, 1, 8, 6, 4, 2, 3)
t3 = c(5, 9, 2, 1, 6, 7, 8, 0, 3, 4)
t4 = c(2, 8, 6, 3, 0, 5, 9, 4, 7, 1)
my.data.table = rbind(t1, t2, t3, t4)

names of the samples:
rownames(my.data.table) = c("text1", "text2", "text3", "text4")
names of the variables (e.g. words):
colnames(my.data.table) = c("the", "of", "in", "she", "me", "you",

"them", "if", "they", "he")
the table looks as follows
print(my.data.table)

now, one might want to get rid of the words "the", "of", "if":
delete.stop.words(my.data.table, stop.words = c("the", "of", "if"))

also, some pre-defined lists of pronouns can be applied:
delete.stop.words(my.data.table,

stop.words = stylo.pronouns(corpus.lang = "English"))

dist.cosine Cosine Distance

16 dist.cosine

Description

Function for computing a cosine similarity of a matrix of values, e.g. a table of word frequencies.
Recent findings (Jannidis et al. 2015) show that this distance outperforms other nearest neighbor
approaches in the domain of authorship attribution.

Usage

dist.cosine(x)

Arguments

x a matrix or data table containing at least 2 rows and 2 cols, the samples (texts)
to be compared in rows, the variables in columns.

Value

The function returns an object of the class dist, containing distances between each pair of samples.
To convert it to a square matrix instead, use the generic function as.dist.

Author(s)

Maciej Eder

References

Evert, S., Proisl, T., Jannidis, F., Reger, I., Pielstrom, S., Schoch, C. and Vitt, T. (2017). Understand-
ing and explaining Delta measures for authorship attribution. Digital Scholarship in the Humanities,
32(suppl. 2): 4-16.

See Also

stylo, classify, dist, as.dist

Examples

first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,

Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")

the table of frequencies looks as follows
print(dataset)

then, applying a distance, in two flavors
dist.cosine(dataset)
as.matrix(dist.cosine(dataset))

dist.delta 17

dist.delta Delta Distance

Description

Function for computing Delta similarity measure of a matrix of values, e.g. a table of word fre-
quencies. Apart from the Classic Delta, two other flavors of the measure are supported: Argamon’s
Delta and Eder’s Delta. There are also non-Delta distant measures available: see e.g. dist.cosine
and dist.simple.

Usage

dist.delta(x, scale = TRUE)

dist.argamon(x, scale = TRUE)

dist.eder(x, scale = TRUE)

Arguments

x a matrix or data table containing at least 2 rows and 2 cols, the samples (texts)
to be compared in rows, the variables in columns.

scale the Delta measure relies on scaled frequencies – if you have your matrix scaled
already (i.e. converted to z-scores), switch this option off. Default: TRUE.

Value

The function returns an object of the class dist, containing distances between each pair of samples.
To convert it to a square matrix instead, use the generic function as.dist.

Author(s)

Maciej Eder

References

Argamon, S. (2008). Interpreting Burrows’s Delta: geometric and probabilistic foundations. "Lit-
erary and Linguistic Computing", 23(2): 131-147.

Burrows, J. F. (2002). "Delta": a measure of stylistic difference and a guide to likely authorship.
"Literary and Linguistic Computing", 17(3): 267-287.

Eder, M. (2015). Taking stylometry to the limits: benchmark study on 5,281 texts from Patrologia
Latina. In: "Digital Humanities 2015: Conference Abstracts".

Eder, M. (2022). Boosting word frequencies in authorship attribution. In: "CHR 2022 Com-
putational Humanities Research 2022", pp. 387-397. https://ceur-ws.org/Vol-3290/long_
paper5362.pdf

https://ceur-ws.org/Vol-3290/long_paper5362.pdf
https://ceur-ws.org/Vol-3290/long_paper5362.pdf

18 dist.entropy

Evert, S., Proisl, T., Jannidis, F., Reger, I., Pielstrom, S., Schoch, C. and Vitt, T. (2017). Understand-
ing and explaining Delta measures for authorship attribution. Digital Scholarship in the Humanities,
32(suppl. 2): 4-16.

See Also

stylo, classify, dist.cosine, as.dist

Examples

first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,

Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")

the table of frequencies looks as follows
print(dataset)

then, applying a distance
dist.delta(dataset)
dist.argamon(dataset)
dist.eder(dataset)

converting to a regular matrix
as.matrix(dist.delta(dataset))

dist.entropy Entropy Distance

Description

Function for computing the entropy distance measure between two (or more) vectors.

Usage

dist.entropy(x)

Arguments

x a matrix or data table containing at least 2 rows and 2 cols, the samples (texts)
to be compared in rows, the variables in columns.

dist.minmax 19

Value

The function returns an object of the class dist, containing distances between each pair of samples.
To convert it to a square matrix instead, use the generic function as.dist.

Author(s)

Maciej Eder

References

Juola, P. and Baayen, H. (2005). A controlled-corpus experiment in authorship attribution by cross-
entropy. Literary and Linguistic Computing, 20(1): 59-67.

See Also

stylo, classify, dist, as.dist, dist.cosine

Examples

first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,

Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")

the table of frequencies looks as follows
print(dataset)

then, applying a distance, in two flavors
dist.entropy(dataset)
as.matrix(dist.entropy(dataset))

dist.minmax Min-Max Distance (aka Ruzicka Distance)

Description

Function for computing a similarity measure bewteen two (or more) vectors. Some scholars (Keste-
mont et at., 2016) claim that it works well when applied to authorship attribution problems.

Usage

dist.minmax(x)

20 dist.simple

Arguments

x a matrix or data table containing at least 2 rows and 2 cols, the samples (texts)
to be compared in rows, the variables in columns.

Value

The function returns an object of the class dist, containing distances between each pair of samples.
To convert it to a square matrix instead, use the generic function as.dist.

Author(s)

Maciej Eder

References

Kestemont, M., Stover, J., Koppel, M., Karsdorp, F. and Daelemans, W. (2016). Authenticating the
writings of Julius Caesar. Expert Systems With Applications, 63: 86-96.

See Also

stylo, classify, dist, as.dist, dist.cosine

Examples

first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,

Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")

the table of frequencies looks as follows
print(dataset)

then, applying a distance, in two flavors
dist.minmax(dataset)
as.matrix(dist.minmax(dataset))

dist.simple Cosine Distance

Description

Function for computing Eder’s Simple distance of a matrix of values, e.g. a table of word frequen-
cies. This is done by normalizing the input dataset by a square root function, and then applying
Manhattan distance.

dist.wurzburg 21

Usage

dist.simple(x)

Arguments

x a matrix or data table containing at least 2 rows and 2 cols, the samples (texts)
to be compared in rows, the variables in columns.

Value

The function returns an object of the class dist, containing distances between each pair of samples.
To convert it to a square matrix instead, use the generic function as.dist.

Author(s)

Maciej Eder

See Also

stylo, classify, dist.delta, as.dist

Examples

first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,

Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")

the table of frequencies looks as follows
print(dataset)

then, applying a distance, in two flavors
dist.simple(dataset)
as.matrix(dist.simple(dataset))

dist.wurzburg Cosine Delta Distance (aka Wurzburg Distance)

Description

Function for computing a cosine similarity of a scaled (z-scored) matrix of values, e.g. a table
of word frequencies. Recent findings by the briliant guys from Wurzburg (Jannidis et al. 2015)
show that this distance outperforms other nearest neighbor approaches in the domain of authorship
attribution.

22 dist.wurzburg

Usage

dist.wurzburg(x)

Arguments

x a matrix or data table containing at least 2 rows and 2 cols, the samples (texts)
to be compared in rows, the variables in columns.

Value

The function returns an object of the class dist, containing distances between each pair of samples.
To convert it to a square matrix instead, use the generic function as.dist.

Author(s)

Maciej Eder

References

Evert, S., Proisl, T., Jannidis, F., Reger, I., Pielstrom, S., Schoch, C. and Vitt, T. (2017). Understand-
ing and explaining Delta measures for authorship attribution. Digital Scholarship in the Humanities,
32(suppl. 2): 4-16.

See Also

stylo, classify, dist, as.dist, dist.cosine

Examples

first, preparing a table of word frequencies
Iuvenalis_1 = c(3.939, 0.635, 1.143, 0.762, 0.423)
Iuvenalis_2 = c(3.733, 0.822, 1.066, 0.933, 0.511)
Tibullus_1 = c(2.835, 1.302, 0.804, 0.862, 0.881)
Tibullus_2 = c(2.911, 0.436, 0.400, 0.946, 0.618)
Tibullus_3 = c(1.893, 1.082, 0.991, 0.879, 1.487)
dataset = rbind(Iuvenalis_1, Iuvenalis_2, Tibullus_1, Tibullus_2,

Tibullus_3)
colnames(dataset) = c("et", "non", "in", "est", "nec")

the table of frequencies looks as follows
print(dataset)

then, applying a distance, in two flavors
dist.wurzburg(dataset)
as.matrix(dist.wurzburg(dataset))

galbraith 23

galbraith Table of word frequencies (Galbraith, Rowling, Coben, Tolkien, Lewis)

Description

This dataset contains a table (matrix) of relative frequencies of 3000 most frequent words retrieved
from 26 books by 5 authors, including the novel "Cuckoo’s Calling" by a mysterious Robert Gal-
braith that turned out to be J.K. Rowling. The remaining authors are as follows: Harlan Coben
("Deal Breaker", "Drop Shot", "Fade Away", "One False Move", "Gone for Good", "No Second
Chance", "Tell No One"), C.S. Lewis ("The Last Battle", "Prince Caspian: The Return to Narnia",
"The Silver Chair", "The Horse and His Boy", "The Lion, the Witch and the Wardrobe", "The Magi-
cian’s Nephew", "The Voyage of the Dawn Treader"), J.K. Rowling ("The Casual Vacancy", "Harry
Potter and the Chamber of Secrets", "Harry Potter and the Goblet of Fire", "Harry Potter and the
Deathly Hallows", "Harry Potter and the Order of the Phoenix", "Harry Potter and the Half-Blood
Prince", "Harry Potter and the Prisoner of Azkaban", "Harry Potter and the Philosopher’s Stone"),
and J.R.R. Tolkien ("The Fellowship of the Ring", "The Two Towers", "The Return of the King").

Usage

data("galbraith")

Details

The word frequencies are represented as a two-dimensional table: variables (words) in columns,
samples (novels) in rows. The frequencies are relative, i.e. the number of occurrences of particular
word type was divided by the total number of tokens in a given text.

Source

The novels represented by this dataset are protected by copyright. For that reason, it was not pos-
sible to provide the actual texts. Instead, the frequences of the most frequent words are obtained –
and those can be freely distributed.

Examples

data(galbraith)
rownames(galbraith)

Not run:
stylo(frequencies = galbraith, gui = FALSE)

End(Not run)

24 gui.classify

gui.classify GUI for the function classify

Description

Graphical user interface for classify. Via the GUI, this function can set most of the variables
needed for classify.

Usage

gui.classify(...)

Arguments

... any variable as produced by stylo.default.settings can be set here to over-
write the default values.

Details

The function calls stylo.default.settings to initialize a number of default variables. Then it
reads the file classify_config.txt (if the file exists and can be found in the current directory) to
overwrite any default values. Then a GUI box appears, allowing the variables’ customization by the
user. Refer to HOWTO available at https://sites.google.com/site/computationalstylistics/
for a detailed explanation what the particular variables are for and how to use them.

Value

The function returns a list containing ca. 100 variables.

Author(s)

Jan Rybicki, Maciej Eder

See Also

classify, gui.stylo

Examples

Not run:
gui.classify()

my.variables = gui.classify()
summary(my.variables)

End(Not run)

https://sites.google.com/site/computationalstylistics/

gui.oppose 25

gui.oppose GUI for the function oppose

Description

Graphical user interface for oppose. This function sets most of the variables needed for oppose.

Usage

gui.oppose(...)

Arguments

... any variable as produced by stylo.default.settings can be set here to over-
write the default values.

Details

The function calls stylo.default.settings to initialize a number of default variables. Then it
reads the file oppose_config.txt (if the file exists and can be found in the current directory) to
overwrite any default values. Then a GUI box appears, allowing the variables’ customization by the
user. Refer to HOWTO available at https://sites.google.com/site/computationalstylistics/
for a detailed explanation what the particular variables are for and how to use them.

Value

The function returns a list containing ca. 100 variables.

Author(s)

Jan Rybicki, Maciej Eder

See Also

oppose, stylo.default.settings

Examples

Not run:
gui.oppose()

my.variables = gui.oppose()
summary(my.variables)

End(Not run)

https://sites.google.com/site/computationalstylistics/

26 gui.stylo

gui.stylo GUI for stylo

Description

Graphical user interface for the function stylo. This function sets most of the variables needed for
stylo.

Usage

gui.stylo(...)

Arguments

... any variable as produced by stylo.default.settings can be set here to over-
write the default values.

Details

The function calls stylo.default.settings to initialize a number of default variables. Then it
reads the file stylo_config.txt (if the file exists and can be found in the current directory) to over-
write any default values. Then a GUI box appears, allowing the variables’ customization by the user.
Refer to HOWTO available at https://sites.google.com/site/computationalstylistics/
for a detailed explanation what the particular variables are for and how to use them.

Value

The function returns a list containing ca. 100 variables.

