Package 'stokes'

January 22, 2025

Type Package

Title The Exterior Calculus

Version 1.2-3

Depends R (>= 4.1.0)

Suggests knitr, Deriv, testthat, markdown, rmarkdown, quadform, magrittr, covr

VignetteBuilder knitr

Imports permutations (>= 1.1-2), partitions, methods, disordR (>= 0.9-7), spray (>= 1.0-26)

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses 'disordR' discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) ``Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.

License GPL-2

LazyData yes

URL https://github.com/RobinHankin/stokes,

https://robinhankin.github.io/stokes/

BugReports https://github.com/RobinHankin/stokes/issues

NeedsCompilation no

Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Repository CRAN

Date/Publication 2025-01-22 08:40:02 UTC

Contents

stokes-package	2
Alt	5
as.1form	7
coeffs	8
consolidate	9
contract	10
dovs	11
dx	12
ex	13
hodge	14
inner	15
issmall	17
keep	17
kform	18
kinner	21
ktensor	22
Ops.kform	23
phi	25
print.stokes	26
rform	27
scalar	29
summary.stokes	30
symbolic	31
tensorprod	33
transform	34
vector_cross_product	36
volume	37
wedge	39
zap	40
Zero	41
	43

Index

stokes-package The Exterior Calculus

Description

Provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses 'disordR' discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.

stokes-package

Details

The DESCRIPTION file:

Package:	stokes
Туре:	Package
Title:	The Exterior Calculus
Version:	1.2-3
Depends:	R (>= 4.1.0)
Suggests:	knitr, Deriv, testthat, markdown, rmarkdown, quadform, magrittr, covr
VignetteBuilder:	knitr
Imports:	permutations (>= 1.1-2), partitions, methods, disordR (>= 0.9-7), spray (>= 1.0-26)
Authors@R:	person(given=c("Robin", "K. S."), family="Hankin", role = c("aut", "cre"), email="hankin.robin@gmail.co
Maintainer:	Robin K. S. Hankin <hankin.robin@gmail.com></hankin.robin@gmail.com>
Description:	Provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and
License:	GPL-2
LazyData:	yes
URL:	https://github.com/RobinHankin/stokes, https://robinhankin.github.io/stokes/
BugReports:	https://github.com/RobinHankin/stokes/issues
Author:	Robin K. S. Hankin [aut, cre] (<https: 0000-0001-5982-0415="" orcid.org="">)</https:>

Index of help topics:

Alt Alternating mult:	ilinear forms
Ops.kform Arithmetic Ops G 'ktensor' object	roup Methods for 'kform' and s
as.lform Coerce vectors to	o 1-forms
coeffs Extract and mani	oulate coefficients
consolidate Various low-leve	l helper functions
contract Contractions of	<-forms
dovs Dimension of the	underlying vector space
dx Elementary forms	in three-dimensional space
ex Basis vectors in	three-dimensional space
hodge Hodge star opera	tor
inner Inner product op	erator
issmall Is a form zero to	o within numerical precision?
keep Keep or drop var	iables
kform k-forms	
kinner Inner product of	two kforms
ktensor k-tensors	
phi Elementary tenso	rs
print.stokes Print methods for	r k-tensors and k-forms
rform Random kforms and	d ktensors
scalar Scalars and losi	ng attributes
stokes-package The Exterior Cal	culus
summary.stokes Summaries of ten	sors and alternating forms
symbolic Symbolic form	
tensorprod Tensor products of	of k-tensors

transform	Linear transforms of k-forms
vector_cross_product	The Vector cross product
volume	The volume element
wedge	Wedge products
zap	Zap small values in k-forms and k-tensors
zero	Zero tensors and zero forms

Generally in the package, arguments that are k-forms are denoted K, k-tensors by U, and spray objects by S. Multilinear maps (which may be either k-forms or k-tensors) are denoted by M.

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

- M. Spivak 1971. Calculus on manifolds, Addison-Wesley.
- R. K. S. Hankin 2022. "Disordered vectors in R: introducing the **disordR** package." https: //arxiv.org/abs/2210.03856.
- R. K. S. Hankin 2022. "Sparse arrays in R: the **spray** package. https://arxiv.org/abs/2210.03856."

See Also

spray

Examples

```
## Some k-tensors:
U1 <- as.ktensor(matrix(1:15,5,3))
U2 <- as.ktensor(cbind(1:3,2:4),1:3)
## Coerce a tensor to functional form, here mapping V^3 -> R (here V=R^15):
as.function(U1)(matrix(rnorm(45),15,3))
## Tensor product is tensorprod() or %X%:
U1 %X% U2
## A k-form is an alternating k-tensor:
K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(3:6,2,1:6)
K3 <- rform(9,3,9,runif(9))
## The distributive law is true
(K1 + K2) ^ K3 == K1 ^ K3 + K2 ^ K3 # TRUE to numerical precision
## Wedge product is associative (non-trivial):
```

```
(K1 ^ K2) ^ K3
K1 ^ (K2 ^ K3)
## k-forms can be coerced to a function and wedge product:
f <- as.function(K1 ^ K2 ^ K3)
## E is a a random point in V^k:
E <- matrix(rnorm(63),9,7)
## f() is alternating:
f(E)
f(E[,7:1])
## The package blurs the distinction between symbolic and numeric computing:
dx <- as.kform(1)
dy <- as.kform(2)
dz <- as.kform(3)
dx ^ dy ^ dz
K3 ^ dx ^ dy ^ dz
```

Alt

Alternating multilinear forms

Description

Converts a k-tensor to alternating form

Usage

Alt(S,give_kform)

Arguments

S	A multilinear form, an object of class ktensor
give_kform Boolean, with default FALSE meaning to return an alternating k-ten	
	an object of class ktensor that happens to be alternating] and TRUE meaning to
	return a k-form [that is, an object of class kform]

Details

Given a k-tensor T, we have

$$\operatorname{Alt}(T)(v_1,\ldots,v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \cdot T(v_{\sigma(1)},\ldots,v_{\sigma(k)})$$

Thus for example if k = 3:

$$\operatorname{Alt}(T)(v_1, v_2, v_3) = \frac{1}{6} \begin{pmatrix} +T(v_1, v_2, v_3) & -T(v_1, v_3, v_2) \\ -T(v_2, v_1, v_3) & +T(v_2, v_3, v_1) \\ +T(v_3, v_1, v_2) & -T(v_3, v_2, v_1) \end{pmatrix}$$

and it is reasonably easy to see that Alt(T) is alternating, in the sense that

$$\operatorname{Alt}(T)(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\operatorname{Alt}(T)(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

Function Alt() is intended to take and return an object of class ktensor; but if given a kform object, it just returns its argument unchanged.

A short vignette is provided with the package: type vignette("Alt") at the commandline.

Value

Returns an alternating k-tensor. To work with k-forms, which are a much more efficient representation of alternating tensors, use as.kform().

