Package ‘starsExtra’

January 13, 2024

Title Miscellaneous Functions for Working with 'stars' Rasters
Version 0.2.8

Description Miscellaneous functions for working with 'stars' objects, mainly single-band rasters. Cur-
rently includes functions for: (1) focal filtering, (2) detrending of Digital Elevation Mod-
els, (3) calculating flow length, (4) calculating the Convergence Index, (5) calculating topo-
graphic aspect and topographic slope.

Depends R (>=3.5.0), sf, stars

Imports methods, parallel, mgcv, nngeo, units
License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests tinytest, knitr, rmarkdown, raster

VignetteBuilder knitr

URL https://michaeldorman.github.io/starsExtra/,
https://github.com/michaeldorman/starsExtra/

BugReports https://github.com/michaeldorman/starsExtra/issues/
NeedsCompilation yes

Author Michael Dorman [aut, cre]

Maintainer Michael Dorman <dorman@post.bgu.ac.il>

Repository CRAN

Date/Publication 2024-01-13 22:50:02 UTC

R topics documented:

ASPECL . o v e e e e e e e 2
carmel e e 4
L 4
dem . ..o e e 5

https://michaeldorman.github.io/starsExtra/
https://github.com/michaeldorman/starsExtra/
https://github.com/michaeldorman/starsExtra/issues/

2 aspect
detrend e e e e 6
dist_tO_NEAreSt e e e e e e 7
EXIIaCt2 e e e 8
flowlength e 9
focal2 e 10
focal2r e e e 12
footprints L e e e e 13
golan ... e 14
landsat e e e 15
layer_to_matriX e e e e e 15
layer_to_VeCtor e 16
make_grid 17
matrix_extend L L e e e e e e e e e e e 17
matrix_get_neighbors L 18
MatriX_tO_STATS o o e e e e e e e e 19
MAatriX_trM o o o o e e e e e e e e e e e e e 20
mode_value e e 20
normalize _2d e 21
normalize_3d e 22
rgb_to_greyscale e e e e e 22
Slope . . . 23
M2 . . . L e e e e e e 24
w_azimuth e e e e e e e 25
W_CIrCle e e 26

Index 27

aspect Calculate topographic aspect from a DEM

Description

Calculates topographic aspect given a Digital Elevation Model (DEM) raster. Input and output are

e e

rasters of class stars, single-band (i.e., only “"x"‘ and ‘"y"* dimensions), with one attribute.

Usage

aspect(x, na_flag = -9999)

Arguments
X A raster (class stars) with two dimensions: x and y, i.e., a single-band raster,
representing a DEM.
na_flag Value used to mark NA values in C code. This should be set to a value which is

guaranteed to be absent from the input raster x (default is -9999).

aspect 3

Value

A stars raster with topographic slope, i.e., the azimuth where the terrain is tilted towards, in
decimal degrees (0-360) clockwise from north. Aspect of flat terrain, i.e., where all values in the
neighborhood are equal, is set to -1. Returned raster values are of class units (decimal degrees).

Note

Aspect calculation results in NA when at least one of the cell neighbors is NA, including the outermost
rows and columns. Given that the focal window size in aspect calculation is 3*3, this means that
the outermost one row and one column are given an aspect value of NA.

The raster must be in projected CRS, and units of x/y resolution are assumed to be the same as units
of elevation (typically meters).

References

The topographic aspect algorithm is based on the How aspect works article in the ArcGIS docu-
mentation:

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-aspect-works.
htm

Examples

Small example

data(dem)
dem_aspect = aspect(dem)
plot(
dem, text_values = TRUE, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "input (elevation)”
)
plot(
dem_aspect, text_values = TRUE, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "output (aspect)”
)
Larger example
data(carmel)
carmel_aspect = aspect(carmel)
plot(
carmel, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "input (elevation)"”
)
plot(
carmel_aspect, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "output (aspect)”

)