Author(s)

Jan Rybicki, Maciej Eder

See Also

stylo, stylo.default.settings

Examples

Not run:
gui.stylo()

my.variables = gui.stylo()
summary(my.variables)

End(Not run)

https://sites.google.com/site/computationalstylistics/

imposters 27

imposters Authorship Verification Classifier Known as the Imposters Method

Description

A machine-learning supervised classifier tailored to assess authorship verification tasks. This func-
tion is an implementation of the 2nd order verification system known as the General Imposters
framework (GI), and introduced by Koppel and Winter (2014). The current implementation tries to
stick – with some improvements – to the description provided by Kestemont et al. (2016: 88).

Usage

imposters(reference.set,
test = NULL,
candidate.set = NULL,
iterations = 100,
features = 0.5,
imposters = 0.5,
classes.reference.set = NULL,
classes.candidate.set = NULL,
...)

Arguments

reference.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of texts written by different authors. It is really im-
portant to put there a selection of "imposters", or the authors that could not
have written the text to be assessed. If no candidate.set is used, then the ta-
ble should also contain some texts written by possible candidates to authorship,
or the authors that are suspected of being the actual author. Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

test a text to be checked for authorship, represented as a vector of, say, word frequen-
cies. The variables used (i.e. columns) must match the columns of the reference
set. If nothing is indicated, then the function will try to infer the test text from
the reference.set; when worse comes to worst, the first text in the reference
set will be excluded as the test text.

candidate.set a table containing frequencies/counts for the candidate set. This set should con-
tain texts written by possible candidates to authorship, or the authors that are
suspected of being the actual author. The variables used (i.e. columns) must
match the columns of the reference set. If no candidate.set is indicated, the
function will test iteratively all the classes (one at a time) from the reference set.

iterations the model is rafined in N iterations. A reasonable number of turns is a few dozen
or so (see the argument "features" below).

28 imposters

features a proportion of features to be analyzed. The imposters method selects randomly,
in N iterations, a given subset of features (words, n-grams, etc.) and performs
a classification. It is assumed that a large number of iteration, each involving
a randomly selected subset of features, leads to a reliable coverage of features,
among which some outliers might be hidden. The argument specifies the pro-
portion of features to be randomly chosen; the indicated value should lay in the
range between 0 and 1 (the default being 0.5).

imposters a proportion of text by the imposters to be analyzed. In each iteration, a specified
number of texts from the comparison set is chosen (randomly). See above, for
the features’ choice. The default value of this parameter is 0.5.

classes.reference.set

a vector containing class identifiers for the reference set. When missing, the
row names of the set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.candidate.set

a vector containing class identifiers for the candidate set. When missing, the row
names of the set table will be used (see above).

... any other argument that can be passed to the classifier; see perform.delta for
the parameters to be tweaked. In the current version of the function, only dis-
tance measure used for computing similarities between texts can be set. Avail-
able options so far: "delta" (Burrows’s Delta, default), "argamon" (Argamon’s
Linear Delta), "eder" (Eder’s Delta), "simple" (Eder’s Simple Distance), "can-
berra" (Canberra Distance), "manhattan" (Manhattan Distance), "euclidean" (Eu-
clidean Distance), "cosine" (Cosine Distance), "wurzburg" (Cosine Delta), "min-
max" (Minmax Distance, also known as the Ruzicka measure).

Value

The function returns a single score indicating the probability that an anonymouns sample analyzed
was/wasn’t written by a candidate author. As a proportion, the score lies between 0 and 1 (higher
scores indicate a higher attribution confidence). If more than one class is assessed, the resulting
scores are returned as a vector.

Author(s)

Maciej Eder

References

Koppel, M. , and Winter, Y. (2014). Determining if two documents are written by the same author.
"Journal of the Association for Information Science and Technology", 65(1): 178-187.

Kestemont, M., Stover, J., Koppel, M., Karsdorp, F. and Daelemans, W. (2016). Authenticating the
writings of Julius Caesar. "Expert Systems With Applications", 63: 86-96.

imposters.optimize 29

See Also

perform.delta, imposters.optimize

Examples

Not run:
performing the imposters method on the dataset provided by the package:

activating the datasets with "The Cuckoo's Calling", possibly written by JK Rowling
data(galbraith)

running the imposters method against all the remaining authorial classes
imposters(galbraith)

general usage:

Let's assume there is a table with frequencies, the 8th row of which contains
the data for a text one wants to verify.

getting the 8th row from the dataset
text_to_be_tested = dataset[8,]

building the reference set so that it does not contain the 8th row
remaining_frequencies = dataset[-c(8),]

launching the imposters method:
imposters(reference.set = remaining_frequencies, test = text_to_be_tested)

End(Not run)

imposters.optimize Tuning Parameters for the Imposters Method

Description

A function to optimize hyperparameters used in the General Imposters method (see link{imposters}
for further details). Using a grid search approach, it tries to define a grey area where the attribution
scores are not reliable.

Usage

imposters.optimize(reference.set,
classes.reference.set = NULL,
parameter.incr = 0.01,
...)

30 imposters.optimize

Arguments

reference.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of texts written by different authors. Usually, it is a
corpus of known authors (at least two tests per author) that is used to tune the
optimal hyperparameters for the imposters method. Such a tuning involves a
leave-one-out procedure of identifying a gray area when the results returned by
the classifier are not particularly reliable. E.g., if one gets 0.39 and 0.55 as the
parameters, one would assume that any results of the imposters() function that
lay within this range should be claimed unreliable. Make sure that the rows con-
tain samples, and the columns – variables (words, n-grams, or whatever needs
to be analyzed).

classes.reference.set

a vector containing class identifiers for the reference set. When missing, the
row names of the set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ple: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where the
classes are the authors’ names. Note that only the part up to the first underscore
in the sample’s name will be included in the class label.

parameter.incr the procedure tries to optimize the hyperparameters via a grid search – this
means that it tests the range of values between 0 and 1 incremented by a cer-
tain fraction. If this is set to 0.01 (default), it test 0, 0.01, 0.02, 0.03, ...

... any other argument that can be passed to the classifier; see perform.delta for
the parameters to be tweaked. In the current version of the function, only the dis-
tance measure used for computing similarities between texts can be set. Avail-
able options so far: "delta" (Burrows’s Delta, default), "argamon" (Argamon’s
Linear Delta), "eder" (Eder’s Delta), "simple" (Eder’s Simple Distance), "can-
berra" (Canberra Distance), "manhattan" (Manhattan Distance), "euclidean" (Eu-
clidean Distance), "cosine" (Cosine Distance), "wurzburg" (Cosine Delta), "min-
max" (Minmax Distance, also known as the Ruzicka measure).

Value

The function returns two scores: the P1 and P2 values.

Author(s)

Maciej Eder

References

Koppel, M. , and Winter, Y. (2014). Determining if two documents are written by the same author.
"Journal of the Association for Information Science and Technology", 65(1): 178-187.

Kestemont, M., Stover, J., Koppel, M., Karsdorp, F. and Daelemans, W. (2016). Authenticating the
writings of Julius Caesar. "Expert Systems With Applications", 63: 86-96.

See Also

imposters

lee 31

Examples

Not run:
activating a dummy dataset, in our case: Harper Lee and her Southern colleagues
data(lee)

running the imposters method against all the remaining authorial classes
imposters.optimize(lee)

End(Not run)

lee Table of word frequencies (Lee, Capote, Faulkner, Styron, etc.)

Description

This dataset contains a table (matrix) of relative frequencies of 3000 most frequent words retrieved
from 28 books by 8 authors, including both novels by Harper Lee, namely "To Kill a Mockingbird"
and "Go Set a Watchman". The remaining authors are as follows: Truman Capote ("In Cold Blood",
"Breakfast at Tiffany’s", "Summer Crossing", "The Grass Harp", "Other Voices, Other Rooms"),
William Faulkner ("Absalom, Absalom!", "As I Lay Dying", "Light in August", "Go down, Moses",
"The Sound and the Fury"), Ellen Glasgow ("Phases of an Inferior Planet", "Vein of Iron", "Vir-
ginia"), Carson McCullers ("The Heart is a Lonely Hunter", "The Member of the Wedding", "Re-
flections in a Golden Eye"), Flannery O’Connor ("Everything That Rises Must Converge", "The
Compete Stories", "Wise Blood"), William Styron ("Sophie’s Choice", "Set This House on Fire",
"The Confessions of Nat Turner"), Eudora Welty ("Delta Wedding", "Losing Battles", "The Opti-
mist’s Dauther").

Usage

data("lee")

Details

The word frequencies are represented as a two-dimensional table: variables (words) in columns,
samples (novels) in rows. The frequencies are relative, i.e. the number of occurrences of particular
word type was divided by the total number of tokens in a given text.

Source

The novels represented by this dataset are protected by copyright. For that reason, it was not pos-
sible to provide the actual texts. Instead, the frequences of the most frequent words are obtained –
and those can be freely distributed.

32 load.corpus

Examples

data(lee)
rownames(lee)

Not run:
stylo(frequencies = lee, gui = FALSE)

End(Not run)

load.corpus Load text files

Description

Function for loading text files from a specified directory.

Usage

load.corpus(files = "all", corpus.dir = "", encoding = "UTF-8")

Arguments

files a vector of file names. The default value all is an equivalent to list.files().

corpus.dir a directory containing the text files to be loaded; if not specified, the current
working directory will be used.

encoding useful if you use Windows and non-ASCII alphabets: French, Polish, Hebrew,
etc. In such a situation, it is quite convenient to convert your text files into
Unicode and to set this option to encoding = "UTF-8". In Linux and Mac, you
are always expected to use Unicode, thus you don’t need to set anything.

Value

The function returns an object of the class stylo.corpus. It is a list containing as elements the
texts loaded.

Author(s)

Maciej Eder

See Also

stylo, classify, rolling.classify, oppose, txt.to.words

load.corpus.and.parse 33

Examples

Not run:
to load file1.txt and file2.txt, stored in the subdirectory my.files:
my.corpus = load.corpus(corpus.dir = "my.files",

files = c("file1.txt", "file2.txt"))

to load all XML files from the current directory:
my.corpus = load.corpus(files = list.files(pattern="[.]xml$"))

End(Not run)

load.corpus.and.parse Load text files and perform pre-processing

Description

A high-level function that controls a number of other functions responsible for loading texts from
files, deleting markup, sampling from texts, converting samples to n-grams, etc. It is build on top
of a number of functions and thus it requires a large number of arguments. The only obligatory
argument, however, is a vector containing the names of the files to be loaded.

Usage

load.corpus.and.parse(files = "all", corpus.dir = "", markup.type= "plain",
corpus.lang = "English", splitting.rule = NULL,
sample.size = 10000, sampling = "no.sampling",
sample.overlap = 0, number.of.samples = 1,
sampling.with.replacement = FALSE, features = "w",
ngram.size = 1, preserve.case = FALSE,
encoding = "UTF-8", ...)

Arguments

files a vector of file names. The default value all is an equivalent to list.files().

corpus.dir the directory containing the text files to be loaded; if not specified, the current
directory will be used.

markup.type choose one of the following values: plain (nothing will happen), html (all tags
will be deleted as well as HTML header), xml (TEI header, any text between
<note> </note> tags, and all the tags will be deleted), xml.drama (as above;
additionally, speaker’s names will be deleted, or strings within the <speaker>
</speaker> tags), xml.notitles (as above; but, additionally, all the chapter/section
(sub)titles will be deleted, or strings within each the <head> </head> tags); see
delete.markup for further details.

corpus.lang an optional argument indicating the language of the texts analyzed; the val-
ues that will affect the function’s behavior are: English.contr, English.all,
Latin.corr (type help(txt.to.words.ext) for explanation). The default
value is English.

34 load.corpus.and.parse

splitting.rule if you are not satisfied with the default language settings (or your input string
of characters is not a regular text, but a sequence of, say, dance movements rep-
resented using symbolic signs), you can indicate your custom splitting regular
expression here. This option will overwrite the above language settings. For
further details, refer to help(txt.to.words).

sample.size desired size of samples, expressed in number of words; default value is 10,000.

sampling one of three values: no.sampling (default), normal.sampling, random.sampling.
See make.samples for explanation.

sample.overlap if this opion is used, a reference text is segmented into consecutive, equal-sized
samples that are allowed to partially overlap. If one specifies the sample.size
parameter of 5,000 and the sample.overlap of 1,000, for example, the first
sample of a text contains words 1–5,000, the second 4001–9,000, the third sam-
ple 8001–13,000, and so forth.

number.of.samples

optional argument which will be used only if random.sampling was chosen; it
is self-evident.

sampling.with.replacement

optional argument which will be used only if random.sampling was chosen; it
specifies the method used to randomly harvest words from texts.

features an option for specifying the desired type of features: w for words, c for characters
(default: w). See txt.to.features for further details.

ngram.size an optional argument (integer) specifying the value of n, or the size of n-grams
to be produced. If this argument is missing, the default value of 1 is used. See
txt.to.features for further details.

preserve.case whether ot not to lowercase all characters in the corpus (default = F).

encoding useful if you use Windows and non-ASCII alphabets: French, Polish, Hebrew,
etc. In such a situation, it is quite convenient to convert your text files into
Unicode and to set this option to encoding = "UTF-8". In Linux and Mac, you
are always expected to use Unicode, thus you don’t need to set anything. In
Windows, consider using UTF-8 but don’t forget about the way of analyzing
native ANSI encoded files: set this option to encoding = "native.enc".