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

```
(X <- ktensor(spray(rbind(1:3),6)))
Alt(X)
Alt(X,give_kform=TRUE)
S <- as.ktensor(expand.grid(1:3,1:3),rnorm(9))
S
Alt(S)
issmall(Alt(S) - Alt(Alt(S))) # should be TRUE; Alt() is idempotent
a <- rtensor()
V <- matrix(rnorm(21),ncol=3)
LHS <- as.function(Alt(a))(V)
RHS <- as.function(Alt(a,give_kform=TRUE))(V)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)</pre>
```

as.1form

Description

Given a vector, return the corresponding 1-form; the exterior derivative of a 0-form (that is, a scalar function). Function grad() is a synonym.

Usage

as.lform(v)
grad(v)

Arguments

v

A vector with element *i* being $\partial f / \partial x_i$

Details

The exterior derivative of a k-form ϕ is a (k + 1)-form $d\phi$ given by

$$\mathrm{d}\phi\left(P_{\mathbf{x}}\left(\mathbf{v}_{i},\ldots,\mathbf{v}_{k+1}\right)\right) = \lim_{h\longrightarrow 0} \frac{1}{h^{k+1}} \int_{\partial P_{\mathbf{x}}\left(h\mathbf{v}_{1},\ldots,h\mathbf{v}_{k+1}\right)} \phi$$

We can use the facts that

$$d(f dx_{i_1} \wedge \dots \wedge dx_{i_k}) = df \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

and

$$\mathrm{d}f = \sum_{j=1}^{n} \left(D_j f \right) \, \mathrm{d}x_j$$

to calculate differentials of general k-forms. Specifically, if

$$\phi = \sum_{1 \le i_i < \dots < i_k \le n} a_{i_1 \dots i_k} \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$$

then

$$\mathrm{d}\phi = \sum_{1 \leq i_i < \dots < i_k \leq n} \left[\sum_{j=1}^n D_j a_{i_1 \dots i_k} \mathrm{d}x_j \right] \wedge \mathrm{d}x_{i_1} \wedge \dots \wedge \mathrm{d}x_{i_k}.$$

The entry in square brackets is given by grad(). See the examples for appropriate R idiom.

Value

A one-form

8

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

as.1form(1:9) # note ordering of terms

as.lform(rnorm(20))

grad(c(4,7)) ^ grad(1:4)

coeffs

Extract and manipulate coefficients

Description

Extract and manipulate coefficients of ktensor and kform objects; this using the methods of the **spray** package.

Functions as.spray() and nterms() are imported from **spray**.

Details

To see the coefficients of a kform or ktensor object, use coeffs(), which returns a disord object (this is actually spray::coeffs()). Replacement methods also use the methods of the **spray** package. Note that **disordR** discipline is enforced.

Experimental functionality for "pure" extraction and replacement is provided, following **spray** version 1.0-25 or above. Thus idiom such as a[abs(coeffs(a)) > 0.1] or indeed a[coeffs(a) < 1] <- 0 should work as expected.

Author(s)

Robin K. S. Hankin

consolidate

Examples

```
(a <- kform_general(5,2,1:10))
coeffs(a) # a disord object
coeffs(a)[coeffs(a)%2==1] <- 100 # replace every odd coeff with 100
a
coeffs(a*0)
a <- rform()
a[coeffs(a) < 5] # experimental
a[coeffs(a) > 3] <- 99 # experimental</pre>
```

consolidate Various low-level helper functions

Description

Various low-level helper functions used in Alt() and kform()

Usage

```
consolidate(S)
kill_trivial_rows(S)
include_perms(S)
kform_to_ktensor(S)
```

Arguments

S Object of class spray

Details

Low-level helper functions.

- Function consolidate() takes a spray object, and combines any rows that are identical up to a permutation, respecting the sign of the permutation
- Function kill_trivial_rows() takes a spray object and deletes any rows with a repeated entry (which have *k*-forms identically zero)
- Function include_perms() replaces each row of a spray object with all its permutations, respecting the sign of the permutation
- Function ktensor_to_kform() coerces a k-form to a k-tensor

Value

The functions documented here all return a spray object.

Author(s)

Robin K. S. Hankin

See Also

ktensor,kform,Alt

Examples

```
(S <- spray(matrix(c(1,1,2,2,1,3,3,1,3,5),ncol=2,byrow=TRUE),1:5))
kill_trivial_rows(S)  # (rows 1 and 3 killed, repeated entries)
consolidate(S)  # (merges rows 2 and 4)
include_perms(S)  # returns a spray object, not alternating tensor.</pre>
```

contract

Contractions of k-forms

Description

A contraction is a natural linear map from k-forms to k - 1-forms.

Usage

contract(K,v,lose=TRUE)
contract_elementary(o,v)

Arguments

К	A <i>k</i> -form
0	Integer-valued vector corresponding to one row of an index matrix
lose	Boolean, with default TRUE meaning to coerce a 0-form to a scalar and FALSE meaning to return the formal 0-form
V	A vector; in function contract(), if a matrix, interpret each column as a vector to contract with

Details

Given a k-form ϕ and a vector v, the contraction ϕ_v of ϕ and v is a k-1-form with

$$\phi_{\mathbf{v}}\left(\mathbf{v}^{1},\ldots,\mathbf{v}^{k-1}\right)=\phi\left(\mathbf{v},\mathbf{v}^{1},\ldots,\mathbf{v}^{k-1}\right)$$

provided k > 1; if k = 1 we specify $\phi_{\mathbf{v}} = \phi(\mathbf{v})$.

Function contract_elementary() is a low-level helper function that translates elementary k-forms with coefficient 1 (in the form of an integer vector corresponding to one row of an index matrix) into its contraction with **v**.

There is an extensive vignette in the package, vignette("contract").

dovs

Value

Returns an object of class kform.

Author(s)

Robin K. S. Hankin

References

Steven H. Weintraub 2014. "Differential forms: theory and practice", Elsevier (Definition 2.2.23, chapter 2, page 77).

See Also

wedge,lose

Examples

```
contract(as.kform(1:5),1:8)
contract(as.kform(1),3)  # 0-form
```

contract_elementary(c(1,2,5),c(1,2,10,11,71))

```
## Now some verification [takes ~10s to run]:
#o <- kform(spray(t(replicate(2, sample(9,4))), runif(2)))</pre>
#V <- matrix(rnorm(36),ncol=4)</pre>
#jj <- c(
#
   as.function(o)(V),
   as.function(contract(o,V[,1,drop=TRUE]))(V[,-1]), # scalar
#
#
   as.function(contract(o,V[,1:2]))(V[,-(1:2),drop=FALSE]),
#
   as.function(contract(o,V[,1:3]))(V[,-(1:3),drop=FALSE]),
#
   as.function(contract(o,V[,1:4],lose=FALSE))(V[,-(1:4),drop=FALSE])
#)
#print(jj)
#max(jj) - min(jj) # zero to numerical precision
```

dovs

Dimension of the underlying vector space

Description

A k-form $\omega \in \Lambda^k(V)$ maps V^k to the reals, where $V = \mathbb{R}^n$. Function dovs() returns n, the dimensionality of the underlying vector space. The function itself is almost trivial, returning the maximum of the index matrix.

