Package ‘stokes’

January 22, 2025
Type Package
Title The Exterior Calculus
Version 1.2-3
Depends R (>=4.1.0)

Suggests knitr, Deriv, testthat, markdown, rmarkdown, quadform,
magrittr, covr

VignetteBuilder knitr

Imports permutations (>= 1.1-2), partitions, methods, disordR (>=
0.9-7), spray (>= 1.0-26)

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Provides functionality for working with tensors, alternating
forms, wedge products, Stokes's theorem, and related concepts
from the exterior calculus. Uses 'disordR’ discipline
(Hankin, 2022, <d0i:10.48550/arXiv.2210.03856>). The
canonical reference would be M. Spivak
(1965, ISBN:0-8053-9021-9) " " Calculus on Manifolds". To cite
the package in publications please use Hankin (2022)
<doi:10.48550/arXiv.2210.17008>.

License GPL-2
LazyData yes

URL https://github.com/RobinHankin/stokes,
https://robinhankin.github.io/stokes/

BugReports https://github.com/RobinHankin/stokes/issues

NeedsCompilation no

Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Repository CRAN

Date/Publication 2025-01-22 08:40:02 UTC

https://doi.org/10.48550/arXiv.2210.03856
https://doi.org/10.48550/arXiv.2210.17008
https://github.com/RobinHankin/stokes
https://robinhankin.github.io/stokes/
https://github.com/RobinHankin/stokes/issues
https://orcid.org/0000-0001-5982-0415

2 stokes-package

Contents
stokes-package L. L 2
N 5
as.Iform e e e e 7
coeffs e e e e e 8
consolidate L 9
CONTACT o v e ot e e e e e e e e e e e e e e e e e e 10
dOVS . .. e e e 11
AX . e e 12
CX o e e e e e e 13
hodge e 14
1) 15
issmall L e e e e e 17
keep e 17
kform e 18
Kinner L e e e e e e 21
Ktensor. e e e 22
Ops.kkform 23
Phi . o o e e 25
print.stokes e 26
rformo 27
scalar ... oL L e e 29
summary.Stokes 30
symbolic L 31
tensorprod e e e e e e 33
transform L e e 34
vector_cross_product Lo e e e 36
VOIUME e e e e e e e e e 37
Wedge e 39
71 o A 40
ZETO & v v e e e e e e e e e e e e e e e e e 41

Index 43

stokes-package The Exterior Calculus
Description

Provides functionality for working with tensors, alternating forms, wedge products, Stokes’s the-
orem, and related concepts from the exterior calculus. Uses ’disordR’ discipline (Hankin, 2022,
<doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-
8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin
(2022) <do0i:10.48550/arXiv.2210.17008>.

stokes-package 3
Details
The DESCRIPTION file:
Package: stokes
Type: Package
Title: The Exterior Calculus
Version: 1.2-3
Depends: R (>=4.1.0)
Suggests: knitr, Deriv, testthat, markdown, rmarkdown, quadform, magrittr, covr
VignetteBuilder: knitr
Imports: permutations (>= 1.1-2), partitions, methods, disordR (>= 0.9-7), spray (>= 1.0-26)
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin @ gmail.cc
Maintainer: Robin K. S. Hankin <hankin.robin@ gmail.com>
Description: Provides functionality for working with tensors, alternating forms, wedge products, Stokes’s theorem, and
License: GPL-2
LazyData: yes
URL: https://github.com/RobinHankin/stokes, https://robinhankin.github.io/stokes/
BugReports: https://github.com/RobinHankin/stokes/issues
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Index of help topics:

Alt
Ops.kform

as.1form
coeffs
consolidate
contract
dovs

dx

ex

hodge
inner
issmall
keep
kform
kinner
ktensor
phi

print.stokes

rform
scalar

stokes-package
summary . stokes

symbolic
tensorprod

Alternating multilinear forms

Arithmetic Ops Group Methods for 'kform' and
'ktensor' objects

Coerce vectors to 1-forms

Extract and manipulate coefficients

Various low-level helper functions
Contractions of k-forms

Dimension of the underlying vector space
Elementary forms in three-dimensional space
Basis vectors in three-dimensional space
Hodge star operator

Inner product operator

Is a form zero to within numerical precision?
Keep or drop variables

k-forms

Inner product of two kforms

k-tensors

Elementary tensors

Print methods for k-tensors and k-forms
Random kforms and ktensors

Scalars and losing attributes

The Exterior Calculus

Summaries of tensors and alternating forms
Symbolic form

Tensor products of k-tensors

stokes-package

transform Linear transforms of k-forms
vector_cross_product The Vector cross product

volume The volume element

wedge Wedge products

zap Zap small values in k-forms and k-tensors
zero Zero tensors and zero forms

Generally in the package, arguments that are k-forms are denoted K, k-tensors by U, and spray
objects by S. Multilinear maps (which may be either k-forms or k-tensors) are denoted by M.

Author(s)
Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin @ gmail.com>

References

e M. Spivak 1971. Calculus on manifolds, Addison-Wesley.

* R. K. S. Hankin 2022. “Disordered vectors in R: introducing the disordR package.” https:
//arxiv.org/abs/2210.03856.

* R. K. S. Hankin 2022. “Sparse arrays in R: the spray package. https://arxiv.org/abs/
2210.03856.”

See Also

spray

Examples

##
U1
u2

#it

as.

##
U1

#it
K1
K2
K3

#it

Some k-tensors:
<- as.ktensor(matrix(1:15,5,3))
<- as.ktensor(cbind(1:3,2:4),1:3)

Coerce a tensor to functional form, here mapping V*3 -> R (here V=R*15):
function(U1) (matrix(rnorm(45),15,3))

Tensor product is tensorprod() or %X%:
%X% U2

A k-form is an alternating k-tensor:
<- as.kform(cbind(1:5,2:6),rnorm(5))
<- kform_general(3:6,2,1:6)

<- rform(9,3,9,runif(9))

The distributive law is true

(K1 + K2) * K3 == K1 ~ K3 + K2 * K3 # TRUE to numerical precision

#it

Wedge product is associative (non-trivial):

https://CRAN.R-project.org/package=disordR
https://arxiv.org/abs/2210.03856
https://arxiv.org/abs/2210.03856
https://CRAN.R-project.org/package=spray
https://arxiv.org/abs/2210.03856
https://arxiv.org/abs/2210.03856

Alt 5

(K1 » K2) * K3
K1 ~ (K2 * K3)

k-forms can be coerced to a function and wedge product:
f <- as.function(K1 * K2 * K3)

E is a a random point in V*k:
E <- matrix(rnorm(63),9,7)

f() is alternating:
f(E)
f(EL,7:1])

