Package ‘stcpR6’

October 8, 2024

Title Sequential Test and Change-Point Detection Algorithms Based on
E-Values / E-Detectors

Version 0.9.8

Description Algorithms of nonparametric sequential test and online
change-point detection for streams of univariate (sub-)Gaussian, binary,
and bounded random variables, introduced in following publications -
Shin et al. (2024) <doi:10.48550/arXiv.2203.03532>,

Shin et al. (2021) <doi:10.48550/arXiv.2010.08082>.

License GPL (>=3)

Encoding UTF-8

Imports methods, Rcpp (>=1.0.12), R6
LinkingTo Rcpp

Suggests rmarkdown, knitr, testthat (>= 3.0.0)
Config/testthat/edition 3

URL https://github.com/shinjaehyeok/stcpR6

BugReports https://github.com/shinjaehyeok/stcpR6/issues
RoxygenNote 7.3.2

NeedsCompilation yes

Author Jaehyeok Shin [aut, cre] (<https://orcid.org/0000-0003-0464-915X>)
Maintainer Jachyeok Shin <shinjaehyeok@gmail.com>

Repository CRAN

Date/Publication 2024-10-08 07:30:01 UTC

Contents

StcpRO-package e e e
checkDeltaRange e
compute_baseline L e
compute_baseline_for_sample_size
convertDeltaToExpParams

https://doi.org/10.48550/arXiv.2203.03532
https://doi.org/10.48550/arXiv.2010.08082
https://github.com/shinjaehyeok/stcpR6
https://github.com/shinjaehyeok/stcpR6/issues
https://orcid.org/0000-0003-0464-915X

2 checkDeltaRange

generate_sub_B_fn L 6
generate_sub_E_fno 7
generate_sub_G_fn 7
logSumExpTrick e 8
NormalCS e e 8
SICP .« e e e e e e 10
Index 16
stcpR6-package stcpR6: Sequential Test and Change-Point Detection Algorithms

Based on E-Values / E-Detectors

Description

Algorithms of nonparametric sequential test and online change-point detection for streams of uni-
variate (sub-)Gaussian, binary, and bounded random variables, introduced in following publications
- Shin et al. (2024) doi:10.48550/arXiv.2203.03532, Shin et al. (2021) doi:10.48550/arXiv.2010.08082.

Author(s)

Maintainer: Jachyeok Shin <shinjaehyeok@gmail.com> (ORCID)

See Also

Useful links:

e https://github.com/shinjaehyeok/stcpR6
* Report bugs at https://github.com/shinjaehyeok/stcpR6/issues

checkDeltaRange Check whether the input delta parameters are acceptable

Description

For each method and family, check whether delta parameters are within expected range with respect
to the pre-change parameter.

Usage

checkDeltaRange(method, family, alternative, m_pre, delta_lower, delta_upper)

https://doi.org/10.48550/arXiv.2203.03532
https://doi.org/10.48550/arXiv.2010.08082
https://orcid.org/0000-0003-0464-915X
https://github.com/shinjaehyeok/stcpR6
https://github.com/shinjaehyeok/stcpR6/issues

compute_baseline

Arguments

method

family

alternative

m_pre

delta_lower

delta_upper

Value

A list of

Method of the sequential procedure.

* ST: Sequential test based on a mixture of E-values.

* SR: Sequential change detection based on e-SR procedure.

¢ CU: Sequential change detection based on e-CUSUM procedure.

* GLRCU: Sequential change detection based on GLR-CUSUM procedure.

Distribution of underlying univariate observations.

* Normal: (sub-)Gaussian with sigma = 1.
¢ Ber: Bernoulli distribution on {0,1}.

¢ Bounded: General bounded distribution on [0,1]
Alternative / post-change mean space
* two.sided: Two-sided test / change detection

* greater: Alternative /post-change mean is greater than null / pre-change one

* less: Alternative /post-change mean is less than null / pre-change one
The boundary of mean parameter in null / pre-change space

Minimum gap between null / pre-change space and alternative / post-change
one. It must be strictly positive for ST, SR and CU. Currently, GLRCU does not
support the minimum gap, and this param will be ignored.