Special dispensation is given for zero-forms and zero tensors, which return zero.

Vignette dovs provides more discussion.

Usage

dovs(K)

Arguments K

A k-form or k-tensor

Value

Returns a non-negative integer

Author(s)

Robin K. S. Hankin

Examples

dovs(rform())

table(replicate(20,dovs(rform(3))))

dx

Elementary forms in three-dimensional space

Description

Objects dx, dy and dz are the three elementary one-forms on three-dimensional space. These objects can be generated by running script 'vignettes/dx.Rmd', which includes some further discussion and technical documentation and creates file 'dx.rda' which resides in the data/ directory.

The default print method is a little opaque for these objects. To print them more intuitively, use

```
options(kform_symbolic_print = "dx")
```

which is documented at print.Rd.

Usage

data(dx)

Details

See vignettes dx and ex for an extended discussion; a use-case is given in vector_cross_product.

Author(s)

Robin K. S. Hankin

References

• M. Spivak 1971. Calculus on manifolds, Addison-Wesley

See Also

d,print.kform

Examples

dx hodge(dx) hodge(dx,3)

```
dx # default print method, not particularly intelligible
options(kform_symbolic_print = 'dx') # shows dx dy dz
dx
dx^dz
hodge(dx,3)
```

```
as.function(dx)(ex)
```

options(kform_symbolic_print = NULL) # revert to default

ex

Basis vectors in three-dimensional space

Description

Objects ex, ey and ez are the three elementary one-forms on three-dimensional space, sometimes denoted (e_x, e_y, e_z) . These objects can be generated by running script 'vignettes/ex.Rmd', which includes some further discussion and technical documentation and creates file 'exeyez.rda' which resides in the data/ directory.

Details

See vignettes dx and ex for an extended discussion; a use-case is given in vector_cross_product.

Author(s)

Robin K. S. Hankin

References

• M. Spivak 1971. Calculus on manifolds, Addison-Wesley

See Also

d,print.kform

Examples

as.function(dx)(ex)

```
(X <- as.kform(matrix(1:12,nrow=4),c(1,2,7,11)))
as.function(X)(cbind(e(2,12),e(6,12),e(10,12)))</pre>
```

hodge

Hodge star operator

Description

Given a k-form, return its Hodge dual

Usage

hodge(K, n=dovs(K), g, lose=TRUE)

Arguments

К	Object of class kform
n	Dimensionality of space, defaulting the the largest element of the index
g	Diagonal of the metric tensor, with missing default being the standard metric of the identity matrix. Currently, only entries of ± 1 are accepted
lose	Boolean, with default TRUE meaning to coerce to a scalar if appropriate

Value

Given a k-form, in an n-dimensional space, return a (n - k)-form.

Note

Most authors write the Hodge dual of ψ as $*\psi$ or $\star\psi$, but Weintraub uses $\psi*$.

inner

Author(s)

Robin K. S. Hankin

See Also

wedge

Examples

```
(o <- kform_general(5,2,1:10))</pre>
hodge(o)
o == hodge(hodge(o))
Faraday <- kform_general(4,2,runif(6)) # Faraday electromagnetic tensor</pre>
mink <- c(-1,1,1,1) # Minkowski metric</pre>
hodge(Faraday,g=mink)
Faraday == Faraday |>
      hodge(g=mink) |>
      hodge(g=mink) |>
      hodge(g=mink) |>
      hodge(g=mink)
hodge(dx,3) == dy^{dz}
## Some edge-cases:
hodge(scalar(1),2)
hodge(zeroform(5),9)
hodge(volume(5))
hodge(volume(5),lose=TRUE)
hodge(scalar(7),n=9)
```

inner

Inner product operator

Description

The inner product

Usage

inner(M)

Arguments

М

square matrix

Details

The inner product of two vectors \mathbf{x} and \mathbf{y} is usually written $\langle \mathbf{x}, \mathbf{y} \rangle$ or $\mathbf{x} \cdot \mathbf{y}$, but the most general form would be $\mathbf{x}^T M \mathbf{y}$ where M is a matrix. Noting that inner products are multilinear, that is $\langle \mathbf{x}, a\mathbf{y} + b\mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{y} \rangle + b \langle \mathbf{x}, \mathbf{z} \rangle$ and $\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = a \langle \mathbf{x}, \mathbf{z} \rangle + b \langle \mathbf{y}, \mathbf{z} \rangle$, we see that the inner product is indeed a multilinear map, that is, a tensor.

Given a square matrix M, function inner(M) returns the 2-form that maps \mathbf{x}, \mathbf{y} to $\mathbf{x}^T M \mathbf{y}$. Non-square matrices are effectively padded with zeros.

A short vignette is provided with the package: type vignette("inner") at the commandline.

Value

Returns a k-tensor, an inner product

Author(s)

Robin K. S. Hankin

See Also

kform

Examples

```
inner(diag(7))
inner(matrix(1:9,3,3))
## Compare the following two:
Alt(inner(matrix(1:9,3,3))) # An alternating k tensor
as.kform(inner(matrix(1:9,3,3))) # Same thing coerced to a kform
f <- as.function(inner(diag(7)))
X <- matrix(rnorm(14),ncol=2) # random element of (R^7)^2
f(X) - sum(X[,1]*X[,2]) # zero to numerical precision
## verify positive-definiteness:
g <- as.function(inner(crossprod(matrix(rnorm(56),8,7))))
stopifnot(g(kronecker(rnorm(7),t(c(1,1))))>0)
```

issmall

Description

Given a k-form, return TRUE if it is "small"

Usage

issmall(M, tol=1e-8)

Arguments

М	Object of class kform or ktensor
tol	Small tolerance, defaulting to 1e-8

Value

Returns a logical

Author(s)

Robin K. S. Hankin

Examples

```
o <- kform_general(3,2,runif(3))
M <- matrix(rnorm(9),3,3)
discrepancy <- o - pullback(pullback(o,M),solve(M))
discrepancy # print method might imply coefficients are zeros
issmall(discrepancy) # should be TRUE
is.zero(discrepancy) # might be FALSE</pre>
```

keep

Keep or drop variables

Description

Keep or drop variables

Usage

keep(K, yes)
discard(K, no)

kform

Arguments

К	Object of class kform
yes, no	Specification of dimensions to either keep (yes) or discard (no)

Details

Function keep(omega, yes) keeps the terms specified and discard(omega, no) discards the terms specified. It is not clear to me what these functions mean from a mathematical perspective.

Value

The functions documented here all return a kform object.

