
1

ssc: An R Package for

Semi-Supervised Classification
by Mabel González, Osmani Rosado, José D. Rodríguez, Christoph Bergmeir, Isaac Triguero

and José M. Benítez

Abstract Semi-supervised classification has become a popular area of machine learning, where
both labeled and unlabeled data are used to train a classifier. This learning paradigm has obtained
promising results, specifically in the presence of a reduced set of labeled examples. We present the R
package ssc that implements a collection of self-labeled techniques to construct a classification model.
This family of techniques enlarges the original labeled set using the most confident predictions
to classify unlabeled data. The techniques implemented in the ssc package can be applied to
classification problems in several domains by the specification of a suitable learning scheme. At low
ratios of labeled data, it can be shown to perform better than classical supervised classifiers.

Introduction

Nowadays, the increasing amount of stored data from the most diverse domains makes data mining
(Witten et al., 2011) a powerful tool to discover underlying knowledge on such data. A popular
area of data mining focuses on the prediction of the label or class of new examples from data that
describe what happened in the past. In those applications, an additional effort is required to obtain
the labeled examples needed during the training process. Often, obtaining the labels is an expensive
and time consuming process that requires the attention of the experts from a particular domain.
Semi-supervised learning (SSL, Chapelle et al., 2006) can relieve this situation since it performs the
training from a reduced number of labeled data in conjunction with abundant unlabeled data.

Semi-supervised classification (SSC) is in the middle ground between supervised and unsupervised
classification. Several approaches have been proposed that follow the semi-supervised classification
paradigm. The principal approaches are: generative models (Fujino et al., 2008), graph-based models
(Blum and Chawla, 2001), and the semi-supervised support vector machines (Joachims, 1999). Every
SSC approach makes its own assumptions (Zhu and Goldberg, 2009) about the link between the
distribution of unlabeled and labeled data.

The taxonomy proposed in Triguero et al. (2015) describes another family of methods, denoted
self-labeled techniques. The main target of this family is to enlarge the original labeled set using the
most confident predictions to classify unlabeled data. In the specialized literature, there are reported
several self-labeled methods (Li and Zhou, 2005; Wang et al., 2010; Zhou and Li, 2005; Zhou and
Goldman, 2004). Some of the most popular self-labeled techniques are self-training (Yarowsky, 1995)
and co-training (Blum and Mitchell, 1998). In general, those methods do not make any special
assumptions about the distribution of the input data, but they accept that their most confident
predictions tend to be correct.

This paper presents the ssc R package which implements successful self-labeled methods selected
from the experimental analysis presented in Triguero et al. (2015). The methods start learning with
a partially labeled dataset. A classification model is obtained as a result from the semi-supervised
learning performed. The hypothesis learned by the model can be used to classify either the unlabeled
instances provided during the training process or new instances. The R package implementing
the self-labeled methods described in this paper is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=ssc. Additionally, a web page with a
usage tutorial and more usage examples is available at http://sci2s.ugr.es/dicits/software/ssc.

Semi-supervised Classification

The main idea of SSL is to learn from unlabeled as much as from labeled data to obtain more accurate
models (Chapelle et al., 2006). In SSL, data can be separated into two sets: L = {x1, . . . , xl} with
its known labels Yl = {y1, . . . , yl}, and U = {xl+1, . . . , xl+u} for which labels are unknown.

Depending on the main goal of these methods, SSL can be divided into semi-supervised classifi-
cation (SSC) and semi-supervised clustering. The first focuses on improving the results obtained
with supervised classification and the latter in finding better defined clusters (Zhu and Goldberg,
2009). This paper is focused on SSC.

SSC can be categorized into two slightly different settings, denoted transductive and inductive
learning. Transductive learning concerns the problem of predicting the labels of the unlabeled

2

examples provided during the training phase. On the other hand, inductive learning considers the
labeled and unlabeled data provided as the training examples, and its objective is to predict the
label of unseen data (Chapelle et al., 2006).

Self-labeled methods

Self-labeled techniques (Triguero et al., 2015) obtain an enlarged labeled set by the iterative
classification of unlabeled examples under the assumption that their most accurate predictions tend
to be correct. Self-labeled techniques are typically divided into self-training and co-training methods.

Self-training is a simple and effective SSL methodology. During the self-training process the
classifier is initially trained with a reduced set of labeled examples, aiming to classify unlabeled
examples. Then, it is retrained with its own most confident predictions, enlarging its labeled
training set. This process is repeated until a stopping criterion is reached. The major advantages of
self-training are its simplicity and the fact that it is a wrapper method (Zhu and Goldberg, 2009).

The standard co-training (Blum and Mitchell, 1998) methodology assumes that the feature space
can be split into two different conditionally independent views and that each view is able to predict
the classes on its own. It trains one classifier in each specific view, and then the classifiers teach
each other the most confidently predicted examples from the unlabeled pool. The process continues
until a predefined number of iterations is reached.