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-aspect-works.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-aspect-works.htm

carmel Digital Elevation Model of Mount Carmel

Description

A stars object representing a Digital Elevation Model (DEM) Digital Elevation Model of Mount
Carmel, at 90m resolution

Usage

carmel

Format
A stars object with 1 attribute:

elevation Elevation above sea level, in meters

Examples
plot(carmel, breaks = "equal”, col = terrain.colors(11))
CI Calculate the Convergence Index (CI) from a slope raster
Description

Calculates the Convergence Index (CI) given a topographic slope raster. Input and output are rasters
of class stars, single-band (i.e., only “"x"‘ and ‘"y"* dimensions), with one attribute.

Usage

CI(x, k, na.rm = FALSE, na_flag = -9999)

Arguments

X A raster (class stars) with two dimensions: x and y, i.e., a single-band raster,
representing aspect in decimal degrees clockwise from north, possibly including
-1 to specify flat terrain, such as returned by function aspect.

k k Neighborhood size around focal cell. Must be an odd number. For example,
k=3 implies a 3*3 neighborhood.

na.rm Should NA values be ignored when calculating CI? Default is FALSE, i.e., when
at least one aspect value in the neighborhood is NA the CI is also set to NA.

na_flag Value used to mark NA values in C code. This should be set to a value which is

guaranteed to be absent from the input raster x (default is -9999).

dem 5

Value

A stars raster with CI values.

Note

The raster is "padded” with (k-1)/2 more rows and columns of NA values on all sides, so that the
neighborhood of the outermost rows and columns is still a complete neighborhood. Those rows and
columns are removed from the final result before returning it. Aspect values of -1, specifying flat
terrain, are assigned with a CI value of @ regardless of their neighboring values.

References

The Convergence Index algorithm is described in:

Thommeret, N., Bailly, J. S., & Puech, C. (2010). Extraction of thalweg networks from DTMs:
application to badlands.

Examples

Small example

data(dem)

dem_asp = aspect(dem)

dem_ci = CI(dem_asp, k = 3)

r = c(dem, round(dem_ci, 1), along = 3)

r = st_set_dimensions(r, 3, values = c("input (aspect)”, "output (CI, k=3)"))

plot(r, text_values = TRUE, breaks = "equal”, col = terrain.colors(10), mfrow = c(1, 2))

Larger example

data(golan)

golan_asp = aspect(golan)

golan_ci = CI(golan_asp, k = 25)

plot(golan_asp, breaks = "equal”, col = hcl.colors(11, "Spectral”), main = "input (aspect)”)
plot(golan_ci, breaks = "equal”, col = hcl.colors(11, "Spectral”), main = "output (CI, k=25)")

dem Small Digital Elevation Model

Description

A stars object representing a small 13*11 Digital Elevation Model (DEM), at 90m resolution

Usage

dem

6 detrend

Format

A stars object with 1 attribute:

elevation Elevation above sea level, in meters

Examples

plot(dem, text_values = TRUE, breaks = "equal”, col = terrain.colors(11))

detrend Detrend a Digital Elevation Model

Description
Detrends a Digital Elevation Model (DEM) raster, by subtracting a trend surface. The trend is
computed using mgcv: : gam or mgev: :bam (when parallel>1) with formula z ~ s(x, y).

Usage
detrend(x, parallel = 1)

Arguments
X A two-dimensional stars object representing the DEM
parallel Number of parallel processes. With parallel=1 uses ordinary, non-parallel
processing.
Value

A two-dimensional stars object, with two attributes:

e resid - the detrended result, i.e., "residual”

e trend - the estimated "trend" which was subtracted from the actual elevation to obtain resid

Examples

Small example

data(dem)

dem1 = detrend(dem)

dem1 = st_redimension(dem1)

deml = st_set_dimensions(deml, 3, values = c("resid”, "trend"))
plot(round(dem1), text_values = TRUE, col = terrain.colors(11))