Author(s)

Robin K. S. Hankin

See Also

lose

Examples

(o <- kform_general(7,3,seq_len(choose(7,3))))
keep(o,1:4) # keeps only terms with dimensions 1-4
discard(o,1:2) # loses any term with a "1" in the index</pre>

kform

k-forms

Description

Functionality for dealing with k-forms

Usage

```
kform(S)
as.kform(M,coeffs,lose=TRUE)
kform_basis(n, k)
kform_general(W,k,coeffs,lose=TRUE)
is.kform(x)
d(i)
e(i,n)
## S3 method for class 'kform'
as.function(x,...)
```

kform

Arguments

n	Dimension of the vector space $V = \mathbb{R}^n$
i	Integer
k	A k-form maps V^k to \mathbb{R}
W	Integer vector of dimensions
M, coeffs	Index matrix and coefficients for a k-form
S	Object of class spray
lose	Boolean, with default TRUE meaning to coerce a 0-form to a scalar and FALSE meaning to return the formal 0-form
х	Object of class kform
	Further arguments, currently ignored

Details

A *k*-form is an alternating *k*-tensor. In the package, *k*-forms are represented as sparse arrays (spray objects), but with a class of c("kform", "spray"). The constructor function kform() takes a spray object and returns a kform object: it ensures that rows of the index matrix are strictly non-negative integers, have no repeated entries, and are strictly increasing. Function as.kform() is more user-friendly.

- kform() is the constructor function. It takes a spray object and returns a kform.
- as.kform() also returns a kform but is a bit more user-friendly than kform().
- kform_basis() is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space Λ^k(ℝⁿ) of k-forms.
- kform_general() returns a kform object with terms that span the space of alternating tensors.
- is.kform() returns TRUE if its argument is a kform object.
- d() is an easily-typed synonym for as.kform(). The idea is that d(1) = dx, d(2)=dy, d(5)=dx^5, etc. Also note that, for example, d(1:3)=dx^dy^dz, the volume form.

Recall that a k-tensor is a multilinear map from V^k to the reals, where $V = \mathbb{R}^n$ is a vector space. A multilinear k-tensor T is alternating if it satisfies

$$T(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_k) = -T(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_k)$$

In the package, an object of class kform is an efficient representation of an alternating tensor.

Function kform_basis() is a low-level helper function that returns a matrix whose rows constitute a basis for the vector space $\Lambda^k(\mathbb{R}^n)$ of k-forms:

$$\phi = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_k} \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$$

and indeed we have:

$$a_{i_1\ldots i_k} = \phi\left(\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_k}\right)$$

where $\mathbf{e}_j, 1 \leq j \leq k$ is a basis for V.

Value

All functions documented here return a kform object except as.function.kform(), which returns a function, and is.kform(), which returns a Boolean, and e(), which returns a conjugate basis to that of d().

Note

Hubbard and Hubbard use the term "k-form", but Spivak does not.

Author(s)

Robin K. S. Hankin

References

Hubbard and Hubbard; Spivak

See Also

ktensor,lose

Examples

```
as.kform(cbind(1:5,2:6),rnorm(5))
kform_general(1:4,2,coeffs=1:6) # used in electromagnetism
K1 <- as.kform(cbind(1:5,2:6),rnorm(5))
K2 <- kform_general(5:8,2,1:6)
K1^K2 # or wedge(K1,K2)
d(1:3)
dx^dy^dz # same thing
d(sample(9)) # coeff is +/-1 depending on even/odd permutation of 1:9
f <- as.function(wedge(K1,K2))
E <- matrix(rnorm(32),8,4)
f(E) + f(E[,c(1,3,2,4)]) # should be zero by alternating property
options(kform_symbolic_print = 'd')
(d(5)+d(7)) ^ (d(2)^d(5) + 6*d(4)^d(7))
options(kform_symbolic_print = NULL) # revert to default</pre>
```

Description

Given two k-forms α and β , return the inner product $\langle \alpha, \beta \rangle$. Here our underlying vector space V is \mathcal{R}^n .

The inner product is a symmetric bilinear form defined in two stages. First, we specify its behaviour on decomposable k-forms $\alpha = \alpha_1 \wedge \cdots \wedge \alpha_k$ and $\beta = \beta_1 \wedge \cdots \wedge \beta_k$ as

$$\langle \alpha, \beta \rangle = \det \left(\langle \alpha_i, \beta_j \rangle_{1 \le i, j \le n} \right)$$

and secondly, we extend to the whole of $\Lambda^k(V)$ through linearity.

Usage

kinner(o1,o2,M)

Arguments

01, 02	Objects of class kform
Μ	Matrix

Value

Returns a real number

Note

There is a vignette available: type vignette("kinner") at the command line.

Author(s)

Robin K. S. Hankin

See Also

hodge

Examples

```
a <- (2*dx)^(3*dy)
b <- (5*dx)^(7*dy)
kinner(a,b)
```

```
det(matrix(c(2*5,0,0,3*7),2,2)) # mathematically identical, slight numerical mismatch
```

ktensor

Description

Functionality for k-tensors

Usage

```
ktensor(S)
as.ktensor(M,coeffs)
is.ktensor(x)
## S3 method for class 'ktensor'
as.function(x,...)
```

Arguments

M, coeffs	Matrix of indices and coefficients, as in spray(M, coeffs)
S	Object of class spray
х	Object of class ktensor
	Further arguments, currently ignored

Details

A k-tensor object S is a map from V^k to the reals R, where V is a vector space (here \mathbb{R}^n) that satisfies multilinearity:

$$S(v_1,\ldots,av_i,\ldots,v_k) = a \cdot S(v_1,\ldots,v_i,\ldots,v_k)$$

and

$$S(v_1, \dots, v_i + v_i', \dots, v_k) = S(v_1, \dots, v_i, \dots, x_v) + S(v_1, \dots, v_i', \dots, v_k)$$

Note that this is *not* equivalent to linearity over V^{nk} (see examples).

In the **stokes** package, k-tensors are represented as sparse arrays (spray objects), but with a class of c("ktensor", "spray"). This is a natural and efficient representation for tensors that takes advantage of sparsity using **spray** package features.

Function as.ktensor() will coerce a k-form to a k-tensor via kform_to_ktensor().

Value

All functions documented here return a ktensor object except as.function.ktensor(), which returns a function.

Author(s)

Robin K. S. Hankin

Ops.kform

References

Spivak 1961

See Also

tensorprod,kform,wedge

Examples

```
as.ktensor(cbind(1:4,2:5,3:6),1:4)
## Test multilinearity:
k <- 4
n <- 5
u <- 3
## Define a randomish k-tensor:
S <- ktensor(spray(matrix(1+sample(u*k)%%n,u,k),seq_len(u)))</pre>
## And a random point in V^k:
E <- matrix(rnorm(n*k),n,k)</pre>
E1 <- E2 <- E3 <- E
x1 <- rnorm(n)
x^2 <- rnorm(n)
r1 <- rnorm(1)
r2 <- rnorm(1)
# change one column:
E1[,2] <- x1
E2[,2] <- x2
E3[,2] <- r1*x1 + r2*x2
f <- as.function(S)</pre>
r1*f(E1) + r2*f(E2) - f(E3) \# should be small
## Note that multilinearity is different from linearity:
r1*f(E1) + r2*f(E2) - f(r1*E1 + r2*E2) # not small!
```

Ops.kform

Arithmetic Ops Group Methods for kform and ktensor objects

Description

Allows arithmetic operators to be used for k-forms and k-tensors such as addition, multiplication, etc, where defined.