Maximum gap between null / pre-change space and alternative / post-change
one. It must be strictly positive for ST, SR and CU. Currently, GLRCU does not
support the maximum gap, and this param will be ignored.

1. Boolean indicating whether it is acceptable or not.

2. Character describing why it is not acceptable.

3. Updated delta_upper for the case where the original input was NULL

compute_baseline

Compute baseline processes.

Description

Compute parameters to build baseline processes.

4 compute_baseline_for_sample_size

Usage

compute_baseline(
alpha,
delta_lower,
delta_upper,
psi_fn_list = generate_sub_G_fn(),

v_min = 1,
k_max = 200,
tol = 1e-10
)
Arguments
alpha ARL parameter in (0,1)
delta_lower Lower bound of target Delta. It must be positive and smaller than or equal to

delta_upper.

delta_upper Upper bound of target Delta. It must be positive and larger than or equal to
delta_lower.

psi_fn_list A list of R functions that computes psi and psi_star functions. Can be generated
by generate_sub_G_fn() or counterparts for sub_B and sub_E.
v_min A lower bound of v function in the baseline process. Default is 1.
k_max Positive integer to determine the maximum number of baselines. Default is 200.
tol Tolerance of root-finding, positive numeric. Default is 1e-10.
Value

A list of 1. Parameters of baseline processes, 2. Mixing weights, 3. Auxiliary values for computa-
tion.

compute_baseline_for_sample_size
Compute baseline parameters given target variance process bounds.

Description

Given target variance process bounds for confidence sequences, compute baseline parameters.

Usage

compute_baseline_for_sample_size(
alpha,
v_upper,
v_lower,
psi_fn_list = generate_sub_G_fn(),
skip_g_alpha = TRUE,

convertDeltaToExpParams 5

v_min = 1,
k_max = 200,
tol = 1e-10
)
Arguments
alpha ARL parameter in (0,1)
v_upper Upper bound of the target variance process bound
v_lower Lower bound of the target variance process bound.
psi_fn_list A list of R functions that computes psi and psi_star functions. Can be generated

by generate_sub_G_fn() or counterparts for sub_B and sub_E.

skip_g_alpha If true, we do not compute g_alpha and use log(1/alpha) instead.

v_min A lower bound of v function in the baseline process. Default is 1.
k_max Positive integer to determine the maximum number of baselines. Default is 200.
tol Tolerance of root-finding, positive numeric. Default is 1e-10.

Value

A list of 1. Parameters of baseline processes, 2. Mixing weights, 3. Auxiliary values for computa-
tion.

convertDeltaToExpParams
converted input deltas to parameters for exponential baselines

Description

For each exponential baseline family, convert delta range into corresponding lambdas and weights.

Usage

convertDeltaToExpParams(
family,
alternative,
threshold,
m_pre,
delta_lower,
delta_upper,
k_max

Arguments

family

alternative

threshold

m_pre
delta_lower

delta_upper

k_max

Value

generate_sub_B_fn

Distribution of underlying univariate observations.

* Normal: (sub-)Gaussian with sigma = 1.

¢ Ber: Bernoulli distribution on {0,1}.

¢ Bounded: General bounded distribution on [0,1]
Alternative / post-change mean space

* two.sided: Two-sided test / change detection

* greater: Alternative /post-change mean is greater than null / pre-change one

* less: Alternative /post-change mean is less than null / pre-change one
Stopping threshold. We recommend to use log(1/alpha) for "ST" and "SR" meth-
ods where alpha is a testing level or 1/ARL. for "CU" and "GRLCU", we rec-
ommend to tune the threshold by using domain-specific sampler to hit the target
ARL.
The boundary of mean parameter in null / pre-change space

Minimum gap between null / pre-change space and alternative / post-change
one. It must be strictly positive for ST, SR and CU. Currently, GLRCU does not
support the minimum gap, and this param will be ignored.

Maximum gap between null / pre-change space and alternative / post-change
one. It must be strictly positive for ST, SR and CU. Currently, GLRCU does not
support the maximum gap, and this param will be ignored.