The package blurs the distinction between symbolic and numeric computing:
dx <- as.kform(1)
dy <- as.kform(2)
dz <- as.kform(3)

dx * dy * dz

K3 ~ dx * dy * dz

Alt Alternating multilinear forms

Description

Converts a k-tensor to alternating form

Usage
Alt(S,give_kform)

Arguments
S A multilinear form, an object of class ktensor
give_kform Boolean, with default FALSE meaning to return an alternating k-tensor [that is,
an object of class ktensor that happens to be alternating] and TRUE meaning to
return a k-form [that is, an object of class kform]
Details

Given a k-tensor 1T', we have

1
A(T) (v1,...,08) = pl Z sgn(o)-T (va(l), e Ug(k))

: oE€Sk

Alt

Thus for example if k = 3:

1 [T (v1,02,03) =T (v1,03,02)
Al(T) (v1,v2,v3) = 6 =T (vg,v1,v3) + T (v2,v3,v1)
+T (vs,v1,v2) — T (v, v2,v1)

and it is reasonably easy to see that Alt(7T') is alternating, in the sense that

AI(T) (1, V55 05,5y 0k) = —AW(T) (U1, ..o, 05,0, Vg, o, UR)

Function A1t () is intended to take and return an object of class ktensor; but if given a kform
object, it just returns its argument unchanged.

A short vignette is provided with the package: type vignette("Alt") at the commandline.

Value

Returns an alternating k-tensor. To work with k-forms, which are a much more efficient represen-
tation of alternating tensors, use as.kform().

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

(X <- ktensor(spray(rbind(1:3),6)))
ALt (X)
Alt(X,give_kform=TRUE)

S <- as.ktensor(expand.grid(1:3,1:3),rnorm(9))
S
ALt(S)

issmall(Alt(S) - Alt(Alt(S))) # should be TRUE; Alt() is idempotent

a <- rtensor()

V <- matrix(rnorm(21),ncol=3)

LHS <- as.function(Alt(a)) (V)

RHS <- as.function(Alt(a,give_kform=TRUE)) (V)
c(LHS=LHS,RHS=RHS , diff=LHS-RHS)

as.lform 7

as.1form Coerce vectors to 1-forms

Description
Given a vector, return the corresponding 1-form; the exterior derivative of a O-form (that is, a scalar
function). Function grad() is a synonym.
Usage
as.1form(v)
grad(v)
Arguments

v A vector with element ¢ being 0 f/0x;

Details

The exterior derivative of a k-form ¢ is a (k 4+ 1)-form d¢ given by

WP o) = i [

We can use the facts that
d(fday, Ao ANday,) =df Aday, A Aday,
and .
df =) (D;f) du;
j=1
to calculate differentials of general k-forms. Specifically, if
o= Z Giy . ipdxiy A Adag,
1<i; < <ip<n

then .

dp= > D_Djai, i dzj] Adwy, A Ada,

1<i; < <ip<n j=1

The entry in square brackets is given by grad(). See the examples for appropriate R idiom.

Value

A one-form

8 coeffs

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

as.1form(1:9) # note ordering of terms

as.1form(rnorm(20))

grad(c(4,7)) * grad(1:4)

coeffs Extract and manipulate coefficients

Description

Extract and manipulate coefficients of ktensor and kform objects; this using the methods of the
spray package.

Functions as. spray() and nterms() are imported from spray.

Details

To see the coefficients of a kform or ktensor object, use coeffs(), which returns a disord ob-
ject (this is actually spray: :coeffs()). Replacement methods also use the methods of the spray
package. Note that disordR discipline is enforced.

Experimental functionality for “pure” extraction and replacement is provided, following spray ver-
sion 1.0-25 or above. Thus idiom such as a[abs(coeffs(a)) > 0.1] or indeed a[coeffs(a) < 1]
<- 0 should work as expected.

Author(s)

Robin K. S. Hankin

https://CRAN.R-project.org/package=spray
https://CRAN.R-project.org/package=spray
https://CRAN.R-project.org/package=spray
https://CRAN.R-project.org/package=disordR
https://CRAN.R-project.org/package=spray

consolidate 9

Examples

(a <~ kform_general(5,2,1:10))

coeffs(a) # a disord object

coeffs(a)[coeffs(a)%%2==1] <- 100 # replace every odd coeff with 100
a

coeffs(ax0)
a <- rform()

alcoeffs(a) < 5] # experimental
alcoeffs(a) > 3] <- 99 # experimental

consolidate Various low-level helper functions

Description

Various low-level helper functions used in A1t () and kform()

Usage

consolidate(S)
kill_trivial_rows(S)
include_perms(S)
kform_to_ktensor(S)

Arguments

S Object of class spray

Details

Low-level helper functions.

* Function consolidate() takes a spray object, and combines any rows that are identical up to
a permutation, respecting the sign of the permutation

» Function kill_trivial_rows() takes a spray object and deletes any rows with a repeated
entry (which have k-forms identically zero)

 Function include_perms() replaces each row of a spray object with all its permutations,
respecting the sign of the permutation

¢ Function ktensor_to_kform() coerces a k-form to a k-tensor

Value

The functions documented here all return a spray object.

10 contract

Author(s)
Robin K. S. Hankin

See Also

ktensor,kformAlt

Examples

(S <- spray(matrix(c(1,1,2,2,1,3,3,1,3,5),ncol=2,byrow=TRUE),1:5))

kill_trivial_rows(S) # (rows 1 and 3 killed, repeated entries)

consolidate(S) # (merges rows 2 and 4)
include_perms(S) # returns a spray object, not alternating tensor.
contract Contractions of k-forms
Description

A contraction is a natural linear map from k-forms to k — 1-forms.

Usage

contract(K,v,lose=TRUE)
contract_elementary(o,Vv)

Arguments
K A Ek-form
o) Integer-valued vector corresponding to one row of an index matrix
lose Boolean, with default TRUE meaning to coerce a O-form to a scalar and FALSE
meaning to return the formal 0-form
% A vector; in function contract (), if a matrix, interpret each column as a vector
to contract with
Details

Given a k-form ¢ and a vector v, the contraction ¢, of ¢ and v is a k — 1-form with

Oy (Vl, . ,vk_l) =0 (v,vl, e 7vk'_l)

provided k > 1; if k = 1 we specify ¢, = ¢(v).

Function contract_elementary() is a low-level helper function that translates elementary k-
forms with coefficient 1 (in the form of an integer vector corresponding to one row of an index
matrix) into its contraction with v.

There is an extensive vignette in the package, vignette("contract”).

dovs 11

Value

Returns an object of class kform.

Author(s)

Robin K. S. Hankin

References

Steven H. Weintraub 2014. “Differential forms: theory and practice”, Elsevier (Definition 2.2.23,
chapter 2, page 77).