Usage

```
## S3 method for class 'kform'
Ops(e1, e2 = NULL)
## S3 method for class 'ktensor'
Ops(e1, e2 = NULL)
```

Arguments

e1, e2 Objects of class kform or ktensor

Details

The functions Ops.kform() and Ops.ktensor() pass unary and binary arithmetic operators ("+", "-", "*", "/" and "^") to the appropriate specialist function by coercing to spray objects.

For wedge products of k-forms, use wedge() or %^% or ^; and for tensor products of k-tensors, use tensorprod() or %X%.

Value

All functions documented here return an object of class kform or ktensor.

Note

A plain asterisk, "*" behaves differently for ktensors and kforms. Given two ktensors T1, T2, then "T1*T2" will return the their tensor product. This on the grounds that the idiom has only one natural interpretation. But its use is discouraged (use %X% or tensorprod() instead). An asterisk can also be used to multiply a tensor by a scalar, as in T1*5.

An asterisk cannot be used to multiply two kforms K1, K2, as in K1*K2, which will always return an error. This on the grounds that it has no sensible interpretation in general and you probably meant to use a wedge product, K1^K2. Note that multiplication by scalars is acceptable, as in K1*6. Further note that K1*K2 returns an error even if one or both is a 0-form (or scalar), as in K1*scalar(3). This behaviour may change in the future.

In the package the caret ("^") evaluates the wedge product; note that %^% is also acceptable. Powers simply do not make sense for alternating forms: $S \%^{N} S = S^{S}$ is zero identically. Here the caret is interpreted consistently as a wedge product, and if one of the factors is numeric it is interpreted as a zero-form (that is, a scalar). Thus $S^{2} = wedge(S, 2) = 2^{S} = S*2 = S+S$, and indeed $S^{n}==S*n$. Caveat emptor! If S is a kform object, it is very tempting [but incorrect] to interpret "S^3" as something like "S to the power 3". See also the note at Ops.clifford in the clifford package.

Powers are not implemented for ktensors on the grounds that a ktensor to the power zero is not defined.

Note that one has to take care with order of operations if we mix $^$ with *. For example, dx $^$ (6*dy) is perfectly acceptable; but (dx $^$ 6)*dy) will return an error, as will the unbracketed form dx $^$ 6 * dy. In the second case we attempt to use an asterisk to multiply two k-forms, which triggers the error.

Author(s)

Robin K. S. Hankin

24

phi

Examples

```
## dx_1 ^ dx_2 + 6dx_5 ^ dx_6:
as.kform(1) ^ as.kform(2) + 6*as.kform(5) ^ as.kform(6)
k1 <- kform_general(4,2,rnorm(6))
k2 <- kform_general(4,2,rnorm(6))
E <- matrix(rnorm(8),4,2)
as.function(k1+k2)(E)
## verify linearity, here 2*k1 + 3*k2:
as.function(2*k1+3*k2)(E)-(2*as.function(k1)(E) + 3*as.function(k2)(E))
## should be small
```

phi

Elementary tensors

Description

Creates the elementary tensors or tensor products of elementary tensors

Usage

phi(n)

Arguments

n Vector of strictly non-negative integers

Details

If v_1, \ldots, v_n is the standard basis for \mathbb{R}^n then ϕ_i is defined so that $\phi_i(v_j) = \delta_{ij}$. phi(n) returns ϕ_n .

If n is a vector of strictly positive integers, then phi(n) returns the tensor cross product of ϕ applied to the individual elements of n [which is a lot easier and more obvious than it sounds].

Note

There is a vignette, phi

Author(s)

Robin K. S. Hankin

Examples

```
phi(6)
phi(6:8)
v <- sample(9)
phi(v) == Reduce("%X%",sapply(v,phi))</pre>
```

- print.stokes
- Print methods for k-tensors and k-forms

Description

Print methods for objects with options for printing in matrix form or multivariate polynomial form

Usage

```
## S3 method for class 'kform'
print(x, ...)
## S3 method for class 'ktensor'
print(x, ...)
```

Arguments

Х	k-form or k-tensor
	Further arguments (currently ignored)

Details

Printing is dispatched to print.ktensor() and print.kform() depending on its argument. Special dispensation is given for the zero object.

Although k-forms are alternating tensors and thus mathematically are tensors, they are handled differently.

The default print method uses the **spray** print methods, and as such respects the polyform option. However, setting polyform to TRUE can give misleading output, because spray objects are interpreted as multivariate polynomials not differential forms (and in particular uses the caret to signify powers).

It is much better to use options ktensor_symbolic_print or kform_symbolic_print instead: the bespoke print methods print.kform() and print.ktensor() are sensitive to these options.

For kform objects, if option kform_symbolic_print is non-null, the print method uses as.symbolic() to give an alternate way of displaying k-tensors and k-forms. The generic non-null value for this option would be "x" which gives output like "dx1 dx2 ". However, it has two special values: set kform_symbolic_print to "dx" for output like "dx dx " and "txyz" for output like "dt dx ", useful in relativistic physics with a Minkowski metric. See the examples.

For ktensor objects, if option ktensor_symbolic_print is TRUE, a different system is used. Given a tensor $3\phi_4 \otimes \phi_1 - 5\phi_2 \otimes \phi_2$, for example (where $\phi_i(x^j) = \delta_i^j$), the method will give output that looks like "+3 d4*d1 -5 d2*d2". I am not entirely happy with this and it might change in future.

More detail is given at symbolic. Rd and the dx vignette.

26

rform

Value

Returns its argument invisibly.

Note

For both kform and ktensor objects, the print method asserts that its argument is a map from V^k to \mathbb{R} with $V = \mathbb{R}^n$. Here, n is the largest element in the index matrix. However, such a map naturally furnishes a map from $(\mathbb{R}^m)^k$ to \mathbb{R} , provided that $m \ge n$ via the natural projection from \mathbb{R}^n to \mathbb{R}^m . Formally this would be $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0) \in \mathbb{R}^m$. In the case of the zero k-form or k-tensor, "n" is to be interpreted as "any $n \ge 0$ ". See also dovs().

Author(s)

Robin K. S. Hankin

See Also

as.symbolic,dovs

Examples

```
a <- rform()
a
options(kform_symbolic_print = "x")
a
options(kform_symbolic_print = "dx")
kform(spray(kform_basis(3,2),1:3))
kform(spray(kform_basis(4,2),1:6))  # runs out of symbols
options(kform_symbolic_print = "txyz")
kform(spray(kform_basis(4,2),1:6))  # standard notation
options(kform_symbolic_print = NULL) # revert to default
a</pre>
```

rform

Random kforms and ktensors

Description

Random k-form objects and k-tensors, intended as quick "get you going" examples

rform

Usage

```
rform(terms=9,k=3,n=7,coeffs,ensure=TRUE)
rtensor(terms=9,k=3,n=7,coeffs)
```

Arguments

terms	Number of distinct terms
k, n	A k-form maps V^k to \mathbb{R} , where $V = \mathbb{R}^n$
coeffs	The coefficients of the form; if missing use seq_len(terms)
ensure	Boolean with default TRUE meaning to ensure that the dovs() of the returned value is in fact equal to n. If FALSE, sometimes the dovs() is strictly less than n because of random sampling

Details

Random k-form objects and k-tensors, of moderate complexity.

