Package ‘sship’

December 12, 2022
Title Tool for Secure Shipment of Content
Version 0.9.0
Maintainer Are Edvardsen <biorakel@gmail.com>

Description Convenient tools for exchanging files securely from within R. By
encrypting the content safe passage of files (shipment) can be provided by
common but insecure carriers such as ftp and email. Based on asymmetric
cryptography no management of shared secrets is needed to make a secure
shipment as long as authentic public keys are available. Public keys used
for secure shipments may also be obtained from external providers as part of
the overall process. Transportation of files will require that relevant
services such as ftp and email servers are available.

License GPL-3

Encoding UTF-8

Imports httr, jsonlite, openssl, RCurl, yaml

Suggests httptest, httpuv, rmarkdown, testthat (>= 2.1.0), withr
RoxygenNote 7.2.1

URL https://github.com/Rapporteket/sship

BugReports https://github.com/Rapporteket/sship/issues
NeedsCompilation no

Author Are Edvardsen [aut, cre] (<https://orcid.org/0000-0002-5210-3656>)
Repository CRAN

Date/Publication 2022-12-12 12:20:02 UTC

R topics documented:

keygen

Ship . . o e

https://github.com/Rapporteket/sship
https://github.com/Rapporteket/sship/issues
https://orcid.org/0000-0002-5210-3656

2 config

Index 10

config Functions handling sship R package config

Description

Functions handling sship R package config

Usage
create_config(dir = ".")
write_config(config, dir = ".", filename = "_sship.yml")
get_config(dir = ".")
check_config(config)
Arguments
dir string providing path to configuration file
config list containing configuration
filename string defining config filename
Value

A status message or list of config

Examples

Create a new config file from package default
create_config(dir = tempdir())

Get config
config <- get_config(system.file("sship.yml"”, package = "sship”))

Check if config is valid
check_config(config)

Write config to file
write_config(config, dir = tempdir())

dec 3

dec Unpack shipment and decrypt content

Description

This function tries to reverse the process of enc and hence depend on the conventions used there.

Usage
dec(tarfile, keyfile = "~/.ssh/id_rsa”, target_dir = ".")
Arguments
tarfile Character string providing full path to the gzip-compressed tarball holding the
shipment payload, including encrypted files.
keyfile Character string providing the full path to the private RSA key to be used for
decryption of the encrypted key that is part of the shipment. Default value is set
to ~/.ssh/id_rsa which is the usual path for unix type operating systems.
target_dir Character string providing the full path to where the decrypted file is to be writ-
ten. Defaults to the current directory " . ", e.g. where this function is being called
from.
Details

Some of the functions used here might be vulnerable to differences between systems running R.
Possible caveats may be the availability of the (un)tar-function and how binary streams/files are
treated.

Value

Invisibly a character string providing the file path of the decrypted file.

See Also

enc

Examples

Please note that these examples will write files to a local temporary
directory.

Make temporary workspace
wd <- tempdir()

Make a private-public key pair named "id_rsa” and "id_rsa.pub”

n "

keygen(directory = wd, type = "rsa”, overwrite_existing = TRUE)

Make a secured (encrypted) file

4 enc

saveRDS(iris, file = file.path(wd, "secret.rds"), ascii = TRUE)
pubkey <- readLines(file.path(wd, "id_rsa.pub"))
secure_secret_file <-
enc(filename = file.path(wd, "secret.rds"),
pubkey_holder = NULL,
pubkey = pubkey)

Decrypt secured file using the private key
secret_file <-
dec(tarfile = secure_secret_file,
keyfile = file.path(wd, "id_rsa"),
target_dir = wd)

enc Encryption of shipment content

Description

Various functions and helper functions to establish encrypted files. To secure the content (any
file) the Advanced Encryption Standard (AES) is applied with an ephemeral key consisting of 256
random bits. This key is only used once for encryption (and then one more time during decryption
at a later stage). A random 128 bit initialization vector (iv) is also applied during encryption. There
is no extra security gain in this since the key will never be re-used for encryption/decryption. So,
just for good measures then :-) After the content has been encrypted the key itself is encrypted
by applying a public key offered by the recipient. This key is obtained from a public provider.
Currently, GitHub is the only option. The three files: encrypted content, the encrypted key and the
(cleartext) iv is then bundled into a tarball ready for shipment.