See Also

wedge,lose

Examples

contract(as.kform(1:5),1:8)
contract(as.kform(1),3) # 0-form

contract_elementary(c(1,2,5),c(1,2,10,11,71))

Now some verification [takes ~10s to run]:

#o <- kform(spray(t(replicate(2, sample(9,4))), runif(2)))
#V <- matrix(rnorm(36),ncol=4)

#33 <- c(

as.function(o)(V),

as.function(contract(o,V[,1,drop=TRUE]))(V[,-1]1), # scalar

as.function(contract(o,V[,1:21))(V[,-(1:2),drop=FALSE]),

as.function(contract(o,V[,1:31))(V[,-(1:3),drop=FALSE]),

as.function(contract(o,V[,1:4],lose=FALSE))(V[,-(1:4),drop=FALSE])
#)

#print(jj)

#max(jj) - min(jj) # zero to numerical precision

dovs Dimension of the underlying vector space

12 dx

Description

A k-form w € A¥(V) maps V* to the reals, where V' = R™. Function dovs() returns n, the
dimensionality of the underlying vector space. The function itself is almost trivial, returning the
maximum of the index matrix.

Special dispensation is given for zero-forms and zero tensors, which return zero.
Vignette dovs provides more discussion.

Usage
dovs (K)

Arguments

K A k-form or k-tensor

Value

Returns a non-negative integer

Author(s)
Robin K. S. Hankin

Examples

dovs(rform())

table(replicate(20,dovs(rform(3))))

dx Elementary forms in three-dimensional space

Description

Objects dx, dy and dz are the three elementary one-forms on three-dimensional space. These objects
can be generated by running script ‘vignettes/dx.Rmd’, which includes some further discussion
and technical documentation and creates file ‘dx.rda’ which resides in the data/ directory.

The default print method is a little opaque for these objects. To print them more intuitively, use
options(kform_symbolic_print = "dx")
which is documented at print.Rd.

Usage
data(dx)

ex 13

Details

See vignettes dx and ex for an extended discussion; a use-case is given in vector_cross_product.

Author(s)
Robin K. S. Hankin

References

* M. Spivak 1971. Calculus on manifolds, Addison-Wesley

See Also

d,print.kform

Examples

dx
hodge (dx)
hodge (dx, 3)

dx # default print method, not particularly intelligible
options(kform_symbolic_print = 'dx') # shows dx dy dz

dx

dx*dz

hodge (dx, 3)

as.function(dx) (ex)

options(kform_symbolic_print = NULL) # revert to default

ex Basis vectors in three-dimensional space

Description

Objects ex, ey and ez are the three elementary one-forms on three-dimensional space, sometimes
denoted (e, ey, €,). These objects can be generated by running script ‘vignettes/ex.Rmd’, which
includes some further discussion and technical documentation and creates file ‘exeyez.rda’ which
resides in the data/ directory.

Details

See vignettes dx and ex for an extended discussion; a use-case is given in vector_cross_product.

14 hodge

Author(s)
Robin K. S. Hankin

References

* M. Spivak 1971. Calculus on manifolds, Addison-Wesley

See Also

d,print.kform

Examples

as.function(dx) (ex)

(X <= as.kform(matrix(1:12,nrow=4),c(1,2,7,11)))
as.function(X) (cbind(e(2,12),e(6,12),e(10,12)))

hodge Hodge star operator

Description

Given a k-form, return its Hodge dual

Usage
hodge (K, n=dovs(K), g, lose=TRUE)

Arguments
K Object of class kform
n Dimensionality of space, defaulting the the largest element of the index
g Diagonal of the metric tensor, with missing default being the standard metric of
the identity matrix. Currently, only entries of £1 are accepted
lose Boolean, with default TRUE meaning to coerce to a scalar if appropriate
Value

Given a k-form, in an n-dimensional space, return a (n — k)-form.

Note

Most authors write the Hodge dual of ¢/ as % or %, but Weintraub uses .

inner

Author(s)

Robin K. S. Hankin

See Also

wedge

Examples

(o <~ kform_general(5,2,1:10))
hodge (o)
o == hodge(hodge(0))

Faraday <- kform_general(4,2,runif(6)) # Faraday electromagnetic tensor
mink <- c(-1,1,1,1) # Minkowski metric
hodge (Faraday, g=mink)

Faraday == Faraday |>
hodge(g=mink) |>
hodge (g=mink) |>
hodge(g=mink) |>
hodge (g=mink)

hodge (dx,3) == dy*dz

Some edge-cases:
hodge(scalar(1),2)

hodge (zeroform(5),9)

hodge (volume(5))

hodge (volume(5), lose=TRUE)
hodge(scalar(7),n=9)

inner Inner product operator

Description

The inner product

Usage

inner(M)

16 inner

Arguments

M square matrix

Details

The inner product of two vectors x and y is usually written (x,y) or x -y, but the most general
form would be x” My where M is a matrix. Noting that inner products are multilinear, that is
(x,ay +bz) = a(x,y) + b(x,2) and (ax + by,z) = a(x,2z) + b(y,z), we see that the inner
product is indeed a multilinear map, that is, a tensor.

Given a square matrix M, function inner (M) returns the 2-form that maps x,y to x My. Non-
square matrices are effectively padded with zeros.

A short vignette is provided with the package: type vignette(”inner") at the commandline.

Value

Returns a k-tensor, an inner product

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

inner(diag(7))
inner(matrix(1:9,3,3))

Compare the following two:
Alt(inner(matrix(1:9,3,3))) # An alternating k tensor
as.kform(inner(matrix(1:9,3,3))) # Same thing coerced to a kform

f <- as.function(inner(diag(7)))
X <- matrix(rnorm(14),ncol=2) # random element of (R*7)"2
f(X) - sum(X[,1]*X[,2]1) # zero to numerical precision

verify positive-definiteness:
g <- as.function(inner(crossprod(matrix(rnorm(56),8,7))))
stopifnot(g(kronecker(rnorm(7),t(c(1,1))))>0)

issmall 17

issmall Is a form zero to within numerical precision?

Description

Given a k-form, return TRUE if it is “small”

Usage
issmall(M, tol=1e-8)

Arguments
M Object of class kform or ktensor
tol Small tolerance, defaulting to 1e-8
Value

Returns a logical

Author(s)
Robin K. S. Hankin

Examples

o <- kform_general(3,2,runif(3))
M <- matrix(rnorm(9),3,3)

discrepancy <- o - pullback(pullback(o,M),solve(M))
discrepancy # print method might imply coefficients are zeros

issmall(discrepancy) # should be TRUE
is.zero(discrepancy) # might be FALSE

keep Keep or drop variables

Description

Keep or drop variables

Usage

keep(K, yes)
discard(K, no)

18 kform

Arguments

K Object of class kform

yes, no Specification of dimensions to either keep (yes) or discard (no)
Details

Function keep(omega, yes) keeps the terms specified and discard(omega,no) discards the terms
specified. It is not clear to me what these functions mean from a mathematical perspective.