... option not used; introduced here for compatibility reasons.

Value

The function returns an object of the class stylo.corpus. It is a list containing as elements the
samples (entire texts or sampled subsets) split into words/characters and combined into n-grams (if
applicable).

Author(s)

Maciej Eder

See Also

load.corpus, delete.markup, txt.to.words, txt.to.words.ext, txt.to.features, make.samples

make.frequency.list 35

Examples

Not run:
to load file1.txt and file2.txt, stored in the subdirectory my.files:
my.corpus = load.corpus.and.parse(files = c("file1.txt", "file2.txt"),

corpus.dir = "my.files")

to load all XML files from the current directory, while getting rid of
all markup tags in the file, and split the texts into consecutive
word pairs (2-grams):
my.corpus = load.corpus.and.parse(files = list.files(pattern = "[.]xml$"),

markup.type = "xml", ngram.size = 2)

End(Not run)

make.frequency.list Make List of the Most Frequent Elements (e.g. Words)

Description

Function for generating a frequency list of words or other (linguistic) features. It basically counts
the elements of a vector and returns a vector of these elements in descending order of frequency.

Usage

make.frequency.list(data, value = FALSE, head = NULL, relative = TRUE)

Arguments

data either a vector of elements (e.g. words, letter n-grams), or an object of a class
stylo.corpus as produced by the function load.corpus.and.parse.

value if this function is switched on, not only the most frequent elements are returned,
but also their frequencies. Default: FALSE.

head this option is meant to limit the number of the most frequent features to be
returned. Default value is NULL, which means that the entire range of frequent
and unfrequent features is returned.

relative if you’ve switched on the option value (see above), you might want to convert
your frequencies into relative frequencies, i.e. the counted occurrences divided
by the length of the input vector – in a vast majority of cases you should use it,
in order to neutralize different sample sizes. Default: TRUE.

Value

The function returns a vector of features (usually, words) in a descending order of their frequency.
Alternatively, when the option value is set TRUE, it returns a vector of frequencies instead, and the
features themselves might be accessed using the generic names function.

36 make.ngrams

Author(s)

Maciej Eder

See Also

load.corpus.and.parse, make.table.of.frequencies

Examples

assume there is a text:
text = "Mr. Sherlock Holmes, who was usually very late in the mornings,

save upon those not infrequent occasions when he was up all night,
was seated at the breakfast table. I stood upon the hearth-rug and
picked up the stick which our visitor had left behind him the night
before. It was a fine, thick piece of wood, bulbous-headed, of the
sort which is known as a \"Penang lawyer.\""

this text can be converted into vector of words:
words = txt.to.words(text)

an avanced tokenizer is available via the function 'txt.to.words.ext':
words2 = txt.to.words.ext(text, corpus.lang = "English.all")

a frequency list (just words):
make.frequency.list(words)
make.frequency.list(words2)

a frequency list with the numeric values
make.frequency.list(words2, value = TRUE)

Not run:
#####################################
using the function with large text collections

first, load and pre-process a corpus from 3 text files:
dataset = load.corpus.and.parse(files = c("1.txt", "2.txt", "3.txt"))
#
then, return 100 the most frequent words of the entire corpus:
make.frequency.list(dataset, head = 100)

End(Not run)

make.ngrams Make text n-grams

Description

Function that combines a vector of text units (words, characters, POS-tags, other features) into
pairs, triplets, or longer sequences, commonly referred to as n-grams.

make.ngrams 37

Usage

make.ngrams(input.text, ngram.size = 1)

Arguments

input.text a vector containing words or characters to be parsed into n-grams.

ngram.size an optional argument (integer) indicating the value of n, or the size of n-grams
to be produced. If this argument is missing, default value of 1 is used.

Details

Function for combining series of items (e.g. words or characters) into n-grams, or strings of n
elements. E.g. character 2-grams of the sentence "This is a sentence" are as follows: "th", "hi", "is",
"s ", " i", "is", "s ", " a", "a ", " s", "se", "en", "nt", "te", "en", "nc", "ce". Character 4-grams would
be, of course: "this", "his ", "is a", "s a ", " a s", etc. Word 2-grams: "this is", "is a", "a sentence".
The issue whether using n-grams of items increases the accuracy of stylometric procedures has
been heavily debated in the secondary literature (see the reference section for further reading). Eder
(2013) e.g. shows that character n-grams are suprisingly robust for dealing with noisy corpora (in
terms of a high number of misspelled characters).

Author(s)

Maciej Eder

References

Alexis, A., Craig, H., and Elliot, J. (2014). Language chunking, data sparseness, and the value of a
long marker list: explorations with word n-grams and authorial attribution. "Literary and Linguistic
Computing", 29, advanced access (doi: 10.1093/llc/fqt028).

Eder, M. (2011). Style-markers in authorship attribution: a cross-language study of the authorial
fingerprint. "Studies in Polish Linguistics", 6: 99-114. https://www.ejournals.eu/SPL/2011/
SPL-vol-6-2011/.

Eder, M. (2013). Mind your corpus: systematic errors in authorship attribution. "Literary and
Linguistic Computing", 28(4): 603-14.

Hoover, D. L. (2002). Frequent word sequences and statistical stylistics. "Literary and Linguistic
Computing", 17: 157-80.

Hoover, D. L. (2003). Frequent collocations and authorial style. "Literary and Linguistic Comput-
ing", 18: 261-86.

Hoover, D. L. (2012). The rarer they are, the more they are, the less they matter. In: Digital
Humanities 2012: Conference Abstracts, Hamburg University, Hamburg, pp. 218-21.

Koppel, M., Schler, J. and Argamon, S. (2009). Computational methods in authorship attribution.
"Journal of the American Society for Information Science and Technology", 60(1): 9-26.

Stamatatos, E. (2009). A survey of modern authorship attribution methods. "Journal of the Ameri-
can Society for Information Science and Technology", 60(3): 538-56.

https://www.ejournals.eu/SPL/2011/SPL-vol-6-2011/
https://www.ejournals.eu/SPL/2011/SPL-vol-6-2011/

38 make.samples

See Also

txt.to.words, txt.to.words.ext, txt.to.features

Examples

Consider the string my.text:
my.text = "Quousque tandem abutere, Catilina, patientia nostra?"
which can be split into a vector of consecutive words:
my.vector.of.words = txt.to.words(my.text)
now, we create a vector of word 2-grams:
make.ngrams(my.vector.of.words, ngram.size = 2)

similarly, you can produce character n-grams:
my.vector.of.chars = txt.to.features(my.vector.of.words, features = "c")
make.ngrams(my.vector.of.chars, ngram.size = 4)

make.samples Split text to samples

Description

Function that either splits an input text (a vector of linguistic items, such as words, word n-grams,
character n-grams, etc.) into equal-sized samples of a desired length (expressed in words), or ex-
cerpts randomly a number of words from the original text.

Usage

make.samples(tokenized.text, sample.size = 10000,
sampling = "no.sampling", sample.overlap = 0,
number.of.samples = 1, sampling.with.replacement = FALSE)

Arguments

tokenized.text input textual data stored either in a form of vector (single text), or as a list of
vectors (whole corpus); particular vectors should contain tokenized data, i.e.
words, word n-grams, or other features, as elements.

sample.size desired size of sample expressed in number of words; default value is 10,000.
sampling one of three values: no.sampling (default), normal.sampling, random.sampling.
sample.overlap if this opion is used, a reference text is segmented into consecutive, equal-sized

samples that are allowed to partially overlap. If one specifies the sample.size
parameter of 5,000 and the sample.overlap of 1,000, for example, the first
sample of a text contains words 1–5,000, the second 4001–9,000, the third sam-
ple 8001–13,000, and so forth.

number.of.samples

optional argument which will be used only if random.sampling was chosen; it
is self-evident.

sampling.with.replacement

optional argument which will be used only if random.sampling was chosen; it
specifies the method to randomly harvest words from texts.

make.samples 39

Details

Normal sampling is probably a good choice when the input texts are long: the advantage is that one
gets a bigger number of samples which, in a way, validate the results (when several independent
samples excerpted from one text are clustered together). When the analyzed texts are significantly
unequal in length, it is not a bad idea to prepare samples as randomly chosen "bags of words". For
this, set the sampling variable to random.sampling. The desired size of the sample should be
specified via the sample.size variable. Sampling with and without replacement is also available.
It has been shown by Eder (2010) that harvesting random samples from original texts improves the
performance of authorship attribution methods.

Author(s)

Mike Kestemont, Maciej Eder

References

Eder, M. (2015). Does size matter? Authorship attribution, small samples, big problem. "Digital
Scholarship in the Humanities", 30(2): 167-182.

See Also

txt.to.words, txt.to.words.ext, txt.to.features, make.ngrams

Examples

my.text = "Arma virumque cano, Troiae qui primus ab oris
Italiam fato profugus Laviniaque venit
litora, multum ille et terris iactatus et alto
vi superum, saevae memorem Iunonis ob iram,
multa quoque et bello passus, dum conderet urbem
inferretque deos Latio; genus unde Latinum
Albanique patres atque altae moenia Romae.
Musa, mihi causas memora, quo numine laeso
quidve dolens regina deum tot volvere casus
insignem pietate virum, tot adire labores
impulerit. tantaene animis caelestibus irae?"

my.words = txt.to.words(my.text)

split the above text into samples of 20 words:
make.samples(my.words, sampling = "normal.sampling", sample.size = 20)

excerpt randomly 50 words from the above text:
make.samples(my.words, sampling = "random.sampling", sample.size = 50)

excerpt 5 random samples from the above text:
make.samples(my.words, sampling = "random.sampling", sample.size = 50,

number.of.samples = 5)

40 make.table.of.frequencies

make.table.of.frequencies

Prepare a table of (relative) word frequencies

Description

Function that collects several frequency lists and combines them into a single frequency table. To
this end a number of rearrangements inside particular lists are carried out. The table is produced
using a reference list of words/features (passed as an argument).

Usage

make.table.of.frequencies(corpus, features, absent.sensitive = TRUE,
relative = TRUE)

Arguments

corpus textual data: either a corpus (represented as a list), or a single text (represented
as a vector); the data have to be split into words (or other features, such as
character n-grams or word pairs).

features a vector containing a reference feature list that will be used to build the table
of frequencies (it is assumed that the reference list contains the same type of
features as the corpus list, e.g. words, character n-grams, word pairs, etc.;
otherwise, an empty table will be build).

absent.sensitive

this optional argument is used to prevent building tables of words/features that
never occur in the corpus. When switched on (default), variables containing
0 values across all samples, will be excluded. However, in some cases this is
important to keep all the variables regardless of their values. This is e.g. the
case when comparing two corpora: even if a given word did not occur in corpus
A, it might be present in corpus B. In short: whenever you perform any analysis
involving two or multiple sets of texts, switch this option to FALSE.

relative when this argument is switched to TRUE (default), relative frequencies are com-
puted instead of raw frequencies.

Author(s)

Maciej Eder

See Also

load.corpus, load.corpus.and.parse

novels 41

Examples

to get frequencies of the words "a", "the" and "of" from a text:

sample.txt = txt.to.words("My father had a small estate
in Nottinghamshire: I was the third of five sons.")

make.table.of.frequencies(sample.txt, c("a", "the", "of"))

to get a table of frequencies across several texts:

txt.1 = "Gallia est omnis divisa in partes tres, quarum unam incolunt
Belgae, aliam Aquitani, tertiam qui ipsorum lingua Celtae, nostra
Galli appellantur."

txt.2 = "Si quis antea, iudices, mirabatur quid esset quod, pro tantis
opibus rei publicae tantaque dignitate imperi, nequaquam satis multi
cives forti et magno animo invenirentur qui auderent se et salutem
suam in discrimen offerre pro statu civitatis et pro communi
libertate, ex hoc tempore miretur potius si quem bonum et fortem
civem viderit, quam si quem aut timidum aut sibi potius quam rei
publicae consulentem."

txt.3 = "Nam mores et instituta vitae resque domesticas ac familiaris
nos profecto et melius tuemur et lautius, rem vero publicam nostri
maiores certe melioribus temperaverunt et institutis et legibus."

my.corpus.raw = list(txt.1, txt.2, txt.3)
my.corpus.clean = lapply(my.corpus.raw, txt.to.words)
my.favorite.words = c("et", "in", "se", "rara", "avis")
make.table.of.frequencies(my.corpus.clean, my.favorite.words)

to include all words in the reference list, no matter if they
occurred in the corpus:
make.table.of.frequencies(my.corpus.clean, my.favorite.words,

absent.sensitive=FALSE)

to prepare a table of frequencies of all the words represented in
a corpus, in descendent occurence order, one needs to make the frequency
list first, via the function 'make.frequency.list'
complete.word.list = make.frequency.list(my.corpus.clean)
make.table.of.frequencies(my.corpus.clean, complete.word.list)

to create a table of frequencies of word pairs (word 2-grams):
my.word.pairs = lapply(my.corpus.clean, txt.to.features, ngram.size=2)
make.table.of.frequencies(my.word.pairs, c("et legibus", "hoc tempore"))

novels A selection of 19th-century English novels

42 oppose

Description

This dataset contains a selection of 9 novels in English, written by Jane Austen ("Emma", "Pride
and Prejudice", "Sense and Sensibility"), Anne Bronte ("Agnes Grey", "The Tenant of Wildfell
Hall"), Charlotte Bronte ("Jane Eyre", "The Professor", "Villette"), and Emily Bronte ("Wuthering
Heights").

