
Package ‘storr’
April 15, 2025

Title Simple Key Value Stores

Version 1.2.6

Description Creates and manages simple key-value stores. These can
use a variety of approaches for storing the data. This package
implements the base methods and support for file system, in-memory
and DBI-based database stores.

Depends R (>= 3.3.0)

License MIT + file LICENSE

URL https://richfitz.github.io/storr/,

https://github.com/richfitz/storr

BugReports https://github.com/richfitz/storr/issues

Imports R6 (>= 2.1.0), digest

Suggests DBI (>= 0.6), RSQLite (>= 1.1-2), RPostgres, knitr, mockr,
parallel, progress, rbenchmark, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

Language en-GB

NeedsCompilation yes

Author Rich FitzJohn [aut, cre],
William Michael Landau [ctb] (<https://orcid.org/0000-0003-1878-3253>)

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

Repository CRAN

Date/Publication 2025-04-15 16:30:02 UTC

Contents
driver_redis_api . 2
driver_remote . 3

1

https://richfitz.github.io/storr/
https://github.com/richfitz/storr
https://github.com/richfitz/storr/issues
https://orcid.org/0000-0003-1878-3253

2 driver_redis_api

encode64 . 3
fetch_hook_read . 4
join_key_namespace . 5
storr . 5
storr_dbi . 12
storr_environment . 14
storr_external . 15
storr_multistorr . 16
storr_rds . 17
test_driver . 19

Index 21

driver_redis_api Defunct functions

Description

Defunct functions

Usage

driver_redis_api(...)

storr_redis_api(...)

Arguments

... parameters (now all dropped as dots)

Details

The Redis functions (driver_redis_api and storr_redis_api) have been moved out of this
package and into redux. I don’t believe anyone is using them at the time of the move so this is
being done fairly abruptly - this is unfortunate, but necessary to avoid a circular dependency! The
new functions are simply redux::driver_redis_api and redux::storr_redis_api, along with
a helper function redux::storr_hiredis which also creates the connection.

driver_remote 3

driver_remote Remote storr

Description

Create a storr that keeps rds-serialised objects on a remote location. This is the abstract interface
(which does not do anything useful) but which can be used with file operation driver to store files
elsewhere. This is not intended for end-user use so there is no storr_remote function. Instead
this function is designed to support external packages that implement the details. For a worked
example, see the package tests (helper-remote.R). In the current implementation these build off
of the driver_rds driver by copying files to some remote location.

Usage

driver_remote(ops, ..., path_local = NULL)

Arguments

ops A file operations object. See tests for now to see what is required to implement
one.

... Arguments to pass through to driver_rds, including compress, mangle_key,
mangle_key_pad and hash_algorithm.

path_local Path to a local cache. This can be left as NULL, in which case a per-session cache
will be used. Alternatively, explicitly set to a path and the cache can be reused
over sessions. Only storr values (i.e., objects) are cached - the key-to-value
mapping is always fetched from the remote storage.

Author(s)

Rich FitzJohn

encode64 Base64 encoding and decoding

Description

Base64 encoding. By default uses the RFC 4648 dialect (file/url encoding) where characters 62 and
63 are "-" and "_". Pass in "+" and "/" to get the RFC 1421 variant (as in other R packages that do
base64 encoding).

Usage

encode64(x, char62 = "-", char63 = "_", pad = TRUE)

decode64(x, char62 = "-", char63 = "_", error = TRUE)

4 fetch_hook_read

Arguments

x A string or vector of strings to encode/decode
char62 Character to use for the 62nd index
char63 Character to use for the 63rd index
pad Logical, indicating if strings should be padded with = characters (as RFC 4648

requires)
error Throw an error if the decoding fails. If FALSE then NA_character_ values are

returned for failures.

Examples

x <- encode64("hello")
x
decode64(x)

Encoding things into filename-safe strings is the reason for
this function:
encode64("unlikely/to be @ valid filename")

fetch_hook_read Hook to fetch a resource from a file.

Description

Hook to fetch a resource from a file, for use with driver_external. We take two functions as ar-
guments: the first converts a key/namespace pair into a filename, and the second reads from that
filename. Because many R functions support reading from URLs fetch_hook_read can be used to
read from remote resources.