Usage

enc_filename(filename)
make_pubkey_url(pubkey_holder = "github"”, pid)
get_pubkey(pubkey_holder, pid)

enc(filename, pubkey_holder, pid, pubkey = NULL)

Arguments

filename Character string with fully qualified path to a file.

pubkey_holder Character string defining the provider of the public key used for encryption of
the symmetric key. Currently, ’github’ is the only valid pubkey holder. If a
local pubkey is to be used (see parameter pubkey, pubkey_holder may be set
to NULL or some other value.

pid Character string uniquely defining the user at pubkey_holder who is also the
owner of the public key.

pubkey Character string representing a valid public key. Default is NULL in which case
the key will be obtained as per pubkey_holder.

enc 5

Details

Encrypted files can be decrypted outside R using the OpenSSL library. Both the key and the initial-
ization vector (iv) are binary and this method uses the key directly (and not a [hashed] passphrase).
OpenSSL decryption need to be fed the key (and iv) as a string of hex digits. Methods for conversion
from binary to hex may vary between systems. Below, a bash shell (unix) example is given

Step 1: decrypt symmetric key (open envelope) using a private key
openssl rsautl -decrypt -inkey ~/.ssh/id_rsa -in key.enc -out key

Step 2: decrypt content by key obtained in step 1, also converting key and iv to strings of hexadeci-
mal digits

openssl aes-256-cbc -d -in data.csv.enc -out data.csv \
-K $Chexdump -e '32/1 "%02x"' key) -iv $(hexdump -e '16/1 "%02x"' iv)
Value

Character string providing a filename or a key

See Also

dec

Examples

Please note that these examples will write files to a local temporary
directory.

Define temporary working directory and a secret file name
wd <- tempdir()
secret_file_name <- "secret.rds"

Add content to the secret file
saveRDS(iris, file = file.path(wd, secret_file_name), ascii = TRUE)

Make a private-public key pair named "id_rsa” and "id_rsa.pub”
keygen(directory = wd, type = "rsa”, overwrite_existing = TRUE)

Load public key
pubkey <- readLines(file.path(wd, "id_rsa.pub"))

Make a secured file (ready for shipment)
secure_secret_file <- enc(filename = file.path(wd, "secret.rds"),
pubkey_holder = NULL, pubkey = pubkey)

6 github

github Make calls to the github API

Description

Provides a structured list of the specified resource from the the github API.

Usage

gh(path, proxy_url = NULL, token = NULL)
github_api(path, proxy_url = NULL, token = NULL)

rate_limit(proxy_url = NULL, token = NULL)

Arguments
path Character string with path to the API resource.
proxy_url Character string defining a network proxy in the form host:port. Default is
NULL in which case the API call will not use a proxy.
token Character string holding a github personal access token (PAT) to be used for
requests that requires authorization. Default value is NULL in which case the
request will be unauthorized unless PAT can be obtained from the environmental
variable GITHUB_PAT.
Details

For most use cases only gh() will be relevant. The helper function github_api() do the actual
lifting while rate_limit () handles API rate limits.

Value

A list of class github_api containing the parsed content, API resource path and the response object.
For rate_limit() the path is always "/rate_limit" and can hence be used to detect if the limit is
exceeded (without being counted as a request itself). If the allowed API rate is exceeded gh() will
return a message stating the fact and simple suggestions on how to remedy the problem.

Examples

Get all branches of a repository. If the api rate limit is exceeded this
function will return NULL and an informative message
gh("repos/Rapporteket/sship/branches™)

helper functions that will normally not be used
github_api("”/rate_limit")
rate_limit()

keygen 7

keygen Make private-public key pair

Description

Just for the convenience of it, make a key pair that may be used alongside sship. Please note that by
default the private key will not be protected by a password.