Usage

data("novels")

Details

The novels are represented as elements of a class stylo.corpus, i.e. a list containing particular
texts as its elements. The texts are not tokenized.

Source

The texts are harvested from open-access resources, e.g. the Gutenberg Project.

Examples

data(novels)

print(novels)
summary(novels)

oppose Contrastive analysis of texts

Description

Function that performs a contrastive analysis between two given sets of texts. It generates a list
of words significantly preferred by a tested author (or, a collection of authors), and another list
containing the words significantly avoided by the former when compared to another set of texts.
Some visualizations are available.

Usage

oppose(gui = TRUE, path = NULL,
primary.corpus = NULL,
secondary.corpus = NULL,
test.corpus = NULL,
primary.corpus.dir = "primary_set",
secondary.corpus.dir = "secondary_set",
test.corpus.dir = "test_set", ...)

oppose 43

Arguments

gui an optional argument; if switched on, a simple yet effective graphical interface
(GUI) will appear. Default value is TRUE.

path if not specified, the current working directory will be used for input/output pro-
cedures (reading files, outputting the results, etc.).

primary.corpus.dir

the subdirectory (within the current working directory) that contains one or more
texts to be compared to a comparison corpus. These texts can e.g. be the oeuvre
by author A (to be compared to the oeuvre of another author B) or a collection
of texts by female authors (to be contrasted with texts by male authors). If not
specified, the default subdirectory primary_set will be used.

secondary.corpus.dir

the subdirectory (within the current working directory) that contains a compari-
son corpus: a pool of texts to be contrasted with texts from the primary.corpus.
If not specified, the default subdirectory secondary_set will be used.

test.corpus.dir

the subdirectory (within the current working directory) that contains texts to ver-
ify the discriminatory strength of the features extracted from the primary.set
and secondary.sets. Ideally, the test.corpus.dir should contain texts known
to belong to both classes (e.g. texts written by female and male authors in
the case of a gender-oriented study). If not specified, the default subdirectory
test_set will be used. If the default subdirectory does not exist or does not
contain any texts, the validation test will not be performed.

primary.corpus another option is to pass a pre-processed corpus as an argument (here: the pri-
mary set). It is assumed that this object is a list, each element of which is a vector
containing one tokenized sample. Refer to help(load.corpus.and.parse) to
get some hints how to prepare such a corpus.

secondary.corpus

if primary.corpus is used, then you should also prepare a similar R object
containing the secondary set.

test.corpus if you decide to use test corpus, you can pass it as a pre-processed R object using
this argument.

... any variable produced by stylo.default.settings can be set here, in order
to overwrite the default values.

Details

This function performs a contrastive analysis between two given sets of texts, using Burrows’s Zeta
(2007) in its different flavors, including Craig’s extensions (Craig and Kinney, 2009). Also, the
Whitney-Wilcoxon procedure as introduced by Kilgariff (2001) is available. The function generates
a vector of words significantly preferred by a tested author, and another vector containing the words
significantly avoided.

Value

The function returns an object of the class stylo.results: a list of variables, including a list of
words significantly preferred in the primary set, words significantly avoided (or, preferred in the

44 parse.corpus

secondary set), and possibly some other results, if applicable.

Author(s)

Maciej Eder, Mike Kestemont

References

Eder, M., Rybicki, J. and Kestemont, M. (2016). Stylometry with R: a package for computational
text analysis. "R Journal", 8(1): 107-21.

Burrows, J. F. (2007). All the way through: testing for authorship in different frequency strata.
"Literary and Linguistic Computing", 22(1): 27-48.

Craig, H. and Kinney, A. F., eds. (2009). Shakespeare, Computers, and the Mystery of Authorship.
Cambridge: Cambridge University Press.

Hoover, D. (2010). Teasing out authorship and style with t-tests and Zeta. In: "Digital Humanities
2010: Conference Abstracts". King’s College London, pp. 168-170.

Kilgariff A. (2001). Comparing Corpora. "International Journal of Corpus Linguistics" 6(1): 1-37.

See Also

stylo, classify, rolling.classify

Examples

Not run:
standard usage:
oppose()

batch mode, custom name of corpus directories:
oppose(gui = FALSE, primary.corpus.dir = "ShakespeareCanon",

secondary.corpus.dir = "MarloweSamples")

End(Not run)

parse.corpus Perform pre-processing (tokenization, n-gram extracting, etc.)

Description

A high-level function that controls a number of other functions responsible for dealing with a raw
corpus stored as list, including deleting markup, sampling from texts, converting samples to n-
grams, etc. It is build on top of a number of functions and thus it requires a large number of
arguments. The only obligatory argument, however, is an R object containing a raw corpus: it is
either an object of the class sylo.corpus, or a list of vectors, their elements being particular texts.

parse.corpus 45

Usage

parse.corpus(input.data, markup.type = "plain",
corpus.lang = "English", splitting.rule = NULL,
sample.size = 10000, sampling = "no.sampling",
sample.overlap = 0, number.of.samples = 1,
sampling.with.replacement = FALSE, features = "w",
ngram.size = 1, preserve.case = FALSE,
encoding = "UTF-8")

Arguments

input.data a list (preferably of the class stylo.corpus) containing a raw corpus, i.e. a
vector of texts.

markup.type choose one of the following values: plain (nothing will happen), html (all tags
will be deleted as well as HTML header), xml (TEI header, any text between
<note> </note> tags, and all the tags will be deleted), xml.drama (as above;
additionally, speaker’s names will be deleted, or strings within the <speaker>
</speaker> tags), xml.notitles (as above; but, additionally, all the chapter/section
(sub)titles will be deleted, or strings within each the <head> </head> tags); see
delete.markup for further details.

corpus.lang an optional argument indicating the language of the texts analyzed; the val-
ues that will affect the function’s behavior are: English.contr, English.all,
Latin.corr (type help(txt.to.words.ext) for explanation). The default
value is English.

splitting.rule if you are not satisfied with the default language settings (or your input string
of characters is not a regular text, but a sequence of, say, dance movements rep-
resented using symbolic signs), you can indicate your custom splitting regular
expression here. This option will overwrite the above language settings. For
further details, refer to help(txt.to.words).

sample.size desired size of samples, expressed in number of words; default value is 10,000.

sampling one of three values: no.sampling (default), normal.sampling, random.sampling.
See make.samples for explanation.

sample.overlap if this opion is used, a reference text is segmented into consecutive, equal-sized
samples that are allowed to partially overlap. If one specifies the sample.size
parameter of 5,000 and the sample.overlap of 1,000, for example, the first
sample of a text contains words 1–5,000, the second 4001–9,000, the third sam-
ple 8001–13,000, and so forth.

number.of.samples

optional argument which will be used only if random.sampling was chosen; it
is self-evident.

sampling.with.replacement

optional argument which will be used only if random.sampling was chosen; it
specifies the method used to randomly harvest words from texts.

features an option for specifying the desired type of features: w for words, c for characters
(default: w). See txt.to.features for further details.

46 parse.pos.tags

ngram.size an optional argument (integer) specifying the value of n, or the size of n-grams
to be produced. If this argument is missing, the default value of 1 is used. See
txt.to.features for further details.

preserve.case whether ot not to lowercase all characters in the corpus (default = F).

encoding useful if you use Windows and non-ASCII alphabets: French, Polish, Hebrew,
etc. In such a situation, it is quite convenient to convert your text files into
Unicode and to set this option to encoding = "UTF-8". In Linux and Mac, you
are always expected to use Unicode, thus you don’t need to set anything.

Value

The function returns an object of the class stylo.corpus. It is a list containing as elements the
samples (entire texts or sampled subsets) split into words/characters and combined into n-grams (if
applicable).

Author(s)

Maciej Eder

See Also

load.corpus.and.parse, delete.markup, txt.to.words, txt.to.words.ext, txt.to.features,
make.samples

Examples

Not run:
data(novels)
depending on the size of the corpus, it might take a while:
parse.corpus(novels)

End(Not run)

parse.pos.tags Extract POS-tags or Words from Annotated Corpora

Description

Function for extracting textual data from annotated corpora. It uderstands Stanford Tagger, Tree-
Tagger TaKIPI (a tagger for Polish), and Alpino (a tagger for Dutch) output formats. Either part-of-
speech tags, or words, or lemmata can be extracted.

Usage

parse.pos.tags(input.text, tagger = "stanford", feature = "pos")

perform.culling 47

Arguments

input.text any string of characters (e.g. vector) containing markup tags that have to be
deleted.

tagger choose the input format: "stanford" for Stanford Tagger, "treetagger" for Tree-
Tagger, "takipi" for TaKIPI.

feature choose "pos" (default), "word", or "lemma" (this one is not available for the
Stanford-formatted input).

Value

If the function is applied to a single text, then a vector of extracted features is returned. If it is
applied to a corpus (a list, preferably of a class "stylo.corpus"), then a list of preprocessed texts are
returned.

Author(s)

Maciej Eder

See Also

load.corpus, txt.to.words, txt.to.words.ext, txt.to.features

Examples

text = "I_PRP have_VBP just_RB returned_VBN from_IN a_DT visit_NN
to_TO my_PRP$ landlord_NN -_: the_DT solitary_JJ neighbor_NN that_IN
I_PRP shall_MD be_VB troubled_VBN with_IN ._. This_DT is_VBZ certainly_RB
a_DT beautiful_JJ country_NN !_. In_IN all_DT England_NNP ,_, I_PRP do_VBP
not_RB believe_VB that_IN I_PRP could_MD have_VB fixed_VBN on_IN a_DT
situation_NN so_RB completely_RB removed_VBN from_IN the_DT stir_VB of_IN
society_NN ._."

parse.pos.tags(text, tagger = "stanford", feature = "word")
parse.pos.tags(text, tagger = "stanford", feature = "pos")

perform.culling Exclude variables (e.g. words, n-grams) from a frequency table that
are too characteristic for some samples

Description

Culling refers to the automatic manipulation of the wordlist (proposed by Hoover 2004a, 2004b).
The culling values specify the degree to which words that do not appear in all the texts of a corpus
will be removed. A culling value of 20 indicates that words that appear in at least 20% of the texts
in the corpus will be considered in the analysis. A culling setting of 0 means that no words will
be removed; a culling setting of 100 means that only those words will be used in the analysis that
appear in all texts of the corpus at least once.

48 perform.culling

Usage

perform.culling(input.table, culling.level = 0)

Arguments

input.table a matrix or data frame containing frequencies of words or any other countable
features; the table should be oriented to contain samples in rows, variables in
columns, and variables’ names should be accessible via colnames(input.table).

culling.level percentage of samples that need to have a given word in order to prevent this
word from being culled (see the description above).

Author(s)

Maciej Eder

References

Hoover, D. (2004a). Testing Burrows’s Delta. "Literary and Linguistic Computing", 19(4): 453-75.

Hoover, D. (2004b). Delta prime. "Literary and Linguistic Computing", 19(4): 477-95.

See Also

delete.stop.words, stylo.pronouns

Examples

assume there is a matrix containing some frequencies
(be aware that these counts are entirely fictional):
t1 = c(2, 1, 0, 2, 9, 1, 0, 0, 2, 0)
t2 = c(1, 0, 4, 2, 1, 0, 3, 0, 1, 3)
t3 = c(5, 2, 2, 0, 6, 0, 1, 0, 0, 0)
t4 = c(1, 4, 1, 0, 0, 0, 0, 3, 0, 1)
my.data.table = rbind(t1, t2, t3, t4)

names of the samples:
rownames(my.data.table) = c("text1", "text2", "text3", "text4")
names of the variables (e.g. words):
colnames(my.data.table) = c("the", "of", "in", "she", "me", "you",

"them", "if", "they", "he")
the table looks as follows
print(my.data.table)

selecting the words that appeared in at laest 50% of samples:
perform.culling(my.data.table, 50)

perform.delta 49

perform.delta Distance-based classifier

Description

Delta: a simple yet effective machine-learning method of supervised classification, introduced by
Burrows (2002). It computes a table of distances between samples, and compares each sample from
the test set against training samples, in order to find its nearest neighbor. Apart from classic Delta,
a number of alternative distance measures are supported by this function.

Usage

perform.delta(training.set, test.set,
classes.training.set = NULL,
classes.test.set = NULL,
distance = "delta", no.of.candidates = 3,
z.scores.both.sets = TRUE)

Arguments

training.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of text samples (for the training set). Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

test.set a table containing frequencies/counts for the training set. The variables used
(i.e. columns) must match the columns of the training set.

classes.training.set

a vector containing class identifiers for the training set. When missing, the row
names of the training set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.test.set

a vector containing class identifiers for the test set. When missing, the row
names of the test set table will be used (see above).

distance a kernel (i.e. a distance measure) used for computing similarities between texts.
Available options so far: "delta" (Burrow’s Delta, default), "argamon" (Arga-
mon’s Linear Delta), "eder" (Eder’s Delta), "simple" (Eder’s Simple Distance),
"canberra" (Canberra Distance), "manhattan" (Manhattan Distance), "euclidean"
(Euclidean Distance), "cosine" (Cosine Distance).

no.of.candidates

how many nearest neighbors will be computed for each test sample (default =
3).