Usage

fetch_hook_read(fpath, fread)

Arguments

fpath Function to convert key, namespace into a file path
fread Function for converting filename into an R object

Details

For more information about using this, see storr_external (this can be used as a fetch_hook argu-
ment) and the vignette: vignette("external")

Examples

hook <- fetch_hook_read(
function(key, namespace) paste0(key, ".csv"),
function(filename) read.csv(filename, stringsAsFactors = FALSE))

join_key_namespace 5

join_key_namespace Recycle key and namespace

Description

Utility function for driver authors

Usage

join_key_namespace(key, namespace)

Arguments

key A vector of keys

namespace A vector of namespace

Details

This exists to join, predictably, keys and namespaces for operations like mget. Given a vector
or scalar for key and namespace we work out what the required length is and recycle key and
namespace to the appropriate length.

Value

A list with elements n, key and namespace

storr Object cache

Description

Create an object cache; a "storr". A storr is a simple key-value store where the actual content
is stored in a content-addressable way (so that duplicate objects are only stored once) and with a
caching layer so that repeated lookups are fast even if the underlying storage driver is slow.

Usage

storr(driver, default_namespace = "objects")

Arguments

driver A driver object
default_namespace

Default namespace to store objects in. By default "objects" is used, but this
might be useful to have two different storr objects pointing at the same under-
lying storage, but storing things in different namespaces.

6 storr

Details

To create a storr you need to provide a "driver" object. There are three in this package: driver_environment
for ephemeral in-memory storage, driver_rds for serialized storage to disk, and driver_dbi for use
with DBI-compliant database interfaces. The redux package (on CRAN) provides a storr driver
that uses Redis.

There are convenience functions (e.g., storr_environment and storr_rds) that may be more conve-
nient to use than this function.

Once a storr has been made it provides a number of methods. Because storr uses R6 (R6::R6Class)
objects, each method is accessed by using $ on a storr object (see the examples). The methods are
described below in the "Methods" section.

The default_namespace affects all methods of the storr object that refer to namespaces; if a names-
pace is not given, then the action (get, set, del, list, import, export) will affect the default_namespace.
By default this is "objects".

Methods

destroy Totally destroys the storr by telling the driver to destroy all the data and then deleting the
driver. This will remove all data and cannot be undone.
Usage: destroy()

flush_cache Flush the temporary cache of objects that accumulates as the storr is used. Should
not need to be called often.
Usage: flush_cache()

set Set a key to a value.
Usage: set(key, value, namespace = self$default_namespace, use_cache = TRUE)

Arguments:

• key: The key name. Can be any string.
\item{\code{value}: Any R object to store. The object will generally be serialized (this is not actually true for the environment storr) so only objects that would usually be expected to survive a `saveRDS`/`readRDS` roundtrip will work. This excludes Rcpp modules objects, external pointers, etc. But any "normal" R object will work fine.
}

\item{\code{namespace}: An optional namespace. By default the default namespace that the storr was created with will be used (by default that is "objects"). Different namespaces allow different types of objects to be stored without risk of names colliding. Use of namespaces is optional, but if used they must be a string.
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

Value: Invisibly, the hash of the saved object.

set_by_value Like set but saves the object with a key that is the same as the hash of the object.
Equivalent to $set(digest::digest(value), value).
Usage: set_by_value(value, namespace = self$default_namespace, use_cache = TRUE)

Arguments:

• value: An R object to save, with the same limitations as set.
\item{\code{namespace}: Optional namespace to save the key into.
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

storr 7

get Retrieve an object from the storr. If the requested value is not found then a KeyError will be
raised (an R error, but can be caught with tryCatch; see the "storr" vignette).
Usage: get(key, namespace = self$default_namespace, use_cache = TRUE)

Arguments:

• key: The name of the key to get.
\item{\code{namespace}: Optional namespace to look for the key within.
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

get_hash Retrieve the hash of an object stored in the storr (rather than the object itself).
Usage: get_hash(key, namespace = self$default_namespace)

Arguments:

• key: The name of the key to get.
\item{\code{namespace}: Optional namespace to look for the key within.
}

del Delete an object from the storr.
Usage: del(key, namespace = self$default_namespace)

Arguments:

• key: A vector of names of keys
\item{\code{namespace}: The namespace of the key.
}

Value: A logical vector the same length as the recycled length of key/namespace, with each
element being TRUE if an object was deleted, FALSE otherwise.