Positive integer to determine the maximum number of baselines. For GLRCU
method, it is used as the lookup window size for GLRCU statistics.

A list of weights and lambdas

generate_sub_B_fn

Pre-defined psi_star functions for sub-Bernoulli family.

Description

Pre-defined psi_star functions for sub-Bernoulli family.

Usage

generate_sub_B_fn(p = 0.5)

Arguments

p

Value

The boundary of mean space of the pre-change distributions (default = 0.5).

A list of pre-defined psi_star functions for sub-Bernoulli family.

generate_sub_E_fn

generate_sub_E_fn Pre-defined psi_star functions for sub-exponential family.

Description

Pre-defined psi_star functions for sub-exponential family.

Usage

generate_sub_E_fn()

Value

A list of pre-defined psi_star functions for sub-exponential family.

generate_sub_G_fn Pre-defined psi_star functions for sub-Gaussian family.

Description

Pre-defined psi_star functions for sub-Gaussian family.

Usage

generate_sub_G_fn(sig = 1)

Arguments

sig The sigma parameter of the sub-Gaussian family (default = 1).

Value

A list of pre-defined psi_star functions for sub-Gaussian family.

8 NormalCS
logSumExpTrick log-sum-exp trick
Description
Apply log-sum-exp trick to a numeric vector.
Usage
logSumExpTrick(xs)
Arguments
XS A numeric vector.
Value
log of sum of exp of xs, which is equal to log(sum(exp(xs))).
NormalCS NormalCS Class
Description
NormalCS class is used to compute always-valid confidence sequence for the standard normal pro-
cess based on the STCP method.
Methods

Public methods:

e NormalCS$new()

* NormalCS$print()

* NormalCS$getAlpha()

* NormalCS$getWeights()

* NormalCS$getLambdas()

* NormalCS$computeWidth()

* NormalCS$computeInterval()

Method new(): Create a new NormalCS object.

Usage:

NormalCS 9

NormalCS$new(
alternative = c("two.sided”, "greater”, "less"),
alpha = 0.05,
n_upper = 1000,
n_lower =1,
weights = NULL,
lambdas = NULL,
skip_g_alpha = TRUE,
k_max = 1000
)
Arguments:
alternative Alternative / post-change mean space
* two.sided: Two-sided test / change detection
* greater: Alternative /post-change mean is greater than null / pre-change one
* less: Alternative /post-change mean is less than null / pre-change one
alpha Upper bound on the type 1 error of the confidence sequence.
n_upper Upper bound of the target sample interval
n_lower Lower bound of the target sample interval

weights If not null, the input weights will be used to initialize the object instead of n_upper
and n_lower.

lambdas If not null, the input lambdas will be used to initialize the object. instead of n_upper
and n_lower.

skip_g_alpha If true, we do not compute g_alpha and use log(1/alpha) instead.
k_max Positive integer to determine the maximum number of baselines.

Returns: A new NormalCS object.

Method print(): Print summary of Stcp object.
Usage:
NormalCS$print()

Method getAlpha(): Return the upper bound on the type 1 error
Usage:
NormalCS$getAlpha()

Method getWeights(): Return weights of mixture of e-values / e-detectors.

Usage:
NormalCS$getWeights()

Method getLambdas(): Return lambda parameters of mixture of e-values / e-detectors.

Usage:
NormalCS$getLambdas()

Method computeWidth(): Compute the width of confidence interval at time n.

Usage:
NormalCS$computeWidth(n)

10 Step

Arguments:

n Positive time.

Method computeInterval(): Compute a vector of two end points of confidence interval at time
n

Usage:

NormalCS$computeInterval(n, x_bar = @)

Arguments:
n Positive time.

x_bar The center of the confidence interval.