Value

The functions documented here all return a kform object.

Author(s)
Robin K. S. Hankin

See Also

lose

Examples

(o <- kform_general(7,3,seq_len(choose(7,3))))
keep(o,1:4) # keeps only terms with dimensions 1-4
discard(o,1:2) # loses any term with a "1" in the index

kform k-forms

Description

Functionality for dealing with k-forms

Usage

kform(S)
as.kform(M, coeffs, lose=TRUE)
kform_basis(n, k)
kform_general (W, k,coeffs,lose=TRUE)
is.kform(x)

d(i)

e(i,n)

S3 method for class 'kform'
as.function(x,...)

kform 19

Arguments
n Dimension of the vector space V = R"
i Integer
k A k-form maps V¥ to R
W Integer vector of dimensions
M, coeffs Index matrix and coefficients for a k-form
S Object of class spray
lose Boolean, with default TRUE meaning to coerce a O-form to a scalar and FALSE
meaning to return the formal O-form
X Object of class kform
Further arguments, currently ignored
Details

A k-form is an alternating k-tensor. In the package, k-forms are represented as sparse arrays (spray
objects), but with a class of c("kform”, "spray”). The constructor function kform() takes a
spray object and returns a kform object: it ensures that rows of the index matrix are strictly non-
negative integers, have no repeated entries, and are strictly increasing. Function as.kform() is
more user-friendly.

* kform() is the constructor function. It takes a spray object and returns a kform.
e as.kform() also returns a kform but is a bit more user-friendly than kform().

e kform_basis() is a low-level helper function that returns a matrix whose rows constitute a
basis for the vector space A*(R™) of k-forms.

* kform_general () returns a kform object with terms that span the space of alternating tensors.
e is.kform() returns TRUE if its argument is a kform object.

e d() is an easily-typed synonym for as. kform(). The idea is that d(1) = dx, d(2)=dy, d(5)=dx"5,
etc. Also note that, for example, d(1:3)=dx*dy*dz, the volume form.

Recall that a k-tensor is a multilinear map from V'* to the reals, where V' = R™ is a vector space.
A multilinear k-tensor 7T’ is alternating if it satisfies
T (V1. ey Vige s VgyensU) = =T (V1,000 05,000, V4, 0o, U)

In the package, an object of class kform is an efficient representation of an alternating tensor.

Function kform_basis() is a low-level helper function that returns a matrix whose rows constitute
a basis for the vector space A¥(R™) of k-forms:

b= Z @iy . iy Az, A Ada,

1<ii < <ix<n

and indeed we have:

Agy .4y — ¢(ei17 s 7eik)

where e;,1 < j < kis a basis for V.

20 kform

Value

All functions documented here return a kform object except as. function.kform(), which returns
a function, and is.kform(), which returns a Boolean, and e (), which returns a conjugate basis to
that of d().

Note

Hubbard and Hubbard use the term “k-form”, but Spivak does not.

Author(s)

Robin K. S. Hankin

References

Hubbard and Hubbard; Spivak

See Also

ktensor,lose

Examples

as.kform(cbind(1:5,2:6),rnorm(5))
kform_general(1:4,2,coeffs=1:6) # used in electromagnetism

K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(5:8,2,1:6)
K12K2 # or wedge(K1,K2)

d(1:3)
dx*dy*dz # same thing

d(sample(9)) # coeff is +/-1 depending on even/odd permutation of 1:9

f <- as.function(wedge(K1,K2))
E <- matrix(rnorm(32),8,4)
f(E) + f(E[,c(1,3,2,4)]1) # should be zero by alternating property

options(kform_symbolic_print = 'd")
(d(5)+d(7)) * (d(2)*d(5) + 6*d(4)"d(7))
options(kform_symbolic_print = NULL) # revert to default

kinner 21

kinner Inner product of two kforms

Description

Given two k-forms « and 3, return the inner product {(«, 3). Here our underlying vector space V is
R™.

The inner product is a symmetric bilinear form defined in two stages. First, we specify its behaviour
on decomposable k-forms « = a3 A--- Aagand 8= 51 A--- A S as

<Oé, /6> = det <<ai7 BJ)lS%JS”)
and secondly, we extend to the whole of A*(V') through linearity.

Usage
kinner(ol,02,M)

Arguments
o1, 02 Objects of class kform
M Matrix

Value

Returns a real number

Note

There is a vignette available: type vignette("kinner") at the command line.

Author(s)
Robin K. S. Hankin

See Also
hodge

Examples
a <= (2%dx)*(3%dy)
b <~ (5%dx)*(7*dy)

kinner(a,b)
det(matrix(c(2x5,0,0,3%7),2,2)) # mathematically identical, slight numerical mismatch

22 ktensor

ktensor k-tensors

Description

Functionality for k-tensors

Usage

ktensor(S)

as.ktensor (M, coeffs)
is.ktensor(x)

S3 method for class 'ktensor'

as.function(x,...)
Arguments
M, coeffs Matrix of indices and coefficients, as in spray (M, coeffs)
S Object of class spray
X Object of class ktensor

Further arguments, currently ignored

Details

A k-tensor object S is a map from V'* to the reals R, where V is a vector space (here R") that
satisfies multilinearity:

S vy avs, . vg) =a- S (V1.0 Vi, UE)

and

S (Vs v+ 0 k) =S (V1 Vi) S (U1, v k)

Note that this is not equivalent to linearity over V"% (see examples).

In the stokes package, k-tensors are represented as sparse arrays (spray objects), but with a class
of c("ktensor”, "spray”). This is a natural and efficient representation for tensors that takes
advantage of sparsity using spray package features.

Function as.ktensor () will coerce a k-form to a k-tensor via kform_to_ktensor().

Value
All functions documented here return a ktensor object except as.function.ktensor(), which
returns a function.

Author(s)
Robin K. S. Hankin

https://CRAN.R-project.org/package=stokes
https://CRAN.R-project.org/package=spray

Ops.kform 23

References

Spivak 1961

See Also

tensorprod,kformwedge

Examples

as.ktensor(cbind(1:4,2:5,3:6),1:4)

Test multilinearity:

k <-4
n<-5
u<-3

Define a randomish k-tensor:
S <- ktensor(spray(matrix(1+sample(uxk)%%n,u,k),seq_len(u)))

And a random point in V*k:
E <- matrix(rnorm(nxk),n,k)

E1 <- E2 <- E3 <-E

x1 <= rnorm(n)
x2 <= rnorm(n)
r1 <- rnorm(1)
r2 <- rnorm(1)

change one column:
E1[,2] <~ x1

E2[,2] <- x2

E3[,2] <- r1xx1 + r2%x2
f <- as.function(S)

ri*f(E1) + r2xf(E2) -f(E3) # should be small

Note that multilinearity is different from linearity:
r1i*f(E1) + r2xf(E2) - f(r1*E1 + r2*E2) # not small!