Usage
keygen(
directory = "~/.ssh",
type = "rsa”,

password = NULL,
overwrite_existing = FALSE

)
Arguments

directory Character string with path to directory where the key pair will be written. De-
fault is "~/.ssh".

type Character string defining the key type. Must be one of c("rsa”, "dsa”, "ecdsa”,
"x25519", "ed25529"). Key lengths are set to the default as defined in the
openssl-package. If the key-pair is to be used with this package make sure that
type is set to "rsa".

password Character string with password to protect the private key. Default value is NULL

in which case the private key will not be protected by a password

overwrite_existing
Logical whether existing key files with the similar names should be overwritten.

Set to FALSE by default.
Value
Nothing will be returned from this function, but a message containing the directory where the keys

were written is provided

Examples

keygen(directory = tempdir(), overwrite_existing = TRUE)

8 ship

pubkey_filter Filter ssh public keys by type

Description

From a vector of ssh public keys, return those that are of a given type.

Usage

pubkey_filter(keys, type)

Arguments
keys Vector of strings representing ssh public keys.
type Character string defining the ssh public key type that will pass the filter. Relevant
values are strings returned by attributes(openssl: : read_pubkey(pubkey))$class[2],
e.g. "rsa" and "dsa".
Value

A vector of strings representing (filtered) public keys.

Examples

make ssh public key strings
rsa_pubkey <- openssl::write_ssh(openssl::rsa_keygen()$pubkey)
dsa_pubkey <- openssl::write_ssh(openssl::dsa_keygen()$pubkey)

filter keys by type
pubkey <- pubkey_filter(c(rsa_pubkey, dsa_pubkey), "rsa")
identical (pubkey, rsa_pubkey)

ship Secure cargo and make shipment (secure shipment)

Description

First, the content (a file) is encrypted and packed and then shipped to the recipient using the specified
vessel (transportation method). If the given vessel is not available the function return an error.
Optionally, a declaration can also be associated with the shipment and dispatched immediately after
the actual cargo.

ship

Usage

sship(content, recipient, pubkey_holder, vessel, declaration = "")

dispatch(recipient, vessel, cargo)

dispatchable(recipient, vessel)

make_url(recipient, vessel)

make_opts(recipient, vessel)

Arguments

content

recipient

pubkey_holder

vessel

declaration

cargo

Details

Character string: the full path to the file to be shipped

Character string: user name uniquely defining the recipient both in terms of the
public key used for securing the content and any identity control upon docking.
See also Details.

Character string: the holder of the (recipient’s) public key. Currently, the only
viable option here is *github’.

Character string: means of transportation. Currently one of ’ssh’ or ’ftp’.
Character string: the name of an empty file to be associated with shipment of
the cargo itself and dispatched immediately after. The most likely use case is

for the recipient to check for this file being present before picking up the cargo
itself. Default value is "" in which case no declaration will be used.

Character vector: all items associated with the current shipment. Used only
internally.

Most likely access control will be enforced before docking of the shipment can commence. For
each recipient a list of available vessels (transport methods) is defined and must include relevant
credentials. Functions used here rely on local configuration (sship. yml) to access such credentials.

Value

TRUE if successful

See Also

enc

Index

check_config (config), 2
config, 2
create_config (config), 2

dec, 3,5
dispatch (ship), 8
dispatchable (ship), 8

enc, 3,4, 9
enc_file (enc), 4
enc_filename (enc), 4

get_config (config), 2
get_pubkey (enc), 4

gh (github), 6

github, 6

github_api (github), 6

keygen, 7

make_opts (ship), 8
make_pubkey_url (enc), 4
make_url (ship), 8

pubkey_filter, 8

random_key (enc), 4
rate_limit (github), 6

ship, 8
sship (ship), 8

write_config (config), 2

10

	config
	dec
	enc
	github
	keygen
	pubkey_filter
	ship
	Index