50 perform.delta

z.scores.both.sets

many distance measures convert input variables into z-scores before computing
any distances. Such a variable weighting is highly dependent on the number of
input texts. One might choose either training set only to scale the variables, or
the entire corpus (both sets). The latter is default.

Value

The function returns a vector of "guessed" classes: each test sample is linked with one of the
classes represented in the training set. Additionally, final scores and final rankings of candidates are
returned as attributes.

Author(s)

Maciej Eder

References

Argamon, S. (2008). Interpreting Burrows’s Delta: geometric and probabilistic foundations. "Lit-
erary and Linguistic Computing", 23(2): 131-47.

Burrows, J. F. (2002). "Delta": a measure of stylistic difference and a guide to likely authorship.
"Literary and Linguistic Computing", 17(3): 267-87.

Jockers, M. L. and Witten, D. M. (2010). A comparative study of machine learning methods for
authorship attribution. "Literary and Linguistic Computing", 25(2): 215-23.

See Also

perform.svm, perform.nsc, perform.knn, perform.naivebayes, dist.delta

Examples

Not run:
perform.delta(training.set, test.set)

End(Not run)

classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))

perform.delta(train, test, train.classes, test.classes)

perform.impostors 51

perform.impostors An Authorship Verification Classifier Known as the Impostors Method.
ATTENTION: this function is obsolete; refer to a new implementation,
aka the imposters() function!

Description

A machine-learning supervised classifier tailored to assess authorship verification tasks. This func-
tion is an implementation of the 2nd order verification system known as the General Impostors
framework (GI), and introduced by Koppel and Winter (2014). The current implementation tries to
stick – as closely as possible – to the description provided by Kestemont et al. (2016: 88).

Usage

perform.impostors(candidate.set, impostors.set, iterations = 100,
features = 50, impostors = 30,
classes.candidate.set = NULL, classes.impostors.set = NULL,
distance = "delta", z.scores.both.sets = TRUE)

Arguments

candidate.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of texts written by a target author (i.e. the candidate to
authorship). This table should also contain an anonymous sample to be assessed.
Make sure that the rows contain samples, and the columns – variables (words,
n-grams, or whatever needs to be analyzed).

impostors.set a table containing frequencies/counts for the control set. This set should contain
the samples by the impostors, or the authors that could not have written the
anonymous sample in question. The variables used (i.e. columns) must match
the columns of the candidate set.

iterations the model is rafined in N iterations. A reasonable number of turns is a few dozen
or so (see the argument "features" below).

features the "impostors" method is sometimes referred to as a 2nd order authorship ver-
ification system, since it selects randomly, in N iterations, a given subset of
features (words, n-grams, etc.) and performs a classification. This argument
specifies the percentage of features to be randomly chosen; the default value is
50.

impostors in each iteration, a specified number of texts from the control set is chosen (ran-
domly). The default number is 30.

classes.candidate.set

a vector containing class identifiers for the authorial set. When missing, the
row names of the set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",

52 perform.knn

"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.impostors.set

a vector containing class identifiers for the control set. When missing, the row
names of the set table will be used (see above).

distance a kernel (i.e. a distance measure) used for computing similarities between texts.
Available options so far: "delta" (Burrow’s Delta, default), "argamon" (Arga-
mon’s Linear Delta), "eder" (Eder’s Delta), "simple" (Eder’s Simple Distance),
"canberra" (Canberra Distance), "manhattan" (Manhattan Distance), "euclidean"
(Euclidean Distance), "cosine" (Cosine Distance). THIS OPTION WILL BE
CHANGED IN NEXT VERSIONS.

z.scores.both.sets

many distance measures convert input variables into z-scores before computing
any distances. Such a variable weighting is highly dependent on the number of
input texts. One might choose either training set only to scale the variables, or
the entire corpus (both sets). The latter is default. THIS OPTION WILL BE
CHANGED (OR DELETED) IN NEXT VERSIONS.

Value

The function returns a single score indicating the probability that an anonymouns sample analyzed
was/wasn’t written by a candidate author. As a proportion, the score lies between 0 and 1 (higher
scores indicate a higher attribution confidence).

Author(s)

Maciej Eder

References

Koppel, M. , and Winter, Y. (2014). Determining if two documents are written by the same author.
"Journal of the Association for Information Science and Technology", 65(1): 178-187.

Kestemont, M., Stover, J., Koppel, M., Karsdorp, F. and Daelemans, W. (2016). Authenticating the
writings of Julius Caesar. "Expert Systems With Applications", 63: 86-96.

See Also

imposters

perform.knn k-Nearest Neighbor classifier

Description

A machine-learning supervised classifier; this function is a wrapper for the k-NN procedure pro-
vided by the package class.

perform.knn 53

Usage

perform.knn(training.set, test.set, classes.training.set = NULL,
classes.test.set = NULL, k.value = 1)

Arguments

training.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of text samples (for the training set). Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

test.set a table containing frequencies/counts for the training set. The variables used
(i.e. columns) must match the columns of the training set.

classes.training.set

a vector containing class identifiers for the training set. When missing, the row
names of the training set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.test.set

a vector containing class identifiers for the test set. When missing, the row
names of the test set table will be used (see above).

k.value number of nearest neighbors considered.

Value

The function returns a vector of "guessed" classes: each test sample is linked with one of the classes
represented in the training set.

Author(s)

Maciej Eder

See Also

perform.svm, perform.nsc, perform.delta, perform.naivebayes

Examples

Not run:
perform.knn(training.set, test.set)

End(Not run)

classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)

54 perform.naivebayes

train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))

perform.knn(train, test, train.classes, test.classes)

perform.naivebayes Naive Bayes classifier

Description

A machine-learning supervised classifier; this function is a wrapper for the Naive Bayes procedure
provided by the package e1071.

Usage

perform.naivebayes(training.set, test.set,
classes.training.set = NULL, classes.test.set = NULL)

Arguments

training.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of text samples (for the training set). Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

test.set a table containing frequencies/counts for the training set. The variables used
(i.e. columns) must match the columns of the training set.

classes.training.set

a vector containing class identifiers for the training set. When missing, the row
names of the training set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.test.set

a vector containing class identifiers for the test set. When missing, the row
names of the test set table will be used (see above).

Value

The function returns a vector of "guessed" classes: each test sample is linked with one of the classes
represented in the training set.

perform.nsc 55

Author(s)

Maciej Eder

See Also

perform.svm, perform.nsc, perform.delta, perform.knn

Examples

Not run:
perform.naivebayes(training.set, test.set)

End(Not run)

classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))

perform.naivebayes(train, test, train.classes, test.classes)

perform.nsc Nearest Shrunken Centroids classifier

Description

A machine-learning supervised classifier; this function is a wrapper for the Nearest Shrunken Cen-
troids procedure provided by the package pamr.

Usage

perform.nsc(training.set,
test.set,
classes.training.set = NULL,
classes.test.set = NULL,
show.features = FALSE,
no.of.candidates = 3)

Arguments

training.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of text samples (for the training set). Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

56 perform.nsc

test.set a table containing frequencies/counts for the training set. The variables used
(i.e. columns) must match the columns of the training set.

classes.training.set

a vector containing class identifiers for the training set. When missing, the row
names of the training set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.test.set

a vector containing class identifiers for the test set. When missing, the row
names of the test set table will be used (see above).

show.features a logical value (default: FALSE). When the option is switched on, the most
discriminative features (e.g. words) will be shown.

no.of.candidates

how many nearest neighbors will be computed for each test sample (default =
3).

Value

The function returns a vector of "guessed" classes: each test sample is linked with one of the classes
represented in the training set. Additionally, final scores and final rankings of candidates, as well as
the discriminative features (if applicable) are returned as attributes.

Author(s)

Maciej Eder

See Also

perform.delta, perform.svm, perform.knn, perform.naivebayes

Examples

Not run:
perform.nsc(training.set, test.set)

End(Not run)

classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))

perform.nsc(train, test, train.classes, test.classes)

perform.svm 57

perform.svm Support Vector Machines classifier

Description

A machine-learning supervised classifier; this function is a wrapper for the Support Vector Ma-
chines procedure provided by the package e1071.

Usage

perform.svm(training.set,
test.set,
classes.training.set = NULL,
classes.test.set = NULL,
no.of.candidates = 3,
tune.parameters = FALSE,
svm.kernel = "linear",
svm.degree = 3,
svm.coef0 = 0,
svm.cost = 1)

Arguments

training.set a table containing frequencies/counts for several variables – e.g. most frequent
words – across a number of text samples (for the training set). Make sure that the
rows contain samples, and the columns – variables (words, n-grams, or whatever
needs to be analyzed).

test.set a table containing frequencies/counts for the training set. The variables used
(i.e. columns) must match the columns of the training set.

classes.training.set

a vector containing class identifiers for the training set. When missing, the row
names of the training set table will be used; the assumed classes are the strings
of characters followed by the first underscore. Consider the following exam-
ples: c("Sterne_Tristram", "Sterne_Sentimental", "Fielding_Tom", ...), where
the classes are the authors’ names, and c("M_Joyce_Dubliners", "F_Woolf_Night_and_day",
"M_Conrad_Lord_Jim", ...), where the classes are M(ale) and F(emale) accord-
ing to authors’ gender. Note that only the part up to the first underscore in the
sample’s name will be included in the class label.

classes.test.set

a vector containing class identifiers for the test set. When missing, the row
names of the test set table will be used (see above).

no.of.candidates

how many nearest neighbors will be computed for each test sample (default =
3).

tune.parameters

if this argument is used, two parameters, namely gamma and cost, are tuned
using a bootstrap procedure, and then used to build a SVM model.

58 performance.measures

svm.kernel SVM kernel. Available values: "linear", which is probably the best choice in
stylometry, since the number of variables (e.g. MFWs) is many times bigger
than the number of classes; "polynomial", and "radial".

svm.degree parameter needed for kernel of type "polynomial" (default: 3).

svm.coef0 parameter needed for kernel of type "polynomial" (default: 0).

svm.cost cost of constraints violation (default: 1); it is the C-constant of the regularization
term in the Lagrange formulation.

Value

The function returns a vector of "guessed" classes: each test sample is linked with one of the
classes represented in the training set. Additionally, final scores and final rankings of candidates are
returned as attributes.

Author(s)

Maciej Eder

See Also

perform.delta, perform.nsc, perform.knn, perform.naivebayes

Examples

Not run:
perform.svm(training.set, test.set)

End(Not run)

classifying the standard 'iris' dataset:
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))

perform.svm(train, test, train.classes, test.classes)

performance.measures Accuracy, Precision, Recall, and the F Measure

Description

This function returns a few standard measurments used to test how efficient a given classifier is, in
a supervised machine-learnig classification setup.

performance.measures 59

Usage

performance.measures(predicted_classes, expected_classes = NULL, f_beta = 1)

Arguments

predicted_classes

a vector of predictions outputted from a classifier. If an object containing results
from classify(), crossv, perform.delta, perform.svm etc. is provided,
then no further input data is required (see below).

expected_classes

a vector of expected classes, or the classification results that we knew in advance.
This argument is immaterial when an object of the class "stylo.results" is
provided. In such a case, only the above parameter predicted_classes is
obligatory.

f_beta the F score is usually used in its F1 version, but one can use any other scaling
factor, e.g. F(1/2) or F(2); the default value is 1.

Value

The function returns a list containing four performance indexes – accuracy, precision, recall and the
F measure – for each class, as well as an average score for all classes.

Author(s)

Maciej Eder

See Also

classify, perform.delta, perform.svm, perform.nsc

Examples

classification results aka predictions (or, the classes "guessed" by a classifier)
what_we_got = c("prose", "prose", "prose", "poetry", "prose", "prose")
expected classes (or, the ground truth)
what_we_expected = c("prose", "prose", "prose", "poetry", "poetry", "poetry")

performance.measures(what_we_got, what_we_expected)

authorship attribution using the dataset 'lee'
#
data(lee)
results = crossv(training.set = lee, cv.mode = "leaveoneout",

classification.method = "delta")
performance.measures(results)

classifying the standard 'iris' dataset:

60 plot.sample.size

#
data(iris)
x = subset(iris, select = -Species)
train = rbind(x[1:25,], x[51:75,], x[101:125,])
test = rbind(x[26:50,], x[76:100,], x[126:150,])
train.classes = c(rep("s",25), rep("c",25), rep("v",25))
test.classes = c(rep("s",25), rep("c",25), rep("v",25))
results = perform.delta(train, test, train.classes, test.classes)

performance.measures(results)

plot.sample.size Plot Classification Accuracy for Short Text Samples

Description

Plotting method for objects of the class "stylo.results", produced by the function samplesize.penalize.
It can be used to show the behavior of short samples in text classification. See the help page of
samplesize.penalize for further details.

Usage

S3 method for class 'sample.size'
plot(x, target = NULL, variable = "diversity",

trendline = TRUE, observations = FALSE,
grayscale = FALSE, legend = TRUE,
legend_pos = "bottomright", main = "default", ...)