Note that argument terms is an upper bound, as the index matrix might contain repeats which are combined.

Value

All functions documented here return an object of class kform or ktensor.

Author(s)

Robin K. S. Hankin

Examples

```
(a <- rform())
(b <- rform())
a ^ b
а
a ^ dx
a ^ dx ^ dy
(x <- rtensor())</pre>
x %X% x
```

scalar

Description

Scalars: 0-forms and 0-tensors

Usage

```
scalar(s,kform=TRUE,lose=FALSE)
is.scalar(M)
`0form`(s=1,lose=FALSE)
`0tensor`(s=1,lose=FALSE)
## S3 method for class 'kform'
lose(M)
## S3 method for class 'ktensor'
lose(M)
```

Arguments

S	A scalar value; a number
kform	Boolean with default TRUE meaning to return a kform and FALSE meaning to return a ktensor
М	Object of class ktensor or kform
lose	In function scalar(), Boolean with TRUE meaning to return a normal scalar, and default FALSE meaning to return a formal 0-form or 0-tensor

Details

A k-tensor (including k-forms) maps k vectors to a scalar. If k = 0, then a 0-tensor maps no vectors to a scalar, that is, mapping nothing at all to a scalar, or what normal people would call a plain old scalar. Such forms are created by a couple of constructions in the package, specifically scalar(), kform_general(1,0) and contract(). These functions take a lose argument that behaves much like the drop argument in base extraction. Functions 0form() and 0tensor() are wrappers for scalar().

Function lose() takes an object of class ktensor or kform and, if of arity zero, returns the coefficient.

Note that function kform() always returns a kform object, it never loses attributes.

There is a slight terminological problem. A k-form maps k vectors to the reals: so a 0-form maps 0 vectors to the reals. This is what anyone on the planet would call a scalar. Similarly, a 0-tensor maps 0 vectors to the reals, and so it too is a scalar. Mathematically, there is no difference between 0-forms and 0-tensors, but the package print methods make a distinction:

```
> scalar(5,kform=TRUE)
An alternating linear map from V^0 to R with V=R^0:
```

```
val
= 5
> scalar(5,kform=FALSE)
A linear map from V^0 to R with V=R^0:
val
= 5
>
```

Compare zero tensors and zero forms. A zero tensor maps V^k to the real number zero, and a zero form is an alternating tensor mapping V^k to zero (so a zero tensor is necessarily alternating). See zero.Rd.

Value

The functions documented here return an object of class kform or ktensor, except for is.scalar(), which returns a Boolean.

Author(s)

Robin K. S. Hankin

See Also

zeroform

Examples

```
o <- scalar(5)
o
lose(o)
kform_general(1,0)
kform_general(1,0,lose=FALSE)</pre>
```

summary.stokes Summaries of tensors and alternating forms

Description

A summary method for tensors and alternating forms, and a print method for summaries.

```
30
```

symbolic

Usage

```
## S3 method for class 'kform'
summary(object, ...)
## S3 method for class 'ktensor'
summary(object, ...)
## S3 method for class 'summary.kform'
print(x, ...)
## S3 method for class 'summary.ktensor'
print(x, ...)
```

Arguments

object, x	Object of class ktensor or kform
	Further arguments, passed to head()

Details

Summary methods for tensors and alternating forms. Uses spray::summary().

Author(s)

Robin K. S. Hankin

Examples

```
a <- rform(100)
summary(a)
options(kform_symbolic_print = TRUE)
summary(a)
options(kform_symbolic_print = NULL) # restore default</pre>
```

symbolic

Symbolic form

Description

Returns a character string representing *k*-tensor and *k*-form objects in symbolic form. Used by the print method if either option kform_symbolic_print or ktensor_symbolic_print is non-null.

Usage

```
as.symbolic(M,symbols=letters,d="")
```

Arguments

М	Object of class kform or ktensor; a map from V^k to \mathbb{R} , where $V = \mathbb{R}^n$
symbols	A character vector giving the names of the symbols
d	String specifying the appearance of the differential operator

Details

Spivak (p89), in archetypically terse writing, states:

A function f is considered to be a 0-form and $f \cdot \omega$ is also written $f \wedge \omega$. If $f \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ is differentiable, then $Df(p) \in \Lambda^1(\mathbb{R}^n)$. By a minor modification we therefore obtain a 1-form df, defined by

$$\mathrm{d}f(p)\left(v_p\right) = Df(p)(v).$$

Let us consider in particular the 1-forms $d\pi^i$. It is customary to let x^i denote the function π^i (On \mathbb{R}^3 we often denote x^1 , x^2 , and x^3 by x, y, and z). This standard notation has obvious disadvantages but it allows many classical results to be expressed by formulas of equally classical appearance. Since $dx^i(p)(v_p) = d\pi^i(p)(v_p) = D\pi^i(p)(v) = v^i$, we see that $dx^1(p), \ldots, dx^n(p)$ is just the dual basis to $(e_1)_p, \ldots, (e_n)_p$. Thus every k-form ω can be written

$$\omega = \sum_{i_1 < \cdots < i_k} \omega_{i_1, \dots, i_k} \mathrm{d} x^{i_1} \wedge \cdots \wedge \mathrm{d} x^{i_k}.$$

Function as.symbolic() uses this format. For completeness, we add (p77) that k-tensors may be expressed in the form

$$\sum_{i_1,\ldots,i_k=1}^n a_{i_1,\ldots,i_k} \cdot \phi_{i_1} \otimes \cdots \otimes \phi_{i_k}.$$

and this form is used for k-tensors. The print method for tensors, print.ktensor(), writes d1 for ϕ_1 , d2 for ϕ_2 [where $\phi_i(x^j) = \delta_i^j$].

Value

Returns a "noquote" character string.

Author(s)

Robin K. S. Hankin

See Also

print.stokes,dx

tensorprod

Examples

```
(o <- kform_general(3,2,1:3))
as.symbolic(o,d="d",symbols=letters[23:26])
(a <- rform(n=50))</pre>
```

```
as.symbolic(a,symbols=state.abb)
```

tensorprod

Tensor products of k-tensors

Description

Tensor products of k-tensors

Usage

tensorprod(U, ...)
tensorprod2(U1,U2)

Arguments

U, U1, U2	Object of class ktensor
	Further arguments, currently ignored

Details

Given a k-tensor S and an l-tensor T, we can form the tensor product $S \otimes T$, defined as

 $S \otimes T(v_1, \ldots, v_k, v_{k+1}, \ldots, v_{k+l}) = S(v_1, \ldots, v_k) \cdot T(v_{k+1}, \ldots, v_{k+l}).$

Package idiom for this includes tensorprod(S,T) and S %X% T; note that the tensor product is not commutative. Function tensorprod() can take any number of arguments (the result is well-defined because the tensor product is associative); it uses tensorprod2() as a low-level helper function.