Larger example 1

data(carmel)

carmell = detrend(carmel, parallel = 2)

carmell = st_redimension(carmell)

carmell = st_set_dimensions(carmell, 3, values = c("resid”, "trend"))

dist_to_nearest 7

plot(carmell, col = terrain.colors(11))

Larger example 2

data(golan)

golanl = detrend(golan, parallel = 2)

golanl = st_redimension(golant)

golanl = st_set_dimensions(golanl, 3, values = c("resid”, "trend"))
plot(golanl, col = terrain.colors(11))

dist_to_nearest Calculate raster of distances to nearest feature

Description
Given a stars raster and an sf vector layer, returns a new raster with the distances of each cell
centroid to the nearest feature in the vector layer.

Usage

dist_to_nearest(x, v, progress = TRUE)

Arguments
X A stars layer, used as a "grid" for distance calculations
% An sf, sfc or sfg object
progress Display progress bar? The default is TRUE

Value

A stars raster with distances to nearest feature

Examples
Sample 'sf' layer
x = st_point(c(0,0))
y = st_point(c(1,1))
x = st_sfc(x, y)
x = st_sf(x)
x = st_buffer(x, 0.5)
Make grid

r = make_grid(x, res = 0.1, buffer = 0.5)
d = dist_to_nearest(r, x, progress = FALSE)

Plot
plot(d, breaks = "equal”, axes = TRUE, reset = FALSE)
plot(st_geometry(x), add = TRUE, pch = 4, cex = 3)

8 extract2

extract2 Extract raster values by lines or polygons

Description

Extract raster values by lines or polygons, summarizing for each feature using a function specified
by the user. This function is aimed to reproduce (some of) the functionality of raster: :extract.

Usage
extract2(x, v, fun, progress = TRUE, ...)
Arguments
X A stars object
v An sf layer that determines values to extract
fun A function to summarize cell values per feature/band
progress Display progress bar? The default is TRUE
Further arguments passed to fun
Value

A vector (single-band raster) or matrix (multi-band raster) with the extracted and summarized
values

Examples

Polygons

pol = st_bbox(landsat)
pol = st_as_sfc(pol)
set.seed(1)

pol = st_sample(pol, 5)

pol = st_buffer(pol, 100)
pol = c(pol, pol)
Plot

plot(landsatl,,,1,drop=TRUE], reset = FALSE)
plot(pol, add = TRUE)

Single-band raster
aggregate(landsat[,,,1,drop=TRUE], pol, mean, na.rm = TRUE)[[1]] ## Duplicated areas get 'NA'
extract2(landsat[,,,1,drop=TRUE], pol, mean, na.rm = TRUE, progress = FALSE)

Multi-band example
extract2(landsat, pol, mean, na.rm = TRUE, progress = FALSE)

Lines

flowlength

lines = st_cast(pol, "LINESTRING")

Single-band raster
extract2(landsat[,,,1,drop=TRUE], lines, mean, na.rm = TRUE, progress = FALSE)

Multi-band example
extract2(landsat, lines, mean, na.rm = TRUE, progress = FALSE)

flowlength Calculate flow length

Description

Calculates flow length for each pixel in a Digital Elevation Model (DEM) raster. Inputs and output
are rasters of class stars, single-band (i.e., only *"x" and “"y"‘ dimensions), with one attribute.

Usage
flowlength(elev, veg, progress = TRUE)

Arguments
elev A numeric stars raster representing a Digital Elevation Model (DEM).
veg A matching logical stars raster representing vegetation presence. TRUE val-
ues represent vegetated cells where flow is absorbed (i.e. sinks), FALSE values
represent cells where flow is unobstructed.
progress Display progress bar? The default is TRUE
Value

A numeric stars raster where each cell value is flow length, in resolution units.

References

The algorithm is described in:

Mayor, A. G., Bautista, S., Small, E. E., Dixon, M., & Bellot, J. (2008). Measurement of the
connectivity of runoff source areas as determined by vegetation pattern and topography: A tool for
assessing potential water and soil losses in drylands. Water Resources Research, 44(10).