duplicate Duplicate the value of a set of keys into a second set of keys. Because the value
stored against a key is just the hash of its content, this operation is very efficient - it does
not make a copy of the data, just the pointer to the data (for more details see the storr vignette
which explains the storage model in more detail). Multiple keys (and/or namespaces) can be
provided, with keys and namespaces recycled as needed. However, the number of source and
destination keys must be the same. The order of operation is not defined, so if the sets of keys
are overlapping it is undefined behaviour.
Usage: duplicate(key_src, key_dest, namespace = self$default_namespace, namespace_src
= namespace, namespace_dest = namespace)

Arguments:

• key_src: The source key (or vector of keys)
\item{\code{key_dest}: The destination key
}

\item{\code{namespace}: The namespace to copy keys within (used only of `namespace_src` and `namespace_dest` are not provided
}

\item{\code{namespace_src}: The source namespace - use this where keys are duplicated across namespaces.
}

8 storr

\item{\code{namespace_dest}: The destination namespace - use this where keys are duplicated across namespaces.
}

fill Set one or more keys (potentially across namespaces) to the same value, without duplication
effort serialisation, or duplicating data.
Usage: fill(key, value, namespace = self$default_namespace, use_cache = TRUE)

Arguments:

• key: A vector of keys to get; zero to many valid keys
\item{\code{value}: A single value to set all keys to
}

\item{\code{namespace}: A vector of namespaces (either a single namespace or a vector)
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

clear Clear a storr. This function might be slow as it will iterate over each key. Future versions of
storr might allow drivers to implement a bulk clear method that will allow faster clearing.
Usage: clear(namespace = self$default_namespace)

Arguments:

• namespace: A namespace, to clear a single namespace, or NULL to clear all namespaces.

exists Test if a key exists within a namespace
Usage: exists(key, namespace = self$default_namespace)

Arguments:

• key: A vector of names of keys
\item{\code{namespace}: The namespace of the key.
}

Value: A logical vector the same length as the recycled length of key/namespace, with each
element being TRUE if the object exists and FALSE otherwise.

exists_object Test if an object with a given hash exists within the storr
Usage: exists_object(hash)
Arguments:

• hash: Hash to test

mset Set multiple elements at once
Usage: mset(key, value, namespace = self$default_namespace, use_cache = TRUE)

Arguments:

• key: A vector of keys to set; zero to many valid keys
\item{\code{value}: A vector of values
}

\item{\code{namespace}: A vector of namespaces (either a single namespace or a vector)
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

storr 9

Details: The arguments key and namespace are recycled such that either can be given as a
scalar if the other is a vector. Other recycling is not allowed.

mget Get multiple elements at once
Usage: mget(key, namespace = self$default_namespace, use_cache = TRUE, missing =
NULL)

Arguments:

• key: A vector of keys to get; zero to many valid keys
\item{\code{namespace}: A vector of namespaces (either a single namespace or a vector)
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

\item{\code{missing}: Value to use for missing elements; by default `NULL` will be used. IF `NULL` is a value that you might have stored in the storr you might want to use a different value here to distinguish "missing" from "set to NULL". In addition, the `missing` attribute will indicate which values were missing.
}

Details: The arguments key and namespace are recycled such that either can be given as a
scalar if the other is a vector. Other recycling is not allowed.
Value: A list with a length of the recycled length of key and namespace. If any elements are
missing, then an attribute missing will indicate the elements that are missing (this will be an
integer vector with the indices of values were not found in the storr).

mset_by_value Set multiple elements at once, by value. A cross between mset and set_by_value.
Usage: mset_by_value(value, namespace = self$default_namespace, use_cache = TRUE)

Arguments:

• value: A list or vector of values to set into the storr.
\item{\code{namespace}: A vector of namespaces
}

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

gc Garbage collect the storr. Because keys do not directly map to objects, but instead map to hashes
which map to objects, it is possible that hash/object pairs can persist with nothing pointing at
them. Running gc will remove these objects from the storr.
Usage: gc()

get_value Get the content of an object given its hash.
Usage: get_value(hash, use_cache = TRUE)

Arguments:

• hash: The hash of the object to retrieve.
\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

Value: The object if it is present, otherwise throw a HashError.

set_value Add an object value, but don’t add a key. You will not need to use this very often, but
it is used internally.
Usage: set_value(value, use_cache = TRUE)

Arguments:

10 storr

• value: An R object to set.