The wrapper methodology used in both methods makes the selection of the learning scheme for
the classifiers flexible. The only requirement is that the classifiers can assign a confidence score to
their predictions, which could be used to select which unlabeled instances to turn into additional
training data.

The ssc package implements six self-labeled methods. Table 1 describes these methods according
to the properties given by Triguero et al. (2015):

Addition mechanism Describes the way in which the enlarged labeled set (EL) is formed. In
incremental scheme, the algorithm starts with EL = L and adds, step by step, the most
confident instances of U . Another scheme is amending, which differs from incremental in that
it can iteratively add or remove any instance that meets a certain criterion; this mechanism
has been designed to avoid the introduction of noisy instances into EL at each iteration.

Classifiers This refers to whether it uses one or several classifiers during the enlarging phase
of the labeled set. All of these methods follow a wrapper methodology using one or more
classifiers to establish the possible class of unlabeled instances. In a single-classifier model,
each unlabeled instance belongs to the most probable class assigned by the uniquely used
classifier. Multi-classifier methods combine the learned hypotheses with several classifiers to
predict the class of unlabeled instances.

Learning It specifies whether the models are constituted by the same (single) or different (multiple)
learning algorithms. Multi-learning approaches are closely linked with multi-classifier models;
a multi-learning method is itself a multi-classifier method in which the different classifiers
come from different learning methods. On the other hand, a single-learning approach can be
linked to both single and multi-classifiers.

Teaching In a mutual-teaching approach, the classifiers teach each other their most confident
predicted examples. Each Ci classifier has its own ELi which it uses for training at each
stage. ELi is increased with the most confident labeled examples obtained as the hypotheses
combination of the remaining classifiers. By contrast, the self-teaching property refers to those
classifiers that maintain a single EL.

Stopping criteria This is related to the mechanism used to stop the self-labeling process. It is an
important factor due to the fact that it influences the size of EL and therefore the learned
hypothesis. Some of the approaches for this are: (i) repeat the self-labeling process until a
portion of U has been exhausted, (ii) establish a limited number of iterations, and (iii) the
learned hypothesis remains stable between two consecutive stages.

3

Method Reference
Addition

Classifiers
Learning

Teaching
Stopping

mechanism paradigm criteria

Self-training (Yarowsky, 1995) incremental single single self i
SETRED (Li and Zhou, 2005) amending single single self i
SNNRCE (Wang et al., 2010) amending single single self i
Tri-training (Zhou and Li, 2005) incremental multi single mutual iii
Co-Bagging (Blum and Mitchell, 1998) incremental multi single mutual i
Democratic-Co (Zhou and Goldman, 2004) incremental multi multi mutual iii

Table 1: Methods implemented in ssc

Related packages

There are some publicly available R packages that allow semi-supervised classification. Most of
them follow the generative paradigm. For instance, the upclass package (Russell et al., 2014) uses
labeled and unlabeled data to construct a model-based classification method using a Gaussian
mixture model. The Expectation Maximization algorithm is also used to obtain maximum likelihood
estimates of the model parameters and classifications for the unlabeled data. The bgmm package
(Biecek et al., 2012) implements partially supervised mixture modeling methods. Rmixmod (Lebret
et al., 2015) is an exploratory data analysis tool for solving clustering and classification problems
by fitting a mixture model to a given dataset. It can be used in semi-supervised situations where
the dataset is partially labeled. The spa package (Culp, 2011) provides support for semi-supervised
classification using graph-based estimation and linear regression.

To the best of our knowledge, there are no R packages that specialize in self-labeled methods.
Recently, the RSSL (Krijthe, 2017) and SSL (Wang, 2016) packages were introduced but their
implementations are mostly complementary to those offered in our package. Only the self-training
standard model is implemented in these packages and in the DMwR package (Torgo, 2010) that
covers a collection of data mining functions. On the other hand, ssc provides a far more extensive
set of self-labeled methods, including various of the most successful approaches according to the
extensive overview provided by Triguero et al. (2015).

Package functionalities

In this section we describe the main features of the ssc package. It is written in pure R and it
provides implementations of the most relevant self-labeled models. Two basic functionalities have
been implemented in the package: training a semi-supervised model from data and classification of
instances using a trained model. Both functionalities are accessible through two different interfaces:
specific and generic. The former is oriented to standard base classifiers and the latter is focused on
base classifiers with more complex specifications. Figure 1 shows the main functions involved in
both interfaces.