Examples

Example from Fig. 2 in Mayor et al. 2008

elev = rbind(
c(8, 8, 8, 8,9, 8,9
c(7,7,7,7,9, 7, 7),
c(6, 6, 6, 6, 6, 5, 7)

’

10 focal2

c(4, 5, 5, 3,5, 4, 7),
c(4, 5, 4, 5, 4, 6, 5),
c(3, 3, 3, 3, 2, 3, 3),
c(2, 2, 2, 3, 4, 1, 3)
)
veg = rbind(

c(TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE),
c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE),
c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
c(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE),
c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE),
c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE),
c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE)

)

elev = matrix_to_stars(elev)

veg = matrix_to_stars(veg)

Calculate flow length
fl = flowlength(elev, veg, progress = FALSE)

Plot
plot(
round(elev, 1), text_values = TRUE, breaks = "equal”,
col = terrain.colors(6), main = "input (elevation)”
)
plot(
vegx1, text_values = TRUE, breaks = "equal”,
col = rev(terrain.colors(2)), main = "input (vegetation)”
)
plot(
round(fl, 1), text_values = TRUE, breaks = "equal”,
col = terrain.colors(6), main = "output (flowlength)"”
)

Larger example

data(carmel)

elev = carmel

elev[is.na(elev)] = 0

veg = elev > 100

fl = flowlength(elev, veg, progress = FALSE)

plot(fl, breaks = "equal”, col = hcl.colors(11), main = "flowlength (m)")

focal2 Apply a focal filter on a raster

Description

Applies a focal filter with weighted neighborhood w on a raster. The weights (w) can be added to,
subtracted from, multiplied by or divided with the raster values (as specified with weight_fun).

focal2

11

The focal cell is then taken as the mean, sum, minimum or maximum of the weighted values (as

g me

specified with fun). Input and output are rasters of class stars, single-band (i.e., only *"x"‘ and

e

y"¢ dimensions), with one attribute.

Usage

focal2(
X,
w,
fun = "mean”,

weight_fun = "x",
na.rm = FALSE,

mask = FALSE,

na_flag = -9999

Arguments

X

fun

weight_fun

na.rm
mask

na_flag

Value

A raster (class stars) with one attribute and two dimensions: x and y, i.e., a
single-band raster.

Weights matrix defining the neighborhood size around the focal cell, as well as
the weights. For example, matrix(1,3,3) implies a neighborhood of size 3*3
with equal weights of 1 for all cells. The matrix must be square, i.e., with an
odd number of rows and columns.

A function to aggregate the resulting values for each neighborhood. Possible
values are: "mean”, "sum”, "min", "max"”, and "mode”. The default is "mean”,
i.e., the resulting values per neighborhood are averaged before being assigned

to the new focal cell value.

An operator which is applied on each pair of values comprising the cell value
and the respective weight value, as in raster_value-weight. Possible values
are: "+", "=" "%x" "/" The defaultis "*", i.e., each cell value is multiplied by
the respective weight.

Should NA values in the neighborhood be removed from the calculation? Default
is FALSE.

If TRUE, pixels with NA in the input are set to NA in the output as well, i.e., the
output is "masked" using the input (default is FALSE).

Value used to mark NA values in C code. This should be set to a value which is
guaranteed to be absent from the input raster x (default is -9999).

The filtered stars raster.

Note

The raster is "padded" with (nrow(w)-1)/2 more rows and columns of NA values on all sides, so
that the neighborhood of the outermost rows and columns is still a complete neighborhood. Those
rows and columns are removed from the final result before returning it. This means, for instance,
that the outermost rows and columns in the result will be NA when using na. rm=FALSE.

12 focal2r

References

The function interface was inspired by function raster::focal. The C code for this function is
a modified and expanded version of the C function named applyKernel included with R package
spatialfil.