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

Value: Invisibly, the hash of the object.

mset_value Add a vector of object values, but don’t add keys. You will not need to use this very
often, but it is used internally.
Usage: mset_value(values, use_cache = TRUE)

Arguments:

• values: A list of R objects to set

\item{\code{use_cache}: Use the internal cache to avoid reading or writing to the underlying storage if the data has already been seen (i.e., we have seen the hash of the object before).
}

list List all keys stored in a namespace.
Usage: list(namespace = self$default_namespace)
Arguments:

• namespace: The namespace to list keys within.

Value: A sorted character vector (possibly zero-length).

list_hashes List all hashes stored in the storr
Usage: list_hashes()
Value: A sorted character vector (possibly zero-length).

list_namespaces List all namespaces known to the database
Usage: list_namespaces()
Value: A sorted character vector (possibly zero-length).

import Import R objects from an environment.
Usage: import(src, list = NULL, namespace = self$default_namespace, skip_missing
= FALSE)

Arguments:

• src: Object to import objects from; can be a list, environment or another storr.

\item{\code{list}: Names of of objects to import (or `NULL` to import all objects in `envir`. If given it must be a character vector. If named, the names of the character vector will be the names of the objects as created in the storr.
}

\item{\code{namespace}: Namespace to get objects from, and to put objects into. If `NULL`, all namespaces from `src` will be imported. If named, then the same rule is followed as `list`; `namespace = c(a = b)` will import the contents of namespace `b` as namespace `a`.
}

\item{\code{skip_missing}: Logical, indicating if missing keys (specified in `list`) should be skipped over, rather than being treated as an error (the default).
}

export Export objects from the storr into something else.
Usage: export(dest, list = NULL, namespace = self$default_namespace, skip_missing
= FALSE)

Arguments:

• dest: A target destination to export objects to; can be a list, environment, or another storr.
Use list() to export to a brand new list, or use as.list(object) for a shorthand.

storr 11

\item{\code{list}: Names of objects to export, with the same rules as `list` in `$import`.
}

\item{\code{namespace}: Namespace to get objects from, and to put objects into. If `NULL`, then this will export namespaces from this (source) storr into the destination; if there is more than one namespace,this is only possible if `dest` is a storr (otherwise there will be an error).
}

\item{\code{skip_missing}: Logical, indicating if missing keys (specified in `list`) should be skipped over, rather than being treated as an error (the default).
}

Value: Invisibly, dest, which allows use of e <- st$export(new.env()) and x <- st$export(list()).

archive_export Export objects from the storr into a special "archive" storr, which is an storr_rds
with name mangling turned on (which encodes keys with base64 so that they do not violate
filesystem naming conventions).
Usage: archive_export(path, names = NULL, namespace = NULL)

Arguments:

• path: Path to create the storr at; can exist already.

\item{\code{names}: As for `$export`
}

\item{\code{namespace}: Namespace to get objects from. If `NULL`, then exports all namespaces found in this (source) storr.
}

archive_import Inverse of archive_export; import objects from a storr that was created by
archive_export.
Usage: archive_import(path, names = NULL, namespace = NULL)

Arguments:

• path: Path of the exported storr.

\item{\code{names}: As for `$import`
}

\item{\code{namespace}: Namespace to import objects into. If `NULL`, then imports all namespaces from the source storr.
}

index_export Generate a data.frame with an index of objects present in a storr. This can be saved
(for an rds storr) in lieu of the keys/ directory and re-imported with index_import. It will
provide a more version control friendly export of the data in a storr.
Usage: index_export(namespace = NULL)

Arguments:

• namespace: Optional character vector of namespaces to export. The default is to export
all namespaces.

index_import Import an index.
Usage: index_import(index)
Arguments:

• index: Must be a data.frame with columns ’namespace’, ’key’ and ’hash’ (in any order).
It is an error if not all hashes are present in the storr.