Examples

Initialize two-sided standard normal confidence sequence
optimized for the interval [10, 100]
normal_cs <- NormalCS$new(

alternative = "two.sided”,

alpha = 0.05,

n_upper = 100,

n_lower = 10

)

Compute confidence interval at n = 20 when observed sample mean = 0.5
normal_cs$computeInterval (20, x_bar = 0.5)

(Advanced) NormalCS supports general variance process.
Both n_upper and n_lower can be general positive numbers.
normal_cs2 <- NormalCS$new(

alternative = "two.sided”,

alpha = 0.05,

n_upper = 100.5,

n_lower = 10.5

)
Confidence interval at n = 20.5
normal_cs$computelnterval (20.5, x_bar = 0.5)

Stcp Step Class

Description

Stcp class supports a unified framework for sequential tests and change detection algorithms for
streams of univariate (sub-)Gaussian, binary, and bounded random variables.

Stcp

Methods

Public methods:

e Stcp$new()

e Stcp$print()

* Stcp$getWeights()

e Stcp$getlambdas()

e Stcp$getlLogValue()

* Stcp$getThreshold()

e Stcp$isStopped()

* Stcp$getTime()

* Stcp$getStoppedTime()

* Stcp$reset()

e Stcp$updatelLogValues()

e Stcp$updatelLogValuesUntilStop()

¢ Stcp$updateAndReturnHistories()

* Stcp$updatelLogValuesByAvgs()

* Stcp$updatelLogValuesUntilStopByAvgs()
e Stcp$updateAndReturnHistoriesByAvgs()

Method new(): Create a new Stcp object.

Usage:

Stcp$new(
method = c("ST", "SR", "CU", "GLRCU"),
family = c(”"Normal”, "Ber", "Bounded”),

alternative = c("two.sided”, "greater”, "less"),
threshold = log(1/0.05),
m_pre = 0,

delta_lower = 0.1,
delta_upper = NULL,
weights = NULL,
lambdas = NULL,
k_max = 1000
)
Arguments:
method Method of the sequential procedure.
* ST: Sequential test based on a mixture of E-values.
* SR: Sequential change detection based on e-SR procedure.
* CU: Sequential change detection based on e-CUSUM procedure.
* GLRCU: Sequential change detection based on GLR-CUSUM procedure.
family Distribution of underlying univariate observations.
* Normal: (sub-)Gaussian with sigma = 1.
e Ber: Bernoulli distribution on {0,1}.
* Bounded: General bounded distribution on [0,1]

12

Step

alternative Alternative / post-change mean space
* two.sided: Two-sided test / change detection
o greater: Alternative /post-change mean is greater than null / pre-change one
* less: Alternative /post-change mean is less than null / pre-change one

threshold Stopping threshold. We recommend to use log(1/alpha) for "ST" and "SR" methods
where alpha is a testing level or 1/ARL. for "CU" and "GRLCU", we recommend to tune
the threshold by using domain-specific sampler to hit the target ARL.

m_pre The boundary of mean parameter in null / pre-change space

delta_lower Minimum gap between null / pre-change space and alternative / post-change one.
It must be strictly positive for ST, SR and CU. Currently, GLRCU does not support the
minimum gap, and this param will be ignored.

delta_upper Maximum gap between null / pre-change space and alternative / post-change
one. It must be strictly positive for ST, SR and CU. Currently, GLRCU does not support the
maximum gap, and this param will be ignored.

weights If not null, the input weights will be used to initialize Stcp object.
lambdas If not null, the input lambdas will be used to initialize Stcp object.

k_max Positive integer to determine the maximum number of baselines. For GLRCU method,
it is used as the lookup window size for GLRCU statistics.

Returns: A new Stcp object.

Method print(): Print summary of Stcp object.

Usage:
Stcp$print()

Method getWeights(): Return weights of mixture of e-values / e-detectors.

Usage:
Stcp$getWeights()

Method getLambdas(): Return lambda parameters of mixture of e-values / e-detectors.

Usage:
Stcp$getLambdas ()

Method getLogValue(): Return the log value of mixture of e-values / e-detectors.

Usage:
Stcp$getlogValue()

Method getThreshold(): Return the threshold of the sequential test / change detection

Usage:
Stcp$getThreshold()

Method isStopped(): Return TRUE if the sequential test / change detection was stopped by
crossing the threshold.

Usage:
Stcp$isStopped()

Stcp

13

Method getTime(): Return the number of observations having been passed.