Examples

Small example

data(dem)

dem_mean3 = focal2(dem, matrix(1, 3, 3), "mean”)

r = c(dem, round(dem_mean3, 1), along = 3)

r = st_set_dimensions(r, 3, values = c("input”, "output (mean, k=3)"))
plot(r, text_values = TRUE, breaks = "equal”, col = terrain.colors(11))

Larger example

data(carmel)

carmel_mean15 = focal2(carmel, matrix(1, 15, 15), "mean")
r = c(carmel, carmel_mean15, along = 3)

r = st_set_dimensions(r, 3, values = c("input”, "output (mean, k=15)"))
plot(r, breaks = "equal”, col = terrain.colors(11))
focal2r Apply a focal filter on a raster (R)
Description

Applies a focal filter with neighborhood size k*k on a raster (class stars), using R code. This
function is relatively slow, provided here mainly for testing purposes or for custom using functions
which are not provided by focal2.

Usage
focal2r(x, w, fun, mask = FALSE, ...)
Arguments
X A raster (class stars) with two dimensions: x and y, i.e., a single-band raster
w Weights matrix defining the neighborhood size around the focal cell, as well as
the weights. For example, matrix(1, 3, 3) implies a neighborhood of size 3*3
with equal weights of 1 for all cells. Focal cell values are multiplied by the
matrix values before being passed to function fun. The matrix must be square,
i.e., with an odd number of rows and columns.
fun A function to be applied on each neighborhood, after it has been multiplied by

the matrix. The function needs to accepts a vector (of length equal to length(w)
and return a vector of length 1

footprints 13

mask If TRUE, pixels with NA in the input are set to NA in the output as well, i.e., the
output is "masked" with the input (default FALSE)

Further arguments passed to fun

Value

The filtered stars raster

Note

The raster is "padded" with one more row/column of NA values on all sides, so that the neigborhood
of the outermost rows and columns is still a complete 3x3 neighborhood. Those rows and columns
are removed from the filtered result before returning it.

Examples

Small example

data(dem)

deml = focal2r(dem, matrix(1,3,3), mean, na.rm = TRUE)

dem2 = focal2r(dem, matrix(1,3,3), min, na.rm = TRUE)

dem3 = focal2r(dem, matrix(1,3,3), max, na.rm = TRUE)

r = c(dem, round(deml, 1), dem2, dem3, along = 3)

r = st_set_dimensions(r, 3, values = c("input”, "mean”, "min”, "max"))
plot(r, text_values = TRUE, breaks = "equal”, col = terrain.colors(10))

Larger example

data(carmel)

carmell = focal2r(carmel, matrix(1,3,3), mean, na.rm = TRUE, mask = TRUE)
carmel2 = focal2r(carmel, matrix(1,9,9), mean, na.rm = TRUE, mask = TRUE)
carmel3 = focal2r(carmel, matrix(1,15,15), mean, na.rm = TRUE, mask = TRUE)
r = c(carmel, carmell, carmel2, carmel3, along = 3)

r = st_set_dimensions(r, 3, values = c("input”, "k=3", "k=9", "k=15"))
plot(r, breaks = "equal”, col = terrain.colors(100))
footprints Footprints
Description

Calculates a polygon layer with the footprints of raster images.

Usage

footprints(x)

Arguments

X A character vector of raster file paths

14 golan

Value

An sf layer with the footprints (i.e., bounding box polygons) of the rasters

Examples

Create sample files

filel = tempfile(fileext = ".tif")
file2 = tempfile(fileext = ".tif")
file3 = tempfile(fileext = ".tif")

r1 = landsat[,1:100, 1:100,]

r2 = landsat[,101:200, 101:200,]
r3 = landsat[,21:40, 51:120,]
write_stars(r1, filel)
write_stars(r2, file2)
write_stars(r3, file3)

Calculate footprints

files = c(filel, file2, file3)
pol = footprints(files)

pol

golan Digital Elevation Model of Golan Heights

Description
A stars object representing a Digital Elevation Model (DEM) Digital Elevation Model of part of
the Golan Heights and Lake Kinneret, at 90m resolution

Usage

golan

Format

A stars object with 1 attribute:

elevation Elevation above sea level, in meters

Examples

plot(golan, breaks = "equal”, col = terrain.colors(11))

landsat 15

landsat RGB image of Mount Carmel

Description
A stars object representing an RGB image of part of Mount Carmel, at 30m resolution. The data
source is Landsat-8 Surface Reflectance product.