12 storr_dbi

Examples

st <- storr(driver_environment())
Set "mykey" to hold the mtcars dataset:
st$set("mykey", mtcars)
and get the object:
st$get("mykey")
List known keys:
st$list()
List hashes
st$list_hashes()
List keys in another namespace:
st$list("namespace2")
We can store things in other namespaces:
st$set("x", mtcars, "namespace2")
st$set("y", mtcars, "namespace2")
st$list("namespace2")
Duplicate data do not cause duplicate storage: despite having three
keys we only have one bit of data:
st$list_hashes()
st$del("mykey")

Storr objects can be created that have a default namespace that is
not "objects" by using the `default_namespace` argument (this
one also points at the same memory as the first storr).
st2 <- storr(driver_environment(st$driver$envir),

default_namespace = "namespace2")
All functions now use "namespace2" as the default namespace:
st2$list()
st2$del("x")
st2$del("y")

storr_dbi DBI storr driver

Description

Object cache driver using the "DBI" package interface for storage. This means that storr can work
for any supported "DBI" driver (though practically this works only for SQLite and Postgres until
some MySQL dialect translation is done). To connect, you must provide the driver object (e.g.,
RSQLite::SQLite(), or RPostgres::Postgres() as the first argument.

Usage

storr_dbi(
tbl_data,
tbl_keys,
con,
args = NULL,
binary = NULL,

storr_dbi 13

hash_algorithm = NULL,
default_namespace = "objects"

)

driver_dbi(
tbl_data,
tbl_keys,
con,
args = NULL,
binary = NULL,
hash_algorithm = NULL

)

Arguments

tbl_data Name for the table that maps hashes to values
tbl_keys Name for the table that maps keys to hashes
con Either A DBI connection or a DBI driver (see example)
args Arguments to pass, along with the driver, to DBI::dbConnect if con is a driver.
binary Optional logical indicating if the values should be stored in binary. If possible,

this is both (potentially faster) and more accurate. However, at present it is
supported only under very recent DBI and RSQLite packages, and for no other
DBI drivers, and is not actually any faster. If not given (i.e., NULL), then binary
storage will be used where possible when creating new tables, and where tables
exist, we use whatever was used in the existing tables.

hash_algorithm Name of the hash algorithm to use. Possible values are "md5", "sha1", and
others supported by digest::digest. If not given, then we will default to "md5".

default_namespace

Default namespace (see storr).

Details

Because the DBI package specifies a uniform interface for the using DBI compliant databases, you
need only to provide a connection object. storr does not do anything to help create the connection
object itself.

The DBI storr driver works by using two tables; one mapping keys to hashes, and one mapping
hashes to values. Two table names need to be provided here; they must be different and they should
be treated as opaque (don’t use them for anything else - reading or writing). Apart from that the
names do not matter.

Because of treatment of binary data by the underlying DBI drivers, binary serialisation is not any
faster (and might be slightly slower than) string serialisation, in contrast with my experience with
other backends.

storr uses DBI’s "prepared query" approach to safely interpolate keys, namespaces and values into
the database - this should allow odd characters without throwing SQL syntax errors. Table names
can’t be interpolated in the same way - these storr simply quotes, but validates beforehand to ensure
that tbl_data and tbl_keys do not contain quotes.

Be aware that $destroy() will close the connection to the database.

14 storr_environment

Examples

if (requireNamespace("RSQLite", quietly = TRUE)) {
st <- storr::storr_dbi("tblData", "tblKeys", RSQLite::SQLite(),

":memory:")

Set some data:
st$set("foo", runif(10))
st$list()

And retrieve the data:
st$get("foo")

These are the data tables; treat these as read only
DBI::dbListTables(st$driver$con)

With recent RSQLite you'll get binary storage here:
st$driver$binary

The entire storr part of the database can be removed using
"destroy"; this will also close the connection to the database
st$destroy()

If you have a connection you want to reuse (which will the the
case if you are using an in-memory SQLite database for
multiple things within an application) it may be useful to
pass the connection object instead of the driver:
con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
st <- storr::storr_dbi("tblData", "tblKeys", con)
st$set("foo", runif(10))

You can then connect a different storr to the same underlying
storage
st2 <- storr::storr_dbi("tblData", "tblKeys", con)
st2$get("foo")

}

storr_environment Environment object cache driver

Description

Fast but transient environment driver. This driver saves objects in a local R environment, without
serialisation. This makes lookup fast but it cannot be saved across sessions. The environment storr
can be made persistent by saving it out as a file storr though.

Usage

storr_environment(
envir = NULL,

storr_external 15

hash_algorithm = NULL,
default_namespace = "objects"

)

driver_environment(envir = NULL, hash_algorithm = NULL)

Arguments

envir The environment to point the storr at. The default creates an new empty en-
vironment which is generally the right choice. However, if you want multiple
environment storrs pointing at the same environment then pass the envir argu-
ment along.

hash_algorithm Name of the hash algorithm to use. Possible values are "md5", "sha1", and
others supported by digest::digest. If not given, then we will default to "md5".

default_namespace

Default namespace (see storr).