Usage:
Stcp$getTime ()

Method getStoppedTime(): Return the stopped time. If it has been never stopped, return zero.

Usage:
Stcp$getStoppedTime()

Method reset(): Reset the stcp object to the initial setup.

Usage:
Stcp$reset()

Method updateLogValues(): Update the log value and related fields by passing a vector of
observations.

Usage:
Stcp$updatelLogValues(xs)
Arguments:

xs A numeric vector of observations.

Method updatelLogValuesUntilStop(): Update the log value and related fields until the log
value is crossing the boundary.

Usage:
Stcp$updatelLogValuesUntilStop(xs)
Arguments:

xs A numeric vector of observations.

Method updateAndReturnHistories(): Update the log value and related fields then return
updated log values by passing a vector of observations.

Usage:
Stcp$updateAndReturnHistories(xs)
Arguments:

xs A numeric vector of observations.

Method updateLogValuesByAvgs(): Update the log value and related fields by passing a vector
of averages and number of corresponding samples.

Usage:

Stcp$updatelLogValuesByAvgs(x_bars, ns)

Arguments:

x_bars A numeric vector of averages.

ns A numeric vector of sample sizes.

Method updatelLogValuesUntilStopByAvgs(): Update the log value and related fields by
passing a vector of averages and number of corresponding samples until the log value is crossing
the boundary.

14 Step

Usage:
Stcp$updateLogValuesUntilStopByAvgs(x_bars, ns)

Arguments:
x_bars A numeric vector of averages.
ns A numeric vector of sample sizes.

Method updateAndReturnHistoriesByAvgs(): Update the log value and related fields then
return updated log values a vector of averages and number of corresponding samples.

Usage:
Stcp$updateAndReturnHistoriesByAvgs(x_bars, ns)

Arguments:
x_bars A numeric vector of averages.
ns A numeric vector of sample sizes.

Examples

Sequential Normal mean test HO: mu <= @
Initialize stcp object for this test.
stcp <- Stcp$new(method = "ST",
family = "Normal”,
alternative = "greater”,
threshold = log(1 / 0.05),
m_pre = 0)

Update the observations
obs <- c(1.0, 3.0, 2.0)
stcp$updateLogValuesUntilStop(obs)

Check whether the sequential test is stopped
stcp$isStopped() # TRUE

Check when the test was stopped
stcp$getStoppedTime() # 3

Although the number of obervaions was 4, the test was stopped at 3.
stcp$getTime() # 3

Get the log value of the mixutre of e-values at the current time (3)
stcp$getlogValue() # 4.425555

...which is higher than the threshold log(1 / ©.05) ~ 2.996
stcp$getThreshold() # 2.995732

Reset the test object
stcp$reset()

Rerun the test but, at this time, we track updated log values
log_values <- stcp$updateAndReturnHistories(obs)
print(log_values) # ©.1159777 2.7002207 4.4255551 1.9746508

Stcp

Again, the test was stopped at 3rd observation
stcp$getStoppedTime() # 3

But, at this time, log values were evaluated until the 4th observation.
stcp$getTime() # 4

Print overall summary

stcp # or stcp$print() or print(stcp)
stcp Model:

- Method: ST

- Family: Normal

- Alternative: greater
- Alpha: 0.05

- m_pre: @

Num. of mixing components: 55
- Obs. have been passed: 4

- Current log value: 1.974651

- Is stopped before: TRUE

- Stopped time: 3

% o H O O H W
1

Index

checkDeltaRange, 2
compute_baseline, 3
compute_baseline_for_sample_size, 4
convertDeltaToExpParams, 5

generate_sub_B_fn, 6
generate_sub_E_fn, 7
generate_sub_G_fn, 7

logSumExpTrick, 8
NormalCs, 8
Stcp, 10

stcpR6 (stcpR6-package), 2
stcpR6-package, 2

16

	stcpR6-package
	checkDeltaRange
	compute_baseline
	compute_baseline_for_sample_size
	convertDeltaToExpParams
	generate_sub_B_fn
	generate_sub_E_fn
	generate_sub_G_fn
	logSumExpTrick
	NormalCS
	Stcp
	Index