Usage

landsat

Format

A stars object with 1 attribute:

refl Reflectance, numeric value between 0 and 1

Examples

plot(landsat, breaks = "equal”)

layer_to_matrix Get stars layer values as matrix

Description

Extracts the values of a single layer in a stars object to a matrix.

Usage

layer_to_matrix(x, check = TRUE)

Arguments
X A stars raster with one attribute and two dimensions, x and y, i.e., a single-band
raster.
check Whether to check (and fix if necessary) that input has one attribute, one layer
and x-y as dimensions 1-2 (default is TRUE).
Value

A matrix with the layer values, having the same orientation as the raster (i.e., rows represent the
y-axis and columns represent the x-axis).

16 layer_to_vector

Examples

data(dem)
m = layer_to_matrix(dem)
m

layer_to_vector Get stars layer values as vector

Description

Extracts the values of a single layer in a stars object to a vector. Cell values are ordered from
top-left corner to the right.

Usage

layer_to_vector(x, check = TRUE)

Arguments
X A raster (class stars) with two dimensions: x and y, i.e., a single-band raster.
check Whether to check (and fix if necessary) that input has one attribute, one layer
and x-y as dimensions 1-2 (default is TRUE).
Value

A vector with cell values, ordered by rows, starting from the top left corner (north-west) and to the
right.

Examples

data(dem)
v = layer_to_vector(dem)
v

make_grid 17

make_grid Make ’stars’ grid from ’sf’ layer

Description
Create ’stars’ raster grid from bounding box of ’sf” vector layer, possibly buffered, with specified
resolution.

Usage

make_grid(x, res, buffer = 0)

Arguments
X An sf, sfc or sfg object
res Required grid resolution, in CRS units of x
buffer Buffer size around x (default is 9, i.e., no buffer)
Value

A stars raster with the grid, with all cell values equal to 1

Examples
Sample 'sf' layer
x = st_point(c(90,0))
y = st_point(c(1,1))
x = st_sfc(x, y)
x = st_sf(x)
Make grid

r = make_grid(x, res = 0.1, buffer = 0.5)
rCL1110] = rep(1:3, length.out = length(r[[1]11))

Plot
plot(r, axes = TRUE, reset = FALSE)
plot(st_geometry(x), add = TRUE, pch = 4, cex = 3, col = "red")

matrix_extend Extend matrix

Description

Adds n rows and columns with NA values on all sides of a matrix.

18 matrix_get_neighbors

Usage

matrix_extend(m, n = 1, fill = NA)

Arguments
m A matrix
n By how many rows/columns to extend the matrix on each side?
fill Fill value (default is NA)

Value

An extended matrix

Examples

m = matrix(1:6, nrow = 2, ncol = 3)
m

matrix_extend(m, 1)
matrix_extend(m, 2)
matrix_extend(m, 3)

matrix_get_neighbors Get neighboring cell values for given matrix cell

Description

Get the values of a k*k neighborhood, as vector and by row, given a matrix, k, and focal cell
position (row and column).

Usage

matrix_get_neighbors(m, pos, k = 3)

Arguments
m A matrix.
pos The focal cell position, a numeric vector of length two of the form c(row,
column).
k Neighborhood size around the focal cell. For example, k=3 implies a neighbor-
hood of size 3*3. Must be an odd positive integer.
Value

A vector with cell values, ordered by rows, starting from the top left corner of the neighborhood
and to the right. When neighborhood extends beyond matrix bounds, only the "existing" values are
returned.

matrix_to_stars 19

Examples

m = matrix(1:12, nrow = 3, ncol = 4)

m

matrix_get_neighbors(m, pos = c(2, 2), k
matrix_get_neighbors(m, pos = c(2, 2), k
matrix_get_neighbors(m, pos = c(2, 2), k

3)
5)
7) # Same result

matrix_to_stars Convert matrix to stars

Description

Converts matrix to a single-band stars raster, conserving the matrix orientation where rows be-
come the y-axis and columns become the y-axis. The bottom-left corner of the axis is set to (0,0)
coordinate, so that x and y coordinates are positive across the raster extent.