Examples

Create an environment and stick some random numbers into it:
st <- storr_environment()
st$set("foo", runif(10))
st$get("foo")

To make this environment persistent we can save it to disk:
path <- tempfile()
st2 <- st$archive_export(path)
st2 is now a storr_rds (see ?storr_rds), and will persist across
sessions.

or export to a new list:
lis <- st$export(list())
lis

storr_external Storr that looks for external resources

Description

storr for fetching external resources. This driver is used where will try to fetch from an external
data source if a resource can not be found locally. This works by checking to see if a key is present
in the storr (and if so returning it). If it is not found, then the function fetch_hook is run to fetch it.

Usage

storr_external(storage_driver, fetch_hook, default_namespace = "objects")

16 storr_multistorr

Arguments

storage_driver Another storr driver to handle the actual storage.

fetch_hook A function to run to fetch data when a key is not found in the store. This function
must take arguments key and namespace and return an R object. It must throw
an error if the external resource cannot be resolved.

default_namespace

Default namespace (see storr)

Details

See the vignette vignette("external") for much more detail. This function is likely most useful
for things like caching resources from websites, or computing long-running quantities on demand.

storr_multistorr Storr with multiple storage drivers

Description

Create a special storr that uses separate storage drivers for the keys (which tend to be numerous and
small in size) and the data (which tends to be somewhat less numerous and much larger in size).
This might be useful to use storage models with different characteristics (in memory/on disk, etc).

Usage

storr_multistorr(keys, data, default_namespace = "objects")

Arguments

keys Driver for the keys

data Driver for the data
default_namespace

Default namespace (see storr)

Details

This is an experimental feature and somewhat subject to change. In particular, the driver may
develop the ability to store small data in the same storr as the keys (say, up to 1kb) based on some
tunable parameter.

You can attach another storr to either the data or the key storage (see the example), but it will not be
able to see keys or data (respectively). If you garbage collect the data half, all the data will be lost!

storr_rds 17

Examples

Create a storr that is stores keys in an environment and data in
an rds
path <- tempfile()
st <- storr::storr_multistorr(driver_environment(),

driver_rds(path))
st$set("a", runif(10))
st$get("a")

The data can be also seen by connecting to the rds store
rds <- storr::storr_rds(path)
rds$list() # empty
rds$list_hashes() # here's the data
rds$get_value(rds$list_hashes())

st$destroy()

storr_rds rds object cache driver

Description

Object cache driver that saves objects using R’s native serialized file format (see saveRDS) on the
filesystem.

Usage

storr_rds(
path,
compress = NULL,
mangle_key = NULL,
mangle_key_pad = NULL,
hash_algorithm = NULL,
default_namespace = "objects"

)

driver_rds(
path,
compress = NULL,
mangle_key = NULL,
mangle_key_pad = NULL,
hash_algorithm = NULL

)

Arguments

path Path for the store. tempdir() is a good choice for ephemeral storage, The
rappdirs package (on CRAN) might be nice for persistent application data.

18 storr_rds

compress Compress the generated file? This saves a small amount of space for a reason-
able amount of time.

mangle_key Mangle keys? If TRUE, then the key is encoded using base64 before saving to
the filesystem. See Details.

mangle_key_pad Logical indicating if the filenames created when using mangle_key should also
be "padded" with the = character to make up a round number of bytes. Padding
is required to satisfy the document that describes base64 encoding (RFC 4648)
but can cause problems in some applications (see this issue). The default is to
not pad new storr archives. This should be generally safe to leave alone.

hash_algorithm Name of the hash algorithm to use. Possible values are "md5", "sha1", and
others supported by digest::digest. If not given, then we will default to "md5".

default_namespace

Default namespace (see storr).

Details

The mangle_key argument will run each key that is created through a "base 64" encoding. This
means that keys that include symbols that are invalid on filesystems (e.g, "/", ":") will be replaced
by harmless characters. The RFC 4648 dialect is used where "-" and "_" are used for character 62
and 63 (this differs from most R base64 encoders). This mangling is designed to be transparent to
the user – the storr will appear to store things with unmangled keys but the names of the stored files
will be different.