Arguments

x an object of class "stylo.results" as produced by the function samplesize.penalize.

target the number of the text to be plotted, or its name as stored in the "stylo.results"
object (see the examples below). Both ways are equivalent, where a numeric
value represents the n-th text. If no target is specified, then the first text is plot-
ted.

variable choose either "accuracy" to get the classification accuracy, i.e. the ratio of
correctly attributed instances to the number iterations (usually 100, see the help
page of samplesize.penalize for further details), or "diversity" to get Simp-
son’s index of class imbalance (this is the default value). The index provides you
with the information how consistent was a classifier in its choices.

trendline since all the observations represented in the plot might be difficult to read, one
can use a trendline instead (default). The trendlines are produced using the
generic lowess function.

observations particular observations and a trendline (see above) can be combined. Switch this
option on, to do so (default: FALSE).

plot.sample.size 61

grayscale using this option, you can switch off colors.

legend do you want to have the trendlines and/or observations explained? Switch this
option on (which is default).

legend_pos position of the legend: choose between "bottomright", "bottomleft", "topright"
and "topleft".

main title of the plot; use it as if it was a regular option of the function plot, or leave
it as "default" to get the name of the sample as automatically extracted from
the class "stylo.results".

... further arguments to be passed to plot.

Details

An object generated by the samplesize.penalize function can be of course split into its parts and
plotted using any other routine. The method discussed in this document is a simple shortcut: rather
than refine your plot parameters from scratch, you can get acceptable results by using one single
generic function plot; see a few examples below.

Author(s)

Maciej Eder

See Also

samplesize.penalize

Examples

Not run:
provided that there exists a text collection (text files)
in the subdirectory 'corpus', perform a test for sample size:
results = samplesize.penalize(corpus.dir = "corpus")

then plot the first text's classification accuracy:
plot(results)

plot the results, e.g. for the 5th text:
plot(results, target = 5)

the 'target' parameter can be set via the text's name,
to see which texts are available in the results, type:
results$test.texts

plot Simpson's diversity index for the text named 'Woolf_Years_1937':
plot(results_classic, target = "Woolf_Years_1937", variable = "diversity")

End(Not run)

62 rolling.classify

rolling.classify Sequential machine-learning classification

Description

Function that splits a text into equal-sized consecutive blocks (slices) and performs a supervised
classification of these blocks against a training set. A number of machine-learning methods for
classification used in computational stylistics are available: Delta, k-Nearest Neighbors, Support
Vector Machines, Naive Bayes, and Nearest Shrunken Centroids.

Usage

rolling.classify(gui = FALSE, training.corpus.dir = "reference_set",
test.corpus.dir = "test_set", training.frequencies = NULL,
test.frequencies = NULL, training.corpus = NULL,
test.corpus = NULL, features = NULL, path = NULL,
slice.size = 5000, slice.overlap = 4500,
training.set.sampling = "no.sampling", mfw = 100, culling = 0,
milestone.points = NULL, milestone.labels = NULL,
plot.legend = TRUE, add.ticks = FALSE, shading = FALSE,
...)

Arguments

gui an optional argument; if switched on, a simple yet effective graphical user inter-
face (GUI) will appear. Default value is FALSE so far, since GUI is still under
development.

training.frequencies

using this optional argument, one can load a custom table containing frequen-
cies/counts for several variables, e.g. most frequent words, across a number of
text samples (for the training set). It can be either an R object (matrix or data
frame), or a filename containing tab-delimited data. If you use an R object,
make sure that the rows contain samples, and the columns – variables (words).
If you use an external file, the variables should go vertically (i.e. in rows): this
is because files containing vertically-oriented tables are far more flexible and
easily editable using, say, Excel or any text editor. To flip your table horizon-
tally/vertically use the generic function t().

test.frequencies

using this optional argument, one can load a custom table containing frequen-
cies/counts for the test set. Further details: immediately above.

training.corpus

another option is to pass a pre-processed corpus as an argument (here: the train-
ing set). It is assumed that this object is a list, each element of which is a vector
containing one tokenized sample. The example shown below will give you some
hints how to prepare such a corpus. Also, refer to help(load.corpus.and.parse)

rolling.classify 63

test.corpus if training.corpus is used, then you should also prepare a similar R object
containing the test set.

features usually, a number of the most frequent features (words, word n-grams, charac-
ter n-grams) are extracted automatically from the corpus, and they are used as
variables for further analysis. However, in some cases it makes sense to use a
set of tailored features, e.g. the words that are associated with emotions or, say,
a specific subset of function words. This optional argument allows to pass ei-
ther a filename containing your custom list of features, or a vector (R object) of
features to be assessed.

path if not specified, the current directory will be used for input/output procedures
(reading files, outputting the results).

training.corpus.dir

the subdirectory (within the current working directory) that contains the training
set, or the collection of texts used to exemplify the differences between particu-
lar classes (e.g. authors or genres). The discriminating features extracted from
this training material will be used during the testing procedure (see below). If
not specified, the default subdirectory reference_set will be used.

test.corpus.dir

the subdirectory (within the working directory) that contains a test to be as-
sessed, long enough to be split automatically into equal-sized slices, or blocks.
If not specified, the default subdirectory test_set will be used.

slice.size a text to be analyzed is segmented into consecutive, equal-sized samples (slices,
windows, or blocks); the slice size is set using this parameter: default is 5,000
words. The samples are allowed to partially overlap (see the next parameter).

slice.overlap if one specifies a slice.size of 5,000 and a slice.overlap of 4,500 (which
is default), then the first extracted sample contains words 1–5,000, the second
501–5,500, the third sample 1001–6,000, and so forth.

training.set.sampling

sometimes, it makes sense to split training set texts into smaller samples. Avail-
able options: "no.sampling" (default), "normal.sampling", "random.sampling".
See help(make.samples) for further details.

mfw number of the most frequent words (MFWs) to be analyzed.

culling culling level; see help(perform.culling) to get some help on the culling pro-
cedure principles.

milestone.points

sometimes, there is a need to mark one or more passages in an analyzed text
(e.g. when external evidence suggests an authorial takeover at a certain point) to
compare if the a priori knowledge is confirmed by stylometric evidence. To this
end, one should add into the test file a string "xmilestone" (when input texts are
loaded directly from files), or specify the break points using this parameter. E.g.,
to add two lines at 10,000 words and 15,000 words, use milestone.points =
c(10000, 15000).

milestone.labels

when milestone points are used (see immediately above), they are automatically
labelled using lowercase letters: "a", "b", "c" etc. However, one can replace
them with custom labels, e.g. milestone.labels = c("Act I", "Act II").

64 rolling.classify

plot.legend self-evident. Default: TRUE.

add.ticks a graphical parameter: consider adding tiny ticks (short horizontal lines) to see
the density of sampling. Default: FALSE.

shading instead of using colors on the final plot, one might choose to use shading hatches,
which might be an option to toggle with greyscale, but also with non-black set-
tings thereby allowing for photocopier-friendly charts (even if they may be sub-
jectively unattractive). To use this option, switch it to TRUE.

... any variable as produced by stylo.default.settings() can be set here to
overwrite the default values.

Details

There are numerous additional options that are passed to this function; so far, they are all loaded
when stylo.default.settings() is executed (it will be invoked automatically from inside this
function); the user can set/change them in the GUI.

Value

The function returns an object of the class stylo.results: a list of variables, including tables
of word frequencies, vector of features used, a distance table and some more stuff. Additionally,
depending on which options have been chosen, the function produces a number of files used to save
the results, features assessed, generated tables of distances, etc.

Author(s)

Maciej Eder

References

Eder, M. (2015). Rolling stylometry. "Digital Scholarship in the Humanities", 31(3): 457-69.

Eder, M. (2014). Testing rolling stylometry. https://goo.gl/f0YlOR.

See Also

classify, rolling.delta

Examples

Not run:
standard usage (it builds a corpus from a collection of text files):
rolling.classify()

rolling.classify(training.frequencies = "freqs_train.txt",
test.frequencies = "freqs_test.txt", write.png.file = TRUE,
classification.method = "nsc")

End(Not run)

https://goo.gl/f0YlOR

rolling.delta 65

rolling.delta Sequential stylometric analysis

Description

Function that analyses collaborative works and tries to determine the authorship of their fragments.

Usage

rolling.delta(gui = TRUE, path = NULL, primary.corpus.dir = "primary_set",
secondary.corpus.dir = "secondary_set")

Arguments

gui an optional argument; if switched on, a simple yet effective graphical user inter-
face (GUI) will appear. Default value is TRUE.

path if not specified, the current working directory will be used for input/output pro-
cedures (reading files, outputting the results).

primary.corpus.dir

the subdirectory (within the current working directory) that contains a collec-
tion of texts written by the authorial candidates, likely to have been involved
in the collaborative work analyzed. If not specified, the default subdirectory
primary_set will be used.

secondary.corpus.dir

the subdirectory (within the current working directory) that contains the collabo-
rative work to be analyzed. If not specified, the default subdirectory secondary_set
will be used.

Details

The procedure provided by this function analyses collaborative works and tries to determine the
authorship of their fragments. The first step involves a "windowing" procedure (Dalen-Oskam and
Zundert, 2007) in which each reference text is segmented into consecutive, equal-sized samples or
windows. After "rolling" through the test text, we can plot the resulting series of Delta scores for
each reference text in a graph.

Value

The function returns an object of the class stylo.results, and produces a final plot.

Author(s)

Mike Kestemont, Maciej Eder, Jan Rybicki

66 samplesize.penalize

References

Eder, M., Rybicki, J. and Kestemont, M. (2016). Stylometry with R: a package for computational
text analysis. "R Journal", 8(1): 107-21.

van Dalen-Oskam, K. and van Zundert, J. (2007). Delta for Middle Dutch: author and copyist
distinction in Walewein. "Literary and Linguistic Computing", 22(3): 345-62.

Hoover, D. (2011). The Tutor’s Story: a case study of mixed authorship. In: "Digital Humanities
2011: Conference Abstracts". Stanford University, Stanford, CA, pp. 149-51.

Rybicki, J., Kestemont, M. and Hoover D. (2014). Collaborative authorship: Conrad, Ford and
rolling delta. "Literary and Linguistic Computing", 29(3): 422-31.

Eder, M. (2015). Rolling stylometry. "Digital Scholarship in the Humanities", 31(3): 457-69.

See Also

rolling.classify, stylo

Examples

Not run:
standard usage:
rolling.delta()

batch mode, custom name of corpus directories:
rolling.delta(gui = FALSE, primary.corpus.dir = "MySamples",

secondary.corpus.dir = "ReferenceCorpus")

End(Not run)

samplesize.penalize Determining Minimal Sample Size for Text Classification

Description

This function tests the ability of a given input text (or texts) to be correctly classified in a supervised
machine-learning setup (e.g. Delta, SVM or NSC) when its length is limited. The procedure,
introduced by Eder (2017), involves several iterations in which longer and longer samples are drawn
from the text in question, and then they are tested against a training set. For very short samples, the
obtained classification accuracy is quite low (obviously), but then it usually increases until it finally
reaches a point of saturation. The function samplesize.penalize is aimed at indentifying such a
saturation point.

Usage

samplesize.penalize(training.frequencies = NULL,
test.frequencies = NULL,
training.corpus = NULL, test.corpus = NULL,
mfw = c(100, 200, 500), features = NULL,

samplesize.penalize 67

path = NULL, corpus.dir = "corpus",
sample.size.coverage = seq(100, 10000, 100),
sample.with.replacement = FALSE,
iterations = 100, classification.method = "delta",
list.cutoff = 1000, ...)

Arguments

training.frequencies

using this optional argument, one can load a custom table containing frequen-
cies/counts for several variables, e.g. most frequent words, across a number of
text samples (for the training set). It can be either an R object (matrix or data
frame), or a filename containing tab-delimited data. If you use an R object,
make sure that the rows contain samples, and the columns – variables (words).
If you use an external file, the variables should go vertically (i.e. in rows): this
is because files containing vertically-oriented tables are far more flexible and
easily editable using, say, Excel or any text editor. To flip your table horizon-
tally/vertically use the generic function t().

test.frequencies

using this optional argument, one can load a custom table containing frequen-
cies/counts for the test set. Further details: immediately above.

training.corpus

another option is to pass a pre-processed corpus as an argument (here: the train-
ing set). It is assumed that this object is a list, each element of which is a vector
containing one tokenized sample. The example shown below will give you some
hints how to prepare such a corpus. Also, refer to help(load.corpus.and.parse)

test.corpus if training.corpus is used, then you should also prepare a similar R object
containing the test set.

mfw how many most frequent words (or other units) should be used as features to test
the classifier? The default value is c(100,200,500), to assess three different
ranges of MFWs.

features usually, a number of the most frequent features (words, word n-grams, charac-
ter n-grams) are extracted automatically from the corpus, and they are used as
variables for further analysis. However, in some cases it makes sense to use a
set of tailored features, e.g. the words that are associated with emotions or, say,
a specific subset of function words. This optional argument allows to pass ei-
ther a filename containing your custom list of features, or a vector (R object) of
features to be assessed.

path if not specified, the current directory will be used for input/output procedures
(reading files, outputting the results).

corpus.dir the subdirectory (within the current working directory) that contains the cor-
pus text files. If not specified, the default subdirectory corpus will be used.
This option is immaterial when an external corpus and/or external tables with
frequencies are loaded.

sample.size.coverage

the procedure iteratively tests classification accuracy for different sample sizes.
Feel free to modify the default value c(100, 10000, 100), which tests samples
for 100, 200, 300, ..., 10,000 words.