Usage

matrix_to_stars(m, res = 1)

Arguments

m A matrix

res The cell size, default is 1
Value

A stars raster

Examples

data(volcano)
r = matrix_to_stars(volcano, res = 10)
plot(r)

20 mode_value

matrix_trim Trim matrix

Description

Removes n rows and columns with NA values on all sides of a matrix.

Usage

matrix_trim(m, n = 1)

Arguments

m A matrix

n By how many rows/columns to trim the matrix on each side?
Value

A trimmed matrix, or NULL if trimming results in an "empty" matrix.

Examples

m = matrix(1:80, nrow = 8, ncol = 10)
m

matrix_trim(m, 1)

matrix_trim(m, 2)

matrix_trim(m, 3)

matrix_trim(m, 4)

mode_value Mode

Description
Find the mode (i.e., most common value) in a numeric vector. In case of ties, the first encountered
value is returned.

Usage
mode_value(x, na_flag = -9999)

Arguments
X A numeric or logical vector
na_flag Value used to mark NA values in C code. This should be set to a value which is

guaranteed to be absent from the input vector x (default is -~9999).

normalize_2d

Value

The mode, numeric vector of length 1

Examples

x =c¢(3, 2, 5,5, 3, 10, 2, 5)
mode_value(x)

21

normalize_2d Normalize a 2D ’stars’ object

Description

Check, and possibly correct, that the input stars object:

* Has exactly one attribute.

* Has exactly two dimensions.

* The dimensions are spatial, named x and y (in that order).

Usage

normalize_2d(x)

Arguments

X A stars object

Value

A new stars object

Examples

Small example
data(dem)
normalize_2d(dem)

22

rgb_to_greyscale

normalize_3d Normalize a 3D ’stars’ object

Description
Check, and possibly correct, that the input stars object:

* Has exactly one attribute.
* Has exactly three dimensions.

* The first two dimensions are spatial, named x and y (in that order).

Usage

normalize_3d(x)

Arguments

X A stars object

Value

A new stars object

Examples

Small example
data(landsat)
normalize_3d(landsat)

rgb_to_greyscale Convert RGB to greyscale

Description

Convert a 3-band RGB raster to 1-band greyscale raster. Based on wvtool

Usage

rgb_to_greyscale(x, rgb = 1:3, coefs = ¢c(0.3, 0.59, 0.11))

Arguments
X A three-dimensional stars object with RGB values
rgb Indices of RGB bands, default is c(1, 2, 3)

coefs RGB weights, default is ¢(0.30,0.59,0.11)

::rgbh2gray.

slope 23

Value

A two-dimensional stars object greyscale values

Examples

data(landsat)

plot(landsat, rgb = 1:3)

landsat_grey = rgb_to_greyscale(landsat)
plot(landsat_grey, breaks = "equal”)

slope Calculate topographic slope from a DEM

Description

Calculates topographic slope given a Digital Elevation Model (DEM) raster. Input and output are

e

rasters of class stars, single-band (i.e., only *"x" and “"y"‘ dimensions), with one attribute.

Usage
slope(x, na_flag = -9999)

Arguments
X A raster (class stars) with two dimensions: x and y, i.e., a single-band raster,
representing a DEM.
na_flag Value used to mark NA values in C code. This should be set to a value which is
guaranteed to be absent from the input raster x (default is ~9999).
Value

A stars raster with topographic slope, i.e., the azimuth where the terrain is tilted towards, in
decimal degrees (0-360) clockwise from north.