Value

The functions documented here all return a spray object.

Note

The binary form %X% uses uppercase X to avoid clashing with %x% which is the Kronecker product in base R.

Author(s)

Robin K. S. Hankin

transform

References

Spivak 1961

See Also

ktensor

Examples

```
(A <- ktensor(spray(matrix(c(1,1,2,2,3,3),2,3,byrow=TRUE),1:2)))
(B <- ktensor(spray(10+matrix(4:9,3,2),5:7)))
tensorprod(A,B)
A %X% B - B %X% A
Va <- matrix(rnorm(9),3,3)
Vb <- matrix(rnorm(9),3,3)
Vb <- matrix(rnorm(38),19,2)
LHS <- as.function(A %X% B)(cbind(rbind(Va,matrix(0,19-3,3)),Vb))
RHS <- as.function(A)(Va) * as.function(B)(Vb)</pre>
```

c(LHS=LHS,RHS=RHS,diff=LHS-RHS)

transform

Linear transforms of k-forms

Description

Given a k-form, express it in terms of linear combinations of the dx_i

Usage

pullback(K,M)
stretch(K,d)

Arguments

К	Object of class kform
Μ	Matrix of transformation
d	Numeric vector representing the diagonal elements of a diagonal matrix

34

transform

Details

Function pullback() calculates the pullback of a function. A vignette is provided at 'pullback.Rmd'. Suppose we are given a two-form

$$\omega = \sum_{i < j} a_{ij} \mathrm{d} x_i \wedge \mathrm{d} x_j$$

and relationships

$$\mathrm{d}x_i = \sum_r M_{ir} \mathrm{d}y_r$$

then we would have

$$\omega = \sum_{i < j} a_{ij} \left(\sum_{r} M_{ir} \mathrm{d} y_r \right) \wedge \left(\sum_{r} M_{jr} \mathrm{d} y_r \right).$$

The general situation would be a k-form where we would have

$$\omega = \sum_{i_1 < \dots < i_k} a_{i_1 \dots i_k} \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$$

giving

$$\omega = \sum_{i_1 < \dots < i_k} \left[a_{i_1, \dots, i_k} \left(\sum_r M_{i_1 r} \mathrm{d} y_r \right) \wedge \dots \wedge \left(\sum_r M_{i_k r} \mathrm{d} y_r \right) \right].$$

The transform() function does all this but it is slow. I am not 100% sure that there isn't a much more efficient way to do such a transformation. There are a few tests in tests/testthat and a discussion in the stokes vignette.

Function stretch() carries out the same operation but for M a diagonal matrix. It is much faster than transform().

Value

The functions documented here return an object of class kform.

Author(s)

Robin K. S. Hankin

References

S. H. Weintraub 2019. Differential forms: theory and practice. Elsevier. (Chapter 3)

See Also

wedge

Examples

```
# Example in the text:
K <- as.kform(matrix(c(1,1,2,3),2,2),c(1,5))</pre>
M <- matrix(1:9,3,3)</pre>
pullback(K,M)
# Demonstrate that the result can be complicated:
M <- matrix(rnorm(25),5,5)</pre>
pullback(as.kform(1:2),M)
# Numerical verification:
o <- volume(3)
o2 <- pullback(pullback(o,M),solve(M))</pre>
max(abs(coeffs(o-o2))) # zero to numerical precision
# Following should be zero:
pullback(as.kform(1),M)-as.kform(matrix(1:5),c(crossprod(M,c(1,rep(0,4)))))
# Following should be TRUE:
issmall(pullback(o,crossprod(matrix(rnorm(10),2,5))))
# Some stretch() use-cases:
p <- rform()</pre>
р
stretch(p,seq_len(7))
stretch(p,c(1,0,0,1,1,1,1))  # kills dimensions 2 and 3
```

vector_cross_product The Vector cross product

Description

The vector cross product $\mathbf{u} \times \mathbf{v}$ for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ is defined in elementary school as

 $\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_2 v_3 - u_3 v_2, u_2 v_3 - u_3 v_2).$

Function vcp3() is a convenience wrapper for this. However, the vector cross product may easily be generalized to a product of n-1-tuples of vectors in \mathbb{R}^n , given by package function vector_cross_product().

Vignette vector_cross_product, supplied with the package, gives an extensive discussion of vector cross products, including formal definitions and verification of identities.

Usage

vector_cross_product(M)
vcp3(u,v)

36

volume

Arguments

М	Matrix with one more row than column; columns are interpreted as vectors
u, v	Vectors of length 3, representing vectors in \mathbb{R}^3

Details

A joint function profile for vector_cross_product() and vcp3() is given with the package at vignette("vector_cross_product").

Value

Returns a vector

Author(s)

Robin K. S. Hankin

See Also

wedge

Examples

vector_cross_product(matrix(1:6,3,2))

```
M <- matrix(rnorm(30),6,5)
LHS <- hodge(as.1form(M[,1])^as.1form(M[,2])^as.1form(M[,3])^as.1form(M[,4])^as.1form(M[,5]))
RHS <- as.1form(vector_cross_product(M))
LHS-RHS  # zero to numerical precision</pre>
```

```
# Alternatively:
hodge(Reduce(`^`,sapply(seq_len(5),function(i){as.1form(M[,i])},simplify=FALSE)))
```

volume

The volume element

Description

The volume element in n dimensions

Usage

volume(n)
is.volume(K,n=dovs(K))

Arguments

n	Dimension of the space
К	Object of class kform

Details

Spivak phrases it well (theorem 4.6, page 82):

If V has dimension n, it follows that $\Lambda^n(V)$ has dimension 1. Thus all alternating n-tensors on V are multiples of any non-zero one. Since the determinant is an example of such a member of $\Lambda^n(V)$ it is not surprising to find it in the following theorem:

Let v_1, \ldots, v_n be a basis for V and let $\omega \in \Lambda^n(V)$. If $w_i = \sum_{j=1}^n a_{ij}v_j$ then

 $\omega(w_1,\ldots,w_n) = \det(a_{ij}) \cdot \omega(v_1,\ldots,v_n)$

(see the examples for numerical verification of this).

Neither the zero k-form, nor scalars, are considered to be a volume element.

Value

Function volume() returns an object of class kform; function is.volume() returns a Boolean.

Author(s)

Robin K. S. Hankin

References

• M. Spivak 1971. Calculus on manifolds, Addison-Wesley

See Also

zeroform,as.lform,dovs

Examples

```
dx^dy^dz == volume(3)
p <- 1
for(i in 1:7){p <- p ^ as.kform(i)}
p
p == volume(7)  # should be TRUE
o <- volume(5)
M <- matrix(runif(25),5,5)
det(M) - as.function(o)(M)  # should be zero
is.volume(d(1) ^ d(2) ^ d(3) ^ d(4))</pre>
```

wedge

is.volume(d(1:9))

wedge

Wedge products

Description

Wedge products of k-forms

Usage

wedge2(K1,K2)
wedge(x, ...)