68 samplesize.penalize

sample.with.replacement

if a tested sample size is bigger than the text to be tested, then the procedure
stops, obviously. To prevent such a situation, you might decide to draw your
samples (n words) with replacement, which means that particular words can be
picked more than once (default value is FALSE).

iterations each sample size of a given text is tested by extracting randomly n words from
the text in N iterations (default being 100). Since the procedure is random, a
large(ish) number of iterations, say 100, allows for testing an actual behavior of
a given sample size.

classification.method

the option invokes one of the classification methods provided by the package
stylo. Choose one of the following: "delta", "svm", "knn", "nsc", "naivebayes".

list.cutoff when texts are loaded from files, tokenized, and counted, it is all followed by
building a table of frequencies. Since it is unlikely to analyze thousands of most
frequent words (rather than 100 or, say, 500), it saves lots of time when the table
of frequencies is trimmed. The default value is 1000 most frequent words.

... any other argument, usually tokenization settings (via the parameters corpus.lang,
features, ngram.size etc.), or hyperparameters of different classification meth-
ods, such as a distanse measure (for Delta), a cost function (for SVM), and so
forth.

Details

If no additional argument is passed, then the function tries to load text files from the default sub-
directory corpus. The resulting object will then contain accuracy and diversity scores for all the
texts.

Value

The function returns an object of the class stylo.results: a list of variables, including classifica-
tion accuracy scores for each tested text and each assessed sample size, Simpson’s diversity index
scores, and the names of the texts analyzed. Use the generic function summary to see the contents
of the object. Use the generic function plot to generate a tailored plot conveniently.

Author(s)

Maciej Eder

References

Eder, M. (2017). Short samples in authorship attribution: A new approach. "Digital Humanities
2017: Conference Abstracts". Montreal: McGill University, pp. 221–24, https://dh2017.adho.
org/abstracts/341/341.pdf.

See Also

plot.sample.size, classify, imposters

https://dh2017.adho.org/abstracts/341/341.pdf
https://dh2017.adho.org/abstracts/341/341.pdf

stylo 69

Examples

Not run:

standard usage (it builds a corpus from a set of text files):
results = samplesize.penalize()
plot(results)

End(Not run)

stylo Stylometric multidimensional analyses

Description

It is quite a long story what this function does. Basically, it is an all-in-one tool for a variety of
experiments in computational stylistics. For a more detailed description, refer to HOWTO available
at: https://sites.google.com/site/computationalstylistics/

Usage

stylo(gui = TRUE, frequencies = NULL, parsed.corpus = NULL,
features = NULL, path = NULL, metadata = NULL,
filename.column = "filename", grouping.column = "author",
corpus.dir = "corpus", ...)

Arguments

gui an optional argument; if switched on, a simple yet effective graphical interface
(GUI) will appear. Default value is TRUE.

frequencies using this optional argument, one can load a custom table containing frequen-
cies/counts for several variables, e.g. most frequent words, across a number of
text samples. It can be either an R object (matrix or data frame), or a filename
containing tab-delimited data. If you use an R object, make sure that the rows
contain samples, and the columns – variables (words). If you use an external
file, the variables should go vertically (i.e. in rows): this is because files con-
taining vertically-oriented tables are far more flexible and easily editable using,
say, Excel or any text editor. To flip your table horizontally/vertically use the
generic function t().

parsed.corpus another option is to pass a pre-processed corpus as an argument. It is assumed
that this object is a list, each element of which is a vector containing one to-
kenized sample. The example shown below will give you some hints how to
prepare such a corpus.

features usually, a number of the most frequent features (words, word n-grams, charac-
ter n-grams) are extracted automatically from the corpus, and they are used as
variables for further analysis. However, in some cases it makes sense to use a

https://sites.google.com/site/computationalstylistics/

70 stylo

set of tailored features, e.g. the words that are associated with emotions or, say,
a specific subset of function words. This optional argument allows to pass ei-
ther a filename containing your custom list of features, or a vector (R object) of
features to be assessed.

path if not specified, the current directory will be used for input/output procedures
(reading files, outputting the results).

corpus.dir the subdirectory (within the current working directory) that contains the corpus
text files. If not specified, the default subdirectory corpus will be used. This
option is immaterial when an external corpus and/or external table with frequen-
cies is loaded.

metadata if not specified, colors for plotting will be assigned accoding to file names after
the usual author_ducument.txt pattern. But users can also specify a grouping
variable, i.e. a vector of a length equal to the number of texts in the corpus, or a
csv file, conventionally named "metadata.csv" containg matadata for the corpus.
This metadata file should contain one row per document, a column with the file
names in alphabetical order, and a calumn containing the grouping varible.

filename.column

the column in the metadata.csv containg the file names of the documents in
alphabetical order.

grouping.column

the column in the metadata.csv containg the grouping variable.

... any variable produced by stylo.default.settings can be set here, in order
to overwrite the default values. An example of such a variable is network =
TRUE (switched off as default) for producing stylometric bootstrap consensus
networks (Eder, forthcoming); the function saves a csv file, containing a list of
nodes that can be loaded into, say, Gephi.

Details

If no additional argument is passed, then the function tries to load text files from the default sub-
directory corpus. There are a lot of additional options that should be passed to this function; they
are all loaded when stylo.default.settings is executed (which is typically called automatically
from inside the stylo function).

Value

The function returns an object of the class stylo.results: a list of variables, including a table
of word frequencies, vector of features used, a distance table and some more stuff. Additionally,
depending on which options have been chosen, the function produces a number of files containing
results, plots, tables of distances, etc.

Author(s)

Maciej Eder, Jan Rybicki, Mike Kestemont, Steffen Pielström

stylo.default.settings 71

References

Eder, M., Rybicki, J. and Kestemont, M. (2016). Stylometry with R: a package for computational
text analysis. "R Journal", 8(1): 107-21.

Eder, M. (2017). Visualization in stylometry: cluster analysis using networks. "Digital Scholarship
in the Humanities", 32(1): 50-64.

See Also

classify, oppose, rolling.classify

Examples

Not run:
standard usage (it builds a corpus from a set of text files):
stylo()

loading word frequencies from a tab-delimited file:
stylo(frequencies = "my_frequencies.txt")

using an existing corpus (a list containing tokenized texts):
txt1 = c("to", "be", "or", "not", "to", "be")
txt2 = c("now", "i", "am", "alone", "o", "what", "a", "slave", "am", "i")
txt3 = c("though", "this", "be", "madness", "yet", "there", "is", "method")
custom.txt.collection = list(txt1, txt2, txt3)

names(custom.txt.collection) = c("hamlet_A", "hamlet_B", "polonius_A")
stylo(parsed.corpus = custom.txt.collection)

using a custom set of features (words, n-grams) to be analyzed:
my.selection.of.function.words = c("the", "and", "of", "in", "if", "into",

"within", "on", "upon", "since")
stylo(features = my.selection.of.function.words)

loading a custom set of features (words, n-grams) from a file:
stylo(features = "wordlist.txt")

batch mode, custom name of corpus directory:
my.test = stylo(gui = FALSE, corpus.dir = "ShakespeareCanon")
summary(my.test)

batch mode, character 3-grams requested:
stylo(gui = FALSE, analyzed.features = "c", ngram.size = 3)

End(Not run)

stylo.default.settings

Setting variables for the package stylo

72 stylo.default.settings

Description

Function that sets a series of global variables to be used by the package stylo and which can be
modified by users via arguments passed to the function and/or via gui.stylo, gui.classify, or
gui.oppose.

Usage

stylo.default.settings(...)

Arguments

... any variable as produced by this function can be set here to overwrite the default
values.

Details

This function is typically called from inside stylo, classify, oppose, gui.stylo, gui.classify
and gui.oppose.

Value

The function returns a list of a few dozen variables, mostly options and parameters for different
stylometric tests.

Author(s)

Maciej Eder, Jan Rybicki, Mike Kestemont

See Also

stylo, gui.stylo

Examples

stylo.default.settings()

to see which variables have been set:
names(stylo.default.settings())

to use the elements of the list as if they were independent variables:
my.variables = stylo.default.settings()
attach(my.variables)

stylo.network 73

stylo.network Bootstrap consensus networks, with D3 visualization

Description

A function to perform Bootstrap Consensus Network analysys (Eder, 2017), supplemented by in-
teractive visualization (this involves javascript D3). This is a variant of the function stylo, except
that it produces final networks without any external software (e.g. Gephi). To use this function, one
is required to install the package networkD3.

Usage

stylo.network(mfw.min = 100, mfw.max = 1000, ...)

Arguments

mfw.min the minimal MFW value (e.g. 100 most frequent words) to start the bootstrap
procedure with.

mfw.max the maximum MFW value (e.g. 1000 most frequent words), where procedure
should stop. It is required that at least three iterations are completed.

... any variable produced by stylo.default.settings can be set here, in order
to overwrite the default values. An example of such a variable is network =
TRUE (switched off as default) for producing stylometric bootstrap consensus
networks (Eder, forthcoming); the function saves a csv file, containing a list of
nodes that can be loaded into, say, Gephi.

Details

The Bootstrap Consensus Network method computes nearest neighborship relations between texts,
and then tries to represent them in a form of a network (Eder, 2017). Since multidimensional
methods are sensitive to input features (e.g. most frequent words), the methdod produces a series
of networks for different MFW settings, and then combines them into a consensus network. To
do so, it assumes that both the mininum MFW value and the maximum value is provided. If no
additional argument is passed, then the function tries to load text files from the default subdirectory
corpus. There are a lot of additional options that should be passed to this function; they are all
loaded when stylo.default.settings is executed (which is typically called automatically from
inside the stylo function).

Value

The function returns an object of the class stylo.results: a list of variables, including a table
of word frequencies, vector of features used, a distance table and some more stuff. Additionally,
depending on which options have been chosen, the function produces a number of files containing
results, plots, tables of distances, etc.

Author(s)

Maciej Eder

74 stylo.pronouns

References

Eder, M. (2017). Visualization in stylometry: cluster analysis using networks. "Digital Scholarship
in the Humanities", 32(1): 50-64.

See Also

stylo

Examples

Not run:
standard usage (it builds a corpus from a set of text files):
stylo.networks()

to take advantage of a dataset provided by the library 'stylo',
in this case, a selection of Amarican literature from the South
data(lee)
help(lee) # to see what this dataset actually contains
#
stylo.network(frequencies = lee)

End(Not run)

stylo.pronouns List of pronouns

Description

This function returns a list of pronouns that can be used as a stop word list for different stylometric
analyses. It has been shown that pronoun deletion improves, to some extent, attribution accuracy of
stylometric procedures (e.g. in English novels: Hoover 2004a; 2004b).

Usage

stylo.pronouns(corpus.lang = "English")

Arguments

corpus.lang an optional argument specifying the language of the texts analyzed: available
languages are English, Latin, Polish, Dutch, French, German, Spanish, Italian,
and Hungarian (default is English).

Value

The function returns a vector of pronouns.

Author(s)

Jan Rybicki, Maciej Eder, Mike Kestemont

txt.to.features 75

References

Hoover, D. (2004a). Testing Burrows’s delta. "Literary and Linguistic Computing", 19(4): 453-75.

Hoover, D. (2004b). Delta prime?. "Literary and Linguistic Computing", 19(4): 477-95.

See Also

stylo

Examples

stylo.pronouns()
stylo.pronouns(corpus.lang = "Latin")
my.stop.words = stylo.pronouns(corpus.lang = "German")

txt.to.features Split string of words or other countable features

Description

Function that converts a vector of words into either words, or characters, and optionally parses them
into n-grams.

Usage

txt.to.features(tokenized.text, features = "w", ngram.size = 1)

Arguments

tokenized.text a vector of tokinzed words

features an option for specifying the desired type of feature: w for words, c for characters
(default: w).

ngram.size an optional argument (integer) indicating the value of n, or the size of n-grams
to be created. If this argument is missing, the default value of 1 is used.

Details

Function that carries out the preprocessing steps necessary for feature selection: converts an input
text into the type of sequences needed (n-grams etc.) and returns a new vector of items. The
function invokes make.ngrams to combine single units into pairs, triplets or longer n-grams. See
help(make.ngrams) for details.

Author(s)

Maciej Eder, Mike Kestemont

See Also

txt.to.words, txt.to.words.ext, make.ngrams

76 txt.to.words

Examples

consider the string my.text:
my.text = "Quousque tandem abutere, Catilina, patientia nostra?"

split it into a vector of consecutive words:
my.vector.of.words = txt.to.words(my.text)

build a vector of word 2-grams:
txt.to.features(my.vector.of.words, ngram.size = 2)

or produce character n-grams (in this case, character tetragrams):
txt.to.features(my.vector.of.words, features = "c", ngram.size = 4)

txt.to.words Split text into words

Description

Generic tokenization function for splitting a given input text into single words (chains of characters
delimited by spaces or punctuation marks).

Usage

txt.to.words(input.text, splitting.rule = NULL, preserve.case = FALSE)

Arguments

input.text a string of characters, usually a text.

splitting.rule an optional argument indicating an alternative splitting regexp. E.g., if your cor-
pus contains no punctuation, you can use a very simple splitting sequence: "[
\t\n]+" or "[[:space:]]+" (in this case, any whitespace is assumed to be a
word delimiter). If you deal with non-latin scripts, especially with those that are
not supported by the stylo package yet (e.g. Chinese, Japanese, Vietnamese,
Georgian), you can indicate your letter characters explicitly: for most Cyrillic
scripts try the following code "[^\u0400-\u0482\u048A\u04FF]+". Remem-
ber, however, that your texts need to be properly loaded into R (which is quite
tricky on Windows; see below).

preserve.case Whether or not to lowercase all characters in the corpus (default is FALSE).