Note

Slope calculation results in NA when at least one of the cell neighbors is NA, including the outermost
rows and columns. Given that the focal window size in slope calculation is 3*3, this means that the
outermost one row and one column are given an slope value of NA.

The raster must be in projected CRS, and units of x/y resolution are assumed to be the same as units
of elevation (typically meters).

References
The topographic slope algorithm is based on the How slope works article in the ArcGIS documen-
tation:

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.
htm

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.htm

24 trim2

Examples

Small example

data(dem)
dem_slope = slope(dem)
plot(
dem, text_values = TRUE, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "input (elevation)"”
)
plot(
dem_slope, text_values = TRUE, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "output (slope)”
)
Larger example
data(carmel)
carmel_slope = slope(carmel)
plot(
carmel, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "input (elevation)”
)
plot(
carmel_slope, breaks = "equal”,
col = hcl.colors(11, "Spectral”), main = "output (slope)”
)
trim2 Remove empty outer rows and columns
Description

Removes complete outer rows and columns which have NA values.

Usage

trim2(x)

Arguments

X A two-dimensional stars object

Value

A new stars object with empty outer rows and columns removed

w_azimuth 25

Examples

Single-band example
data(dem)
dem[[11]1[1,] = NA
dem1 = trim2(dem)

Multi-band example
data(landsat)
landsat[[1]][1:100,,] = NA
landsat1 = trim2(landsat)

w_azimuth Create matrix with azimuths to center

Description
Creates a matrix with directions (i.e., azimuth) to central cell, of specified size k. The matrix can
be used as weight matrix when calculating the convergence index (see Examples).

Usage

w_azimuth(k)

Arguments
k Neighborhood size around focal cell. Must be an odd number. For example, k=3
implies a 3*3 neighborhood.
Value

A matrix where each cell value is the azimuth from that cell towards the matrix center.

Examples

w_azimuth(3)

= w_azimuth(5)

3 3 3 3

26 w_circle

w_circle Create matrix with circular weight pattern

Description
Creates a matrix with where a circular pattern is filled with values of 1 and the remaining cells are
filled with values of @ (see Examples).

Usage

w_circle(k)

Arguments
k Neighborhood size around focal cell. Must be an odd number. For example, k=3
implies a 3*3 neighborhood.
Value

A matrix with a circular pattern.

Examples

m = w_circle(3)

image(m, asp = 1, axes = FALSE)
m = w_circle(5)

image(m, asp = 1, axes = FALSE)
m = w_circle(15)

image(m, asp = 1, axes = FALSE)
m = w_circle(35)

image(m, asp = 1, axes = FALSE)
m = w_circle(91)

image(m, asp = 1, axes = FALSE)
m = w_circle(151)

image(m, asp = 1, axes = FALSE)

Index

x datasets trim2, 24
carmel, 4
dem, 5 w_azimuth, 25
golan, 14 w_circle, 26

landsat, 15
aspect, 2,4

carmel, 4
CI,4

dem, 5
detrend, 6
dist_to_nearest, 7

extract2, 8

flowlength, 9
focal2, 10
focal2r, 12
footprints, 13

golan, 14

landsat, 15
layer_to_matrix, 15
layer_to_vector, 16

make_grid, 17
matrix_extend, 17
matrix_get_neighbors, 18
matrix_to_stars, 19
matrix_trim, 20
mode_value, 20

normalize_2d, 21
normalize_3d, 22

rgb_to_greyscale, 22

slope, 23

27

	aspect
	carmel
	CI
	dem
	detrend
	dist_to_nearest
	extract2
	flowlength
	focal2
	focal2r
	footprints
	golan
	landsat
	layer_to_matrix
	layer_to_vector
	make_grid
	matrix_extend
	matrix_get_neighbors
	matrix_to_stars
	matrix_trim
	mode_value
	normalize_2d
	normalize_3d
	rgb_to_greyscale
	slope
	trim2
	w_azimuth
	w_circle
	Index