Note that the (namespace is not mangled (at least not yet) so needs to contain characters that are
valid in a filename.

Because the actual file will be stored with mangled names it is not safe to use the same path for a
storr with and without mangling. So once an rds storr has been created its "mangledness" is set.
Using mangle_key = NULL uses whatever mangledness exists (or no mangledness if creating a new
storr).

Corrupt keys

Some file synchronisation utilities like Dropbox can create file that confuse an rds storr (e.g.,
"myobject (Someone's conflicted copy)". If mangle_key is FALSE these cannot be detected
but at the same time are not a real problem for storr. However, if mangle_key is TRUE and keys are
base64 encoded then these conflicted copies can break parts of storr.

If you see a warning asking you to deal with these files, please delete the offending files; the path
will be printed along with the files that are causing the problem.

Alternatively, you can try (assuming a storr object st) running

st$driver$purge_corrupt_keys()

which will delete corrupted keys with no confirmation. The messages that are printed to screen will
be printed by default at most once per minute per namespace. You can control this by setting the R
option storr.corrupt.notice.period - setting this to NA suppresses the notice and otherwise it
is interpreted as the number of seconds.

https://github.com/richfitz/storr/issues/43

test_driver 19

Examples

Create an rds storr in R's temporary directory:
st <- storr_rds(tempfile())

Store some data (10 random numbers against the key "foo")
st$set("foo", runif(10))
st$list()

And retrieve the data:
st$get("foo")

Keys that are not valid filenames will cause issues. This will
cause an error:
Not run:
st$set("foo/bar", letters)

End(Not run)

The solution to this is to "mangle" the key names. Storr can do
this for you:
st2 <- storr_rds(tempfile(), mangle_key = TRUE)
st2$set("foo/bar", letters)
st2$list()
st2$get("foo/bar")

Behind the scenes, storr is safely encoding the filenames with base64:
dir(file.path(st2$driver$path, "keys", "objects"))

Clean up the two storrs:
st$destroy()
st2$destroy()

test_driver Test a storr driver

Description

Test that a driver passes all storr tests. This page is only of interest to people developing storr
drivers; nothing here is required for using storr.

Usage

test_driver(create)

Arguments

create A function with one arguments that when run with NULL as the argument will
create a new driver instance. It will also be called with a driver (of the same type)
as an argument - in this case, you must create a new driver object pointing at the

20 test_driver

same underlying storage (see the examples). Depending on your storage model,
temporary directories, in-memory locations, or random-but-unique prefixes may
help create isolated locations for the test (the tests assume that a storr created
with create is entirely empty).

Details

This will run through a suite of functions to test that a driver is likely to behave itself. As bugs are
found they will be added to the test suite to guard against regressions.

The test suite is included in the package as system.file("spec", package = "storr").

The procedure for each test block is:

1. Create a new driver by running dr <- create()

2. Run a number of tests.

3. Destroy the driver by running dr$destroy()

So before running this test suite, make sure this will not harm any precious data!

Examples

Testing the environment driver is nice and fast:
if (requireNamespace("testthat")) {

create_env <- function(dr = NULL, ...) {
driver_environment(dr$envir, ...)

}
test_driver(create_env)

}

To test things like the rds driver, I would run:
Not run:
if (requireNamespace("testthat")) {

create_rds <- function(dr = NULL) {
driver_rds(if (is.null(dr)) tempfile() else dr$path)

}
test_driver(create_rds)

}

End(Not run)

Index

decode64 (encode64), 3
digest::digest, 13, 15, 18
driver_dbi, 6
driver_dbi (storr_dbi), 12
driver_environment, 6
driver_environment (storr_environment),

14
driver_rds, 3, 6
driver_rds (storr_rds), 17
driver_redis_api, 2
driver_remote, 3

encode64, 3

fetch_hook_read, 4

join_key_namespace, 5

R6::R6Class, 6

saveRDS, 17
storr, 5, 13, 15, 16, 18
storr_dbi, 12
storr_environment, 6, 14
storr_external, 4, 15
storr_multistorr, 16
storr_rds, 6, 11, 17
storr_redis_api (driver_redis_api), 2

test_driver, 19

21

	driver_redis_api
	driver_remote
	encode64
	fetch_hook_read
	join_key_namespace
	storr
	storr_dbi
	storr_environment
	storr_external
	storr_multistorr
	storr_rds
	test_driver
	Index