Ops.kform Arithmetic Ops Group Methods for kform and ktensor objects

Description

Allows arithmetic operators to be used for k-forms and k-tensors such as addition, multiplication,
etc, where defined.

24

Ops.kform

Usage

S3 method for class 'kform'
Ops(el, e2 = NULL)

S3 method for class 'ktensor'
Ops(el, e2 = NULL)

Arguments

el, e2 Objects of class kform or ktensor

Details

The functions Ops.kform() and Ops.ktensor() pass unary and binary arithmetic operators (“+”,

G_9 <

, %7, “/” and “*”) to the appropriate specialist function by coercing to spray objects.

For wedge products of k-forms, use wedge () or %*% or *; and for tensor products of k-tensors, use
tensorprod() or %X%.

Value

All functions documented here return an object of class kform or ktensor.

Note

A plain asterisk, “*” behaves differently for ktensors and kforms. Given two ktensors T1, T2, then
“T1%T2” will return the their tensor product. This on the grounds that the idiom has only one natural
interpretation. But its use is discouraged (use %X% or tensorprod() instead). An asterisk can also
be used to multiply a tensor by a scalar, as in T1*5.

An asterisk cannot be used to multiply two kforms K1, K2, as in K1xK2, which will always return an
error. This on the grounds that it has no sensible interpretation in general and you probably meant to
use a wedge product, K12K2. Note that multiplication by scalars is acceptable, as in K1x6. Further
note that K1xK2 returns an error even if one or both is a O-form (or scalar), as in K1*scalar(3).
This behaviour may change in the future.

In the package the caret (“*”) evaluates the wedge product; note that %*% is also acceptable. Powers
simply do not make sense for alternating forms: S %*% S = S*S is zero identically. Here the caret is
interpreted consistently as a wedge product, and if one of the factors is numeric it is interpreted as
a zero-form (that is, a scalar). Thus S*2 =wedge(S,2) = 2*S = Sx2 = S+S, and indeed S*n==Sx*n.
Caveat emptor! If S is a kform object, it is very tempting [but incorrect] to interpret “S*3” as
something like “S to the power 3”. See also the note at Ops.clifford in the clifford package.

Powers are not implemented for ktensors on the grounds that a ktensor to the power zero is not
defined.

Note that one has to take care with order of operations if we mix * with *. For example, dx * (6xdy)
is perfectly acceptable; but (dx * 6)*dy) will return an error, as will the unbracketed form dx * 6
* dy. In the second case we attempt to use an asterisk to multiply two k-forms, which triggers the
error.

Author(s)

Robin K. S. Hankin

https://CRAN.R-project.org/package=clifford

phi 25

Examples

dx_1 * dx_2 + 6dx_5 * dx_6:
as.kform(1) * as.kform(2) + 6*as.kform(5) * as.kform(6)

k1 <- kform_general(4,2,rnorm(6))
k2 <- kform_general(4,2,rnorm(6))

E <- matrix(rnorm(8),4,2)
as.function(k1+k2) (E)

verify linearity, here 2xkl1 + 3xk2:
as.function(2xk1+3xk2) (E)-(2*as.function(k1)(E) + 3*as.function(k2)(E))
should be small

phi Elementary tensors

Description

Creates the elementary tensors or tensor products of elementary tensors

Usage

phi(n)

Arguments

n Vector of strictly non-negative integers

Details

If vq,. .., v, is the standard basis for R™ then ¢; is defined so that ¢;(v;) = &;;. phi(n) returns

P

If n is a vector of strictly positive integers, then phi(n) returns the tensor cross product of ¢ applied
to the individual elements of n [which is a lot easier and more obvious than it sounds].

Note

There is a vignette, phi

Author(s)

Robin K. S. Hankin

26 print.stokes

Examples

phi(6)
phi (6:8)

v <- sample(9)
phi(v) == Reduce("%X%",sapply(v,phi))

print.stokes Print methods for k-tensors and k-forms

Description

Print methods for objects with options for printing in matrix form or multivariate polynomial form

Usage

S3 method for class 'kform'

print(x, ...)

S3 method for class 'ktensor'

print(x, ...)
Arguments

X k-form or k-tensor

Further arguments (currently ignored)

Details

Printing is dispatched to print.ktensor() and print.kform() depending on its argument. Spe-
cial dispensation is given for the zero object.

Although k-forms are alternating tensors and thus mathematically are tensors, they are handled
differently.

The default print method uses the spray print methods, and as such respects the polyform option.
However, setting polyform to TRUE can give misleading output, because spray objects are inter-
preted as multivariate polynomials not differential forms (and in particular uses the caret to signify
powers).

It is much better to use options ktensor_symbolic_print or kform_symbolic_print instead: the
bespoke print methods print.kform() and print.ktensor () are sensitive to these options.

For kform objects, if option kform_symbolic_print is non-null, the print method uses as. symbolic()
to give an alternate way of displaying k-tensors and k-forms. The generic non-null value for this
option would be “x” which gives output like “dx1 * dx2”. However, it has two special values: set
kform_symbolic_print to “dx” for output like “dx * dz” and “txyz” for output like “dt * dx”,

useful in relativistic physics with a Minkowski metric. See the examples.

For ktensor objects, if option ktensor_symbolic_print is TRUE, a different system is used. Given
a tensor 3¢y ® 1 — Hpa ® ¢p2, for example (where ¢;(z7) = §7), the method will give output that
looks like “+3 d4*d1 -5 d2xd2”. I am not entirely happy with this and it might change in future.

More detail is given at symbolic.Rd and the dx vignette.

https://CRAN.R-project.org/package=spray

rform 27

Value

Returns its argument invisibly.

Note

For both kform and ktensor objects, the print method asserts that its argument is a map from V* to
R with V' = R". Here, n is the largest element in the index matrix. However, such a map naturally
furnishes a map from (R™)* to R, provided that m > n via the natural projection from R™ to
R™. Formally this would be (x1,...,2,) — (z1,...,Zn,0,...,0) € R™. In the case of the zero
k-form or k-tensor, “n” is to be interpreted as “any n > 0. See also dovs().