Arguments

K1, K2, x, . . . *k*-forms

Details

Wedge product of k-forms.

Value

The functions documented here return an object of class kform.

Note

In general use, use wedge() or ^ or %^%, as documented under Ops. Function wedge() uses low-level helper function wedge2(), which takes only two arguments.

A short vignette is provided with the package: type vignette("wedge") at the commandline.

Author(s)

Robin K. S. Hankin

See Also

0ps

Examples

```
k1 <- as.kform(cbind(1:5,2:6),1:5)
k2 <- as.kform(cbind(5:7,6:8,7:9),1:3)
k3 <- kform_general(1:6,2)
a1 <- wedge2(k1,wedge2(k2,k3))
a2 <- wedge2(wedge2(k1,k2),k3)
is.zero(a1-a2)  # NB terms of a1, a2 in a different order!
# This is why wedge(k1,k2,k3) is well-defined. Can also use ^:
k1 ^ k2 ^ k3</pre>
```

zap

Zap small values in k-forms and k-tensors

Description

Equivalent to zapsmall()

Usage

```
zap(X)
## S3 method for class 'kform'
zap(X)
## S3 method for class 'ktensor'
zap(X)
```

Arguments

X Tensor or *k*-form to be zapped

Details

Given an object of class ktensor or kform, coefficients close to zero are 'zapped', i.e., replaced by '0', using base::zapsmall().

Note, zap() actually changes the numeric value, it is not just a print method.

Value

Returns an object of the same class

Author(s)

Robin K. S. Hankin

40

zero

Examples

```
S <- rform(7)
S == zap(S) # should be TRUE because the coeffs are integers
(a <- rform())
(b <- rform()*1e-11)
a+b
zap(a+b)</pre>
```

zero

Zero tensors and zero forms

Description

Correct idiom for generating zero k-tensors and k-forms

Usage

```
zeroform(n)
zerotensor(n)
is.zero(x)
is.empty(x)
```

Arguments

n	Arity of the k-form or k-tensor
x	Object to be tested for zero

Value

Returns an object of class kform or ktensor.

Note

Idiom such as as.ktensor(rep(1,5), 0) and as.kform(rep(1,5), 0) and indeed as.kform(1:5,0) will return the zero tensor or k-form (in earlier versions of the package, these were held to be incorrect as the arity of the tensor was lost).

A 0-form is not the same thing as a zero tensor. A 0-form maps V^0 to the reals; a scalar. A zero tensor maps V^k to zero. Some discussion is given at scalar.Rd.

Author(s)

Robin K. S. Hankin

See Also

scalar

Examples

```
zerotensor(5)
zeroform(3)

x <- rform(k=3)
x*0 == zeroform(3)  # should be true
x == x + zeroform(3)  # should be true
y <- rtensor(k=3)
y*0 == zerotensor(3)  # should be true
y == y+zerotensor(3)  # should be true
### Collowing idiam is plausible but foils because as bt
</pre>
```

Following idiom is plausible but fails because as.ktensor(coeffs=0)
and as.kform(coeffs=0) do not retain arity:

```
## as.ktensor(1+diag(5)) + as.ktensor(rep(1,5),0) # fails
## as.kform(matrix(1:6,2,3)) + as.kform(1:3,0) # also fails
```

42

Index

* datasets dx, 12 ex, 13 * package stokes-package, 2 * symbolmath coeffs, 8 Ops.kform, 23 print.stokes, 26 %X% (tensorprod), 33 %^% (wedge), 39 0form (scalar), 29 0tensor (scalar), 29

Alt, 5, 10 as.1form, 7, 38 as.function.kform(kform), 18 as.function.ktensor(ktensor), 22 as.kform(kform), 18 as.ktensor(ktensor), 22 as.spray(coeffs), 8 as.symbolic, 27 as.symbolic(symbolic), 31

```
coeff (coeffs), 8
coeffs, 8
coeffs, kform-method (coeffs), 8
coeffs, ktensor-method (coeffs), 8
coeffs.ktensor (coeffs), 8
coeffs<- (coeffs), 8
coeffs<- (coeffs), 8
coeffs<- ,kform-method (coeffs), 8
coeffs<- ,ktensor-method (coeffs), 8
coeffs<- .ktensor (coeffs), 8
coeffs<- .ktensor (coeffs), 8
coeffs<- .ktensor (coeffs), 8
coeffs<- .spray (coeffs), 8
consolidate, 9
contract, 10
contract_elementary (contract), 10</pre>
```

d. 13. 14 d (kform), 18 discard (keep), 17 dovs, 11, 27, 38 drop (scalar), 29 dx, 12, 32 dy (dx), 12 dz (dx), 12 e(kform), 18 ex, 13 ey (ex), 13 ez (ex), 13 general_kform (kform), 18 grad (as.1form), 7 Hodge (hodge), 14 hodge, 14, 21 include_perms (consolidate), 9 inner, 15 inner_product (inner), 15 is.empty(zero), 41 is.form(kform), 18 is.kform(kform), 18 is.ktensor(ktensor), 22 is.scalar(scalar), 29 is.tensor(ktensor), 22 is.volume(volume), 37 is.zero(zero), 41 issmall, 17 keep, 17 kform, 6, 8, 10, 16, 18, 23 kform_basis (kform), 18 kform_general (kform), 18 kform_symbolic_print(print.stokes), 26 kform_to_ktensor (consolidate), 9

kill_trivial_rows (consolidate), 9

kinner, 21

INDEX

lose, 11, 18, 20
lose (scalar), 29
lose_repeats (consolidate), 9

nterms (coeffs), 8

Ops, 39 Ops(Ops.kform), 23 Ops.kform, 23

phi,<mark>25</mark>

polyform (print.stokes), 26
print.kform, 13, 14
print.kform (print.stokes), 26
print.ktensor (print.stokes), 26
print.stokes, 26, 32
print.summary.kform (summary.stokes), 30
print.summary.ktensor (summary.stokes), 30
print.summary.spray (summary.stokes), 30
pull-back (transform), 34
pullback (transform), 34

pushforward (transform), 34

retain (keep), 17
rform, 27
rkform (rform), 27
rktensor (rform), 27
rtensor (rform), 27

scalar, 29, 41 spray, 4 spray (coeffs), 8 star (hodge), 14 stokes (stokes-package), 2 stokes-package, 2 stokes_symbolic_print (print.stokes), 26 stretch (transform), 34 summary (summary.stokes), 30 summary.stokes, 30 symbolic, 31

tensorprod, 23, 33 tensorprod2 (tensorprod), 33 transform, 34 value<- (coeffs), 8
vcp3 (vector_cross_product), 36
vector_cross_product, 36
volume, 37</pre>

wedge, *11*, *15*, *23*, *35*, *37*, 39 wedge2 (wedge), 39

zap, 40
zapsmall(zap), 40
zaptiny(zap), 40
zero, 41
zeroform, 30, 38
zeroform(zero), 41
zerotensor(zero), 41

44