Details

The generic tokenization function for splitting a given input text into single words (chains of char-
acters delimited with spaces or punctuation marks). In obsolete versions of the package stylo,
the default splitting sequence of chars was "[^[:alpha:]]+" on Mac/Linux, and "\\W+_" on Win-
dows. Two different splitting rules were used, because regular expressions are not entirely platform-
independent; type help(regexp) for more details. For the sake of compatibility, then, in the version
>=0.5.6 a lengthy list of dozens of letters in a few alphabets (Latin, Cyrillic, Greek, Hebrew, Arabic
so far) has been indicated explicitly:

txt.to.words 77

paste("[^A-Za-z",
Latin supplement (Western):
"\U00C0-\U00FF",
Latin supplement (Eastern):
"\U0100-\U01BF",
Latin extended (phonetic):
"\U01C4-\U02AF",
modern Greek:
"\U0386\U0388-\U03FF",
Cyrillic:
"\U0400-\U0481\U048A-\U0527",
Hebrew:
"\U05D0-\U05EA\U05F0-\U05F4",
Arabic:
"\U0620-\U065F\U066E-\U06D3\U06D5\U06DC",
extended Latin:
"\U1E00-\U1EFF",
ancient Greek:
"\U1F00-\U1FBC\U1FC2-\U1FCC\U1FD0-\U1FDB\U1FE0-\U1FEC\U1FF2-\U1FFC",
Coptic:
"\U03E2-\U03EF\U2C80-\U2CF3",
Georgian:
"\U10A0-\U10FF",
"]+",
sep="")

Alternatively, different tokenization rules can be applied through the option splitting.rule (see
above). ATTENTION: this is the only piece of coding in the library stylo that might depend on
the operating system used. While on Mac/Linux the native encoding is Unicode, on Windows you
never know if your text will be loaded proprely. A considerable solution for Windows users is to
convert your texts into Unicode (a variety of freeware converters are available on the internet), and
to use an appropriate encoding option when loading the files: read.table("file.txt", encoding
= "UTF-8" or scan("file.txt", what = "char", encoding = "UTF-8". If you use the functions
provided by the library stylo, you should pass this option as an argument to your chosen function:
stylo(encoding = "UTF-8"), classify(encoding = "UTF-8"), oppose(encoding = "UTF-8").

Value

The function returns a vector of tokenized words (or other units) as elements.

Author(s)

Maciej Eder, Mike Kestemont

See Also

txt.to.words.ext, txt.to.features, make.ngrams, load.corpus

78 txt.to.words.ext

Examples

txt.to.words("And now, Laertes, what's the news with you?")

retrieving grammatical codes (POS tags) from a tagged text:
tagged.text = "The_DT family_NN of_IN Dashwood_NNP had_VBD long_RB

been_VBN settled_VBN in_IN Sussex_NNP ._."
txt.to.words(tagged.text, splitting.rule = "([A-Za-z,.;!]+_)|[\n\t]")

txt.to.words.ext Split text into words: extended version

Description

Function for splitting a string of characters into single words, removing punctuation etc., and pre-
serving some language-dependent idiosyncracies, such as common contractions in English.

Usage

txt.to.words.ext(input.text, corpus.lang = "English", splitting.rule = NULL,
preserve.case = FALSE)

Arguments

input.text a string of characters, usually a text.
corpus.lang an optional argument specifying the language of the texts analyzed. Values that

will affect the function’s output are: English.contr, English.all, Latin.corr
(their meaning is explained below), JCK for Japanese, Chinese and Korean, as
well as other for a variety of non-Latin scripts, including Cyryllic, Greek, Ara-
bic, Hebrew, Coptic, Georgian etc. The default value is English.

splitting.rule if you are not satisfied with the default language settings (or your input string
of characters is not a regular text, but a sequence of, say, dance movements rep-
resented using symbolic signs), you can indicate your custom splitting regular
expression here. This option will overwrite the above language settings. For
further details, refer to help(txt.to.words).

preserve.case Whether or not to lowercase all character in the corpus (default = FALSE).

Details

Function for splitting a given input text into single words (chains of characters delimited with spaces
or punctuation marks). It is build on top of the function txt.to.words and it is designed to manage
some language-dependent text features during the tokenization process. In most languages, this is
irrelevant. However, it might be important when with English or Latin texts: English.contr treats
contractions as single, atomary words, i.e. strings such as "don’t", "you’ve" etc. will not be split into
two strings; English.all keeps the contractions (as above), and also prevents the function from
splitting compound words (mother-in-law, double-decker, etc.). Latin.corr: since some editions
do not distinguish the letters v/u, this setting provides a consistent conversion to "u" in the whole
string. The option preserve.case lets you specify whether you wish to lowercase all characters in
the corpus.

zeta.chisquare 79

Author(s)

Maciej Eder, Mike Kestemont

See Also

txt.to.words, txt.to.features, make.ngrams

Examples

txt.to.words.ext("Nel mezzo del cammin di nostra vita / mi ritrovai per
una selva oscura, che la diritta via era smarrita.")

to see the difference between particular options for English,
consider the following sentence from Joseph Conrad's "Nostromo":
sample.text = "That's how your money-making is justified here."
txt.to.words.ext(sample.text, corpus.lang = "English")
txt.to.words.ext(sample.text, corpus.lang = "English.contr")
txt.to.words.ext(sample.text, corpus.lang = "English.all")

zeta.chisquare Compare two subcorpora using a home-brew variant of Craig’s Zeta

Description

This is a function for comparing two sets of texts; unlike keywords analysis, it this method the goal
is to split input texts into equal-sized slices, and to check the appearance of particular words over the
slices. Number of slices in which a given word appeared in the subcorpus A and B is then compared
using standard chisquare test (if p value exceeds 0.05, a difference is considered significant). This
method is based on original Zeta as developed by Burrows and extended by Craig (Burrows 2007,
Craig and Kinney 2009).

Usage

zeta.chisquare(input.data)

Arguments

input.data a matrix of two columns.

Value

The function returns a list of two elements: the first contains words (or other units, like n-grams)
statistically preferred by the authors of the primary subcorpus, while the second element contains
avoided words. Since the applied measure is symmetrical, the preferred words are ipso facto avoided
by the secondary authors, and vice versa.

Author(s)

Maciej Eder

80 zeta.craig

References

Burrows, J. F. (2007). All the way through: testing for authorship in different frequency strata.
"Literary and Linguistic Computing", 22(1): 27-48.

Craig, H. and Kinney, A. F., eds. (2009). Shakespeare, Computers, and the Mystery of Authorship.
Cambridge: Cambridge University Press.

See Also

oppose, zeta.eder, zeta.craig

Examples

Not run:
zeta.chisquare(input.data, filter.threshold)

End(Not run)

zeta.craig Compare two subcorpora using Craig’s Zeta

Description

This is a function for comparing two sets of texts; unlike keywords analysis, it this method the goal
is to split input texts into equal-sized slices, and to check the appearance of particular words over
the slices. Number of slices in which a given word appeared in the subcorpus A and B is then
compared using Craig’s formula, which is based on original Zeta as developed by Burrows (Craig
and Kinney 2009, Burrows 2007).

Usage

zeta.craig(input.data, filter.threshold)

Arguments

input.data a matrix of two columns.
filter.threshold

this parameter (default 0.1) gets rid of words of weak discrimination strength;
the higher the number, the less words appear in the final wordlists. It does not
normally exceed 0.5. In original Craig’s Zeta, no threshold is used: instead, the
results contain the fixed number of 500 top avoided and 500 top preferred words.

Value

The function returns a list of two elements: the first contains words (or other units, like n-grams)
statistically preferred by the authors of the primary subcorpus, while the second element contains
avoided words. Since the applied measure is symmetrical, the preferred words are ipso facto avoided
by the secondary authors, and vice versa.

zeta.eder 81

Author(s)

Maciej Eder

References

Burrows, J. F. (2007). All the way through: testing for authorship in different frequency strata.
"Literary and Linguistic Computing", 22(1): 27-48.

Craig, H. and Kinney, A. F., eds. (2009). Shakespeare, Computers, and the Mystery of Authorship.
Cambridge: Cambridge University Press.

See Also

oppose, zeta.eder, zeta.chisquare

Examples

Not run:
zeta.craig(input.data, filter.threshold)

End(Not run)

zeta.eder Compare two subcorpora using Eder’s Zeta

Description

This is a function for comparing two sets of texts; unlike keywords analysis, it this method the
goal is to split input texts into equal-sized slices, and to check the appearance of particular words
over the slices. Number of slices in which a given word appeared in the subcorpus A and B is
then compared using a distance derived from Canberra measure of similarity. Original Zeta was
developed by Burrows and extended by Craig (Burrows 2007, Craig and Kinney 2009).

Usage

zeta.eder(input.data, filter.threshold)

Arguments

input.data a matrix of two columns.
filter.threshold

this parameter (default 0.1) gets rid of words of weak discrimination strength;
the higher the number, the less words appear in the final wordlists. It does not
normally exceed 0.5.

82 zeta.eder

Value

The function returns a list of two elements: the first contains words (or other units, like n-grams)
statistically preferred by the authors of the primary subcorpus, while the second element contains
avoided words. Since the applied measure is symmetrical, the preferred words are ipso facto avoided
by the secondary authors, and vice versa.

Author(s)

Maciej Eder

References

Burrows, J. F. (2007). All the way through: testing for authorship in different frequency strata.
"Literary and Linguistic Computing", 22(1): 27-48.

Craig, H. and Kinney, A. F., eds. (2009). Shakespeare, Computers, and the Mystery of Authorship.
Cambridge: Cambridge University Press.

See Also

oppose, zeta.craig, zeta.chisquare

Examples

Not run:
zeta.eder(input.data, filter.threshold)

End(Not run)

Index

∗ datasets
galbraith, 23
lee, 31
novels, 41

as.dist, 16, 18–22
assign.plot.colors, 3, 13

change.encoding, 4, 6
check.encoding, 5, 5
classify, 6, 16, 18–22, 24, 32, 44, 59, 64, 68,

71
crossv, 9

define.plot.area, 12
delete.markup, 13, 34, 46
delete.stop.words, 14, 48
dist, 16, 19, 20, 22
dist.argamon (dist.delta), 17
dist.cosine, 15, 17–20, 22
dist.delta, 17, 21, 50
dist.eder (dist.delta), 17
dist.entropy, 18
dist.minmax, 19
dist.simple, 17, 20
dist.wurzburg, 21

galbraith, 23
gui.classify, 24
gui.oppose, 25
gui.stylo, 24, 26, 72

imposters, 27, 30, 52, 68
imposters.optimize, 29, 29

lee, 31
load.corpus, 14, 32, 34, 40, 47, 77
load.corpus.and.parse, 33, 36, 40, 46

make.frequency.list, 35
make.ngrams, 36, 39, 75, 77, 79

make.samples, 34, 38, 46
make.table.of.frequencies, 36, 40

novels, 41

oppose, 8, 25, 32, 42, 71, 80–82

parse.corpus, 44
parse.pos.tags, 46
perform.culling, 15, 47
perform.delta, 11, 29, 49, 53, 55, 56, 58, 59
perform.impostors, 51
perform.knn, 11, 50, 52, 55, 56, 58
perform.naivebayes, 11, 50, 53, 54, 56, 58
perform.nsc, 11, 50, 53, 55, 55, 58, 59
perform.svm, 11, 50, 53, 55, 56, 57, 59
performance.measures, 58
plot.sample.size, 60, 68

rolling.classify, 32, 44, 62, 66, 71
rolling.delta, 8, 64, 65

samplesize.penalize, 60, 61, 66
stylo, 8, 13, 16, 18–22, 26, 32, 44, 66, 69,

72–75
stylo.default.settings, 25, 26, 71
stylo.network, 73
stylo.pronouns, 15, 48, 74

txt.to.features, 14, 34, 38, 39, 46, 47, 75,
77, 79

txt.to.words, 14, 32, 34, 38, 39, 46, 47, 75,
76, 79

txt.to.words.ext, 14, 34, 38, 39, 46, 47, 75,
77, 78

zeta.chisquare, 79, 81, 82
zeta.craig, 80, 80, 82
zeta.eder, 80, 81, 81

83

	assign.plot.colors
	change.encoding
	check.encoding
	classify
	crossv
	define.plot.area
	delete.markup
	delete.stop.words
	dist.cosine
	dist.delta
	dist.entropy
	dist.minmax
	dist.simple
	dist.wurzburg
	galbraith
	gui.classify
	gui.oppose
	gui.stylo
	imposters
	imposters.optimize
	lee
	load.corpus
	load.corpus.and.parse
	make.frequency.list
	make.ngrams
	make.samples
	make.table.of.frequencies
	novels
	oppose
	parse.corpus
	parse.pos.tags
	perform.culling
	perform.delta
	perform.impostors
	perform.knn
	perform.naivebayes
	perform.nsc
	perform.svm
	performance.measures
	plot.sample.size
	rolling.classify
	rolling.delta
	samplesize.penalize
	stylo
	stylo.default.settings
	stylo.network
	stylo.pronouns
	txt.to.features
	txt.to.words
	txt.to.words.ext
	zeta.chisquare
	zeta.craig
	zeta.eder
	Index