Author(s)
Robin K. S. Hankin

See Also

as.symbolic,dovs

Examples

a <- rform()
a

nyn

options(kform_symbolic_print = "x")
a

options(kform_symbolic_print = "dx")
kform(spray(kform_basis(3,2),1:3))

kform(spray(kform_basis(4,2),1:6)) # runs out of symbols

options(kform_symbolic_print = "txyz")
kform(spray(kform_basis(4,2),1:6)) # standard notation

options(kform_symbolic_print = NULL) # revert to default
a

rform Random kforms and ktensors

Description

Random k-form objects and k-tensors, intended as quick “get you going” examples

28

Usage

rform

rform(terms=9,k=3,n=7,coeffs,ensure=TRUE)

rtensor(terms=9

Arguments

terms
k, n
coeffs

ensure

Details

,k=3,n=7,coeffs)

Number of distinct terms
A k-form maps V* to R, where V = R"
The coefficients of the form; if missing use seq_len(terms)

Boolean with default TRUE meaning to ensure that the dovs() of the returned
value is in fact equal to n. If FALSE, sometimes the dovs() is strictly less than n
because of random sampling

Random k-form objects and k-tensors, of moderate complexity.

Note that argument terms is an upper bound, as the index matrix might contain repeats which are

combined.

Value

All functions documented here return an object of class kform or ktensor.

Author(s)

Robin K. S. Hankin

Examples

(a <= rform())
(b <= rform())
a*b

a
a * dx
a * dx * dy

(x <= rtensor())
X %X% X

scalar 29

scalar Scalars and losing attributes

Description

Scalars: 0-forms and O-tensors

Usage

scalar(s,kform=TRUE, lose=FALSE)
is.scalar(M)

“oform™ (s=1,1lose=FALSE)
“@tensor” (s=1,lose=FALSE)

S3 method for class 'kform'

lose(M)
S3 method for class 'ktensor'
lose(M)
Arguments
S A scalar value; a number
kform Boolean with default TRUE meaning to return a kform and FALSE meaning to
return a ktensor
M Object of class ktensor or kform
lose In function scalar(), Boolean with TRUE meaning to return a normal scalar,
and default FALSE meaning to return a formal O-form or O-tensor
Details

A k-tensor (including k-forms) maps k vectors to a scalar. If £ = 0, then a 0-tensor maps no vectors
to a scalar, that is, mapping nothing at all to a scalar, or what normal people would call a plain old
scalar. Such forms are created by a couple of constructions in the package, specifically scalar(),
kform_general(1,0) and contract(). These functions take a 1ose argument that behaves much
like the drop argument in base extraction. Functions @form() and @tensor() are wrappers for
scalar().

Function lose() takes an object of class ktensor or kform and, if of arity zero, returns the coeffi-
cient.

Note that function kform() always returns a kform object, it never loses attributes.

There is a slight terminological problem. A k-form maps k vectors to the reals: so a O-form maps
0 vectors to the reals. This is what anyone on the planet would call a scalar. Similarly, a O-tensor
maps 0 vectors to the reals, and so it too is a scalar. Mathematically, there is no difference between
0-forms and O-tensors, but the package print methods make a distinction:

> scalar(5,kform=TRUE)
An alternating linear map from V*@ to R with V=R"0:

30 summary.stokes

val
= 5
> scalar(5,kform=FALSE)
A linear map from V*@ to R with V=R"0:
val

Compare zero tensors and zero forms. A zero tensor maps V¥ to the real number zero, and a zero
form is an alternating tensor mapping V'* to zero (so a zero tensor is necessarily alternating). See
zero.Rd.

Value

The functions documented here return an object of class kformor ktensor, except for is. scalar(),
which returns a Boolean.

Author(s)

Robin K. S. Hankin

See Also

zeroform

Examples

o <- scalar(5)
o
lose(o)

kform_general(1,0)
kform_general(1,0,lose=FALSE)

summary . stokes Summaries of tensors and alternating forms

Description

A summary method for tensors and alternating forms, and a print method for summaries.

symbolic

Usage
S3 method for class 'kform'
summary (object, ...)
S3 method for class 'ktensor'
summary (object, ...)
S3 method for class 'summary.kform'
print(x, ...)
S3 method for class 'summary.ktensor'
print(x, ...)
Arguments
object, x Object of class ktensor or kform

Further arguments, passed to head()

Details

Summary methods for tensors and alternating forms. Uses spray

Author(s)
Robin K. S. Hankin

Examples

a <- rform(100)
summary (a)

options(kform_symbolic_print

summary (a)

TRUE)

options(kform_symbolic_print = NULL) # restore default

::summary ().

31

symbolic

Symbolic form

Description

Returns a character string representing k-tensor and k-form objects in symbolic form. Used by the
print method if either option kform_symbolic_print or ktensor_symbolic_print is non-null.

Usage

as.symbolic(M, symbols=letters,d="")

32 symbolic

Arguments
M Object of class kform or ktensor; a map from V¥ to R, where V = R"
symbols A character vector giving the names of the symbols
d String specifying the appearance of the differential operator

Details

Spivak (p89), in archetypically terse writing, states:

A function f is considered to be a O-form and f - w is also written f A w. If f: R* — R is
differentiable, then D f(p) € A! (R™). By a minor modification we therefore obtain a 1-form df,
defined by

df(p) (vp) = Df(p)(v).

Let us consider in particular the 1-forms dz’. It is customary to let 2’ denote the function = (On R?
we often denote !, 22, and 22 by x, y, and z). This standard notation has obvious disadvantages
but it allows many classical results to be expressed by formulas of equally classical appearance.
Since dz*(p)(v,) = dr'(p)(v,) = Dr'(p)(v) = v, we see that dz'(p),...,dz"(p) is just the
dual basis to (€1)p, . . ., (€n)p. Thus every k-form w can be written

w= E Wiy, apda® Ao Adat.
i <o <ip

Function as.symbolic() uses this format. For completeness, we add (p77) that k-tensors may be
expressed in the form

n

Z Qiyyiy, ¢i1 - ® ¢ik-

i1, in=1

and this form is used for k-tensors. The print method for tensors, print.ktensor (), writes d1 for
$1, d2 for ¢ [where ¢;(27) = &7].

Value

Returns a “noquote” character string.

Author(s)

Robin K. S. Hankin

See Also

print.stokes,dx

tensorprod 33

Examples
(o <- kform_general(3,2,1:3))
as.symbolic(o,d="d",symbols=letters[23:26])

(a <= rform(n=50))
as.symbolic(a,symbols=state.abb)

tensorprod Tensor products of k-tensors

Description

Tensor products of k-tensors

Usage

tensorprod(U, ...)
tensorprod2(U1,U2)

Arguments
U, U1, U2 Object of class ktensor
Further arguments, currently ignored
Details

Given a k-tensor .S and an [-tensor 7', we can form the tensor product S ® 7', defined as

S®T(v1,...,vk,vkﬂ,...,vkﬂ) :S(Ul,...’l)k)'T(’U}C+1,...’Uk+l).

Package idiom for this includes tensorprod(S,T) and S %X% T; note that the tensor product is not
commutative. Function tensorprod() can take any number of arguments (the result is well-defined
because the tensor product is associative); it uses tensorprod2() as a low-level helper function.

Value

The functions documented here all return a spray object.

Note
The binary form %X% uses uppercase X to avoid clashing with %x% which is the Kronecker product
in base R.

Author(s)
Robin K. S. Hankin

34 transform

References

Spivak 1961

See Also

ktensor

Examples
(A <- ktensor(spray(matrix(c(1,1,2,2,3,3),2,3,byrow=TRUE),1:2)))
(B <- ktensor(spray(10+matrix(4:9,3,2),5:7)))
tensorprod(A,B)
A %X% B - B %X% A
Va <- matrix(rnorm(9),3,3)

Vb <- matrix(rnorm(38),19,2)

LHS <- as.function(A %X% B)(cbind(rbind(Va,matrix(@,19-3,3)),Vb))
RHS <- as.function(A)(Va) * as.function(B)(Vb)

¢ (LHS=LHS, RHS=RHS, di f f=LHS-RHS)

transform Linear transforms of k-forms

Description

Given a k-form, express it in terms of linear combinations of the dx;

Usage

pullback(K,M)
stretch(K,d)

Arguments
K Object of class kform
M Matrix of transformation

d Numeric vector representing the diagonal elements of a diagonal matrix

transform 35

Details

Function pullback() calculates the pullback of a function. A vignette is provided at ‘pullback.Rmd’.

Suppose we are given a two-form
w = E al-jdxl- A dl‘j
i<j

and relationships
dxi - Z Mi’r'dyT

then we would have

w=Y a; (Z MirdyT> A (Z Mjrdyr> :

i<j
The general situation would be a k-form where we would have

w = Z ail...ikdxil A+ A dxik

i< <ip

giving

w= Y lalk (27; Mi”.dyr> Ao A (ZT: Mik,.dy,)] :

i1 <<t

The transform() function does all this but it is slow. I am not 100% sure that there isn’t a much
more efficient way to do such a transformation. There are a few tests in tests/testthat and a
discussion in the stokes vignette.

Function stretch() carries out the same operation but for M a diagonal matrix. It is much faster
than transform().

Value

The functions documented here return an object of class kform.

Author(s)
Robin K. S. Hankin

References

S. H. Weintraub 2019. Differential forms: theory and practice. Elsevier. (Chapter 3)

See Also

wedge

36 vector_cross_product

Examples

Example in the text:

K <- as.kform(matrix(c(1,1,2,3),2,2),c(1,5))
M <- matrix(1:9,3,3)

pullback(K,M)

Demonstrate that the result can be complicated:
M <- matrix(rnorm(25),5,5)
pullback(as.kform(1:2),M)

Numerical verification:
o <- volume(3)

02 <- pullback(pullback(o,M),solve(M))
max (abs(coeffs(0-02))) # zero to numerical precision

Following should be zero:
pullback(as.kform(1),M)-as.kform(matrix(1:5),c(crossprod(M,c(1,rep(0,4)))))

Following should be TRUE:
issmall(pullback(o,crossprod(matrix(rnorm(10),2,5))))

Some stretch() use-cases:

p <- rform()

p

stretch(p,seq_len(7))

stretch(p,c(1,0,0,1,1,1,1)) # kills dimensions 2 and 3

vector_cross_product The Vector cross product

Description

The vector cross product u x v for u, v € R is defined in elementary school as

u X v = (ugv3 — UgVs, UgU3 — Uz, U3 — U3V2) -

Function vcp3 () is a convenience wrapper for this. However, the vector cross product may easily be
generalized to a product of n—1-tuples of vectors in R”, given by package function vector_cross_product().

Vignette vector_cross_product, supplied with the package, gives an extensive discussion of vec-
tor cross products, including formal definitions and verification of identities.
Usage

vector_cross_product (M)
vep3(u,v)

volume 37

Arguments
M Matrix with one more row than column; columns are interpreted as vectors
u, v Vectors of length 3, representing vectors in R3

Details

A joint function profile for vector_cross_product() and vcp3() is given with the package at
vignette("vector_cross_product”).

Value

Returns a vector

Author(s)
Robin K. S. Hankin

See Also

wedge

Examples

vector_cross_product(matrix(1:6,3,2))

M <- matrix(rnorm(30),6,5)

LHS <- hodge(as.1form(M[,1]1)*as.1form(M[,2])*as.1form(M[,3])*as.1form(M[,4]1)*as.1form(M[,5]1))
RHS <- as.1form(vector_cross_product(M))

LHS-RHS # zero to numerical precision

Alternatively:
hodge (Reduce (™ *~,sapply(seq_len(5),function(i){as.1form(M[,i]1)},simplify=FALSE)))

volume The volume element

Description

The volume element in n dimensions

Usage

volume(n)
is.volume (K, n=dovs(K))

38 volume

Arguments
n Dimension of the space
K Object of class kform
Details

Spivak phrases it well (theorem 4.6, page 82):

If V' has dimension n, it follows that A (V') has dimension 1. Thus all alternating n-tensors on V'
are multiples of any non-zero one. Since the determinant is an example of such a member of A™ (V)
it is not surprising to find it in the following theorem:

Let vy, ..., v, be abasis for V and letw € A™(V). If w; = 2?21 a;;v; then

w(wi,...,wy) =det (ai;) - w(vi,...vn)

(see the examples for numerical verification of this).

Neither the zero k-form, nor scalars, are considered to be a volume element.

Value

Function volume () returns an object of class kform; function is.volume() returns a Boolean.

Author(s)
Robin K. S. Hankin

References

* M. Spivak 1971. Calculus on manifolds, Addison-Wesley

See Also

zeroform,as. 1form,dovs

Examples

dx*dy*dz == volume(3)

p<-1

for(i in 1:7){p <- p * as.kform(i)}
p

p == volume(7) # should be TRUE

o <- volume(5)

M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M) # should be zero

is.volume(d(1) * d(2) * d(3) * d(4))

wedge

is.volume(d(1:9))

39

wedge Wedge products

Description

Wedge products of k-forms
Usage

wedge2(K1,K2)

wedge(x, ...)

Arguments

K1,K2, x, ... k-forms

Details

Wedge product of k-forms.

Value

The functions documented here return an object of class kform.

Note

In general use, use wedge() or * or %*%, as documented under Ops. Function wedge() uses low-

level helper function wedge2 (), which takes only two arguments.

A short vignette is provided with the package: type vignette("wedge”) at the commandline.

Author(s)

Robin K. S. Hankin

See Also

Ops

40 zap

Examples

k1 <- as.kform(cbind(1:5,2:6),1:5)
k2 <- as.kform(cbind(5:7,6:8,7:9),1:3)
k3 <- kform_general(1:6,2)

al <- wedge2(k1,wedge2(k2,k3))
a2 <- wedge2(wedge2(kl,k2),k3)

is.zero(al-a2) # NB terms of al, a2 in a different order!

This is why wedge(k1,k2,k3) is well-defined. Can also use *:
k1 ~ k2 * k3

zap Zap small values in k-forms and k-tensors

Description

Equivalent to zapsmall()

Usage

zap(X)
S3 method for class 'kform'

zap(X)
S3 method for class 'ktensor'

zap(X)
Arguments

X Tensor or k-form to be zapped

Details

Given an object of class ktensor or kform, coefficients close to zero are ‘zapped’, i.e., replaced by
‘0’, using base: :zapsmall().

Note, zap() actually changes the numeric value, it is not just a print method.

Value

Returns an object of the same class

Author(s)
Robin K. S. Hankin

Zero 41

Examples

S <- rform(7)
S == zap(S) # should be TRUE because the coeffs are integers

(a <= rform())

(b <= rform()*1e-11)
atb

zap(a+b)

zero Zero tensors and zero forms

Description

Correct idiom for generating zero k-tensors and k-forms

Usage

zeroform(n)
zerotensor(n)
is.zero(x)
is.empty(x)

Arguments
n Arity of the k-form or k-tensor
X Object to be tested for zero
Value

Returns an object of class kform or ktensor.

Note

Idiom such as as.ktensor(rep(1,5),0) and as.kform(rep(1,5),0) and indeed as.kform(1:5,0)
will return the zero tensor or k-form (in earlier versions of the package, these were held to be incor-
rect as the arity of the tensor was lost).

A 0-form is not the same thing as a zero tensor. A 0-form maps V' to the reals; a scalar. A zero
tensor maps V¥ to zero. Some discussion is given at scalar.Rd.

Author(s)
Robin K. S. Hankin

See Also

scalar

42 Zero

Examples

zerotensor(5)
zeroform(3)

x <= rform(k=3)
x*@ == zeroform(3) # should be true
x == x + zeroform(3) # should be true

y <- rtensor(k=3)
y*@ == zerotensor(3) # should be true
y == yt+zerotensor(3) # should be true

Following idiom is plausible but fails because as.ktensor(coeffs=0)
and as.kform(coeffs=0) do not retain arity:

as.ktensor(1+diag(5)) + as.ktensor(rep(1,5),0) # fails
as.kform(matrix(1:6,2,3)) + as.kform(1:3,0) # also fails

Index

+ datasets
dx, 12
ex, 13
+ package
stokes-package, 2
+ symbolmath
coeffs, 8
Ops.kform, 23
print.stokes, 26
%X% (tensorprod), 33
%"% (wedge), 39
oform (scalar), 29
@tensor (scalar), 29

Alt, 5, 10

as.1form, 7, 38
as.function.kform (kform), 18
as.function.ktensor (ktensor), 22
as.kform (kform), 18

as.ktensor (ktensor), 22

as.spray (coeffs), 8

as.symbolic, 27

as.symbolic (symbolic), 31

coeff (coeffs), 8

coeffs, 8

coeffs,kform-method (coeffs), 8
coeffs,ktensor-method (coeffs), 8
coeffs.kform(coeffs), 8
coeffs.ktensor (coeffs), 8
coeffs<- (coeffs), 8
coeffs<-,kform-method (coeffs), 8

coeffs<-,ktensor-method (coeffs), 8

coeffs<-.kform (coeffs), 8
coeffs<-.ktensor (coeffs), 8
coeffs<-.spray (coeffs), 8
consolidate, 9

contract, 10

contract_elementary (contract), 10

d, 13, 14

d (kform), 18
discard (keep), 17
dovs, 11, 27, 38
drop (scalar), 29
dx, 12, 32

dy (dx), 12

dz (dx), 12

e (kform), 18
ex, 13

ey (ex), 13
ez (ex), 13

general_kform (kform), 18
grad (as.1form), 7

Hodge (hodge), 14
hodge, 14, 21

include_perms (consolidate), 9
inner, 15

inner_product (inner), 15
is.empty (zero), 41
is.form (kform), 18
is.kform (kform), 18
is.ktensor (ktensor), 22
is.scalar (scalar), 29
is.tensor (ktensor), 22
is.volume (volume), 37
is.zero(zero), 41
issmall, 17

keep, 17

kform, 6, 8, 10, 16, 18, 23

kform_basis (kform), 18

kform_general (kform), 18
kform_symbolic_print (print.stokes), 26
kform_to_ktensor (consolidate), 9
kill_trivial_rows (consolidate), 9
kinner, 21

44

ktensor, 10, 20, 22, 34
ktensor_symbolic_print (print.stokes),
26

lose, 11,18, 20
lose (scalar), 29
lose_repeats (consolidate), 9

nterms (coeffs), 8

Ops, 39
Ops (Ops.kform), 23
Ops.kform, 23

phi, 25

polyform (print.stokes), 26
print.kform, 13, 14

print.kform (print.stokes), 26
print.ktensor (print.stokes), 26
print.stokes, 26, 32

print.summary.kform (summary.stokes), 30
print.summary.ktensor (summary.stokes),

30

print.summary.spray (summary.stokes), 30

pull-back (transform), 34
pullback (transform), 34
push-forward (transform), 34
pushforward (transform), 34

retain (keep), 17
rform, 27

rkform (rform), 27
rktensor (rform), 27
rtensor (rform), 27

scalar, 29, 41

spray, 4

spray (coeffs), 8

star (hodge), 14

stokes (stokes-package), 2
stokes-package, 2

stokes_symbolic_print (print.stokes), 26

stretch (transform), 34
summary (summary.stokes), 30
summary . stokes, 30
symbolic, 31

tensorprod, 23, 33
tensorprod2 (tensorprod), 33
transform, 34

INDEX

value<- (coeffs), 8

vcp3 (vector_cross_product), 36
vector_cross_product, 36
volume, 37

wedge, 11, 15, 23, 35, 37,39
wedge?2 (wedge), 39

zap, 40

zapsmall (zap), 40
zaptiny (zap), 40
zero, 41
zeroform, 30, 38
zeroform (zero), 41
zerotensor (zero), 41

	stokes-package
	Alt
	as.1form
	coeffs
	consolidate
	contract
	dovs
	dx
	ex
	hodge
	inner
	issmall
	keep
	kform
	kinner
	ktensor
	Ops.kform
	phi
	print.stokes
	rform
	scalar
	summary.stokes
	symbolic
	tensorprod
	transform
	vector_cross_product
	volume
	wedge
	zap
	zero
	Index