The ssc Package

Training Classification

- coBC
- democratic
- selfTraining
- setred
- snnrce
- triTraining

- predict.coBC
- predict.democratic
- predict.selfTraining
- predict.setred
- predict.snnrce
- predict.triTraining

Specific Interface Generic Interface

Training Classification

- coBCG
- democraticG
- selfTrainingG
- setredG
- triTrainingG

- triTrainingCombine
- coBCCombine
- democraticCombine

Figure 1: Main functionalities and their implementation in ssc.

The workflow followed to perform the classification task with the ssc package is illustrated in

4

Figure 2. In the training phase we use one of the available training functions in the ssc package.
The training function takes as arguments the training set and other specified parameters of the
selected model. In the classification phase we use the predict function for the specific interface.
This function follows the S3 class style and for that reason the classification process depends on
the class of the trained model. In the case of the generic interface, the predict function used is
the one that corresponds to the base model trained in the case of the single-classifier methods:
selfTraining and setred. For the multi-classifier methods, we provide classification functions to
combine the predicted values obtained from each individual base classifier.

Other parameters

ssc::<Training Function>()

predict()

Training data

Test data

Predicted values

Figure 2: Training of models and prediction.

Training functions

For each semi-supervised method (described in Table 1), a function for training which returns the
selected model is implemented. For both interfaces, the arguments are shown in Table 2.

Methods Specific training interface Generic training interface

coBC

x, y, x.inst, learner, y, gen.learner, gen.pred,

learner.pars, pred, pred.pars, N, perc.full, u, max.iter

N, perc.full, u, max.iter

democratic
x, y, x.inst, learners, y, gen.learners, gen.preds

learners.pars, preds, preds.pars

selfTraining

x, y, x.inst, learner, y, gen.learner, gen.pred,

learner.pars, pred, pred.pars, perc.full, max.iter, thr.conf

perc.full, max.iter, thr.conf

setred

x, y, x.inst, dist, learner, y, D, gen.learner, gen.pred,

learner.pars, pred, pred.pars, perc.full, max.iter, theta

perc.full, max.iter, theta

snnrce x, y, x.inst, dist, alpha

triTraining
x, y, x.inst, learner, y, gen.learner, gen.pred,

learner.pars, pred, pred.pars,

Table 2: Input arguments for the training functions in ssc. The arguments defining the base
classifiers are highlighted.

The x, y and x.inst arguments are mandatory for all training functions in the specific interface.
The x argument provides the training instances in a usual matrix form (each row represents an
instance). If the base classifier supports the training instances in other formats like a distance
or kernel matrix then it is necessary to put as FALSE the argument x.inst. In this case, the
x argument must be a squared matrix of dimension m, where m means the number of training
instances. The other common argument y is a vector with the class information of the training
instances. In this vector the unlabeled instances are specified with the value NA.

All training functions use at least one base classifier, following the wrapper methodology used in
the SSC framework. In the case of the single-classifier methods: selfTraining, setred, triTraining,
and coBC, the base classifier can be set using the arguments: learner, learner.pars, pred and
pred.pars. The defined interface of the learner function is as follows:

5

base.class <- learner(x.train, y.train, learner.pars)

Here, x.train and y.train are the training set and learner.pars is a list of additional param-
eters that can be passed to the learner function. The returned value is a trained base classifier
(the object class depends on the learner specified). The defined interface of the pred function is as
follows:

y.test <- pred(base.class, x.test, pred.pars)

Here, base.class is the base classifier trained, x.test are the instances to predict and pred.pars

is a list of additional parameters that can be passed to the pred function. The returned value is a
matrix of class probabilities (one column for each class and one row for each instance in x.test).

For the generic interface, the base classifier definition is much more flexible. In this case,
the manipulation of the instances occurs entirely inside the functions gen.learner and gen.pred.
Therefore, the semi-supervised method accesses the training instances through indexes (index i

refers to ith instance supplied during the training phase). The defined interfaces of the gen.learner

and gen.pred functions are as follows:

base.class <- gen.learner(indexes.train, y.train)

y.test <- gen.pred(base.class, indexes.test)

The argument y is common for all methods in both interfaces and the rest of arguments specifies
particular features of the self-labeled techniques. For this reason these arguments appear either
in the specific or the generic interface, with the exception of the setred method where the dist

argument of the specific interface appears as argument D in the generic interface. In this case, the
function dist is needed to compute the distance between all training instances and D is directly a
distance matrix previously computed by the user.

On the other hand, the snnrce method uses a fixed base classifier (1NN) that cannot be modified.
For that reason, we do not include a training function for this method in the generic interface. The
function democratic has as arguments a list of learners and predict functions to specify the set of
algorithms that will be used as base classifiers, following a multi-classifier approach.

Classification functions

From the training phase we obtain an object whose class depends on the trained model. This object
keeps the information needed to perform both inductive and transductive classification. For the
specific interface, the classification task is performed by the predict function. The main arguments
of this function are described as follows:

- object: a semi-supervised model previously trained.

- x: a matrix with the description of the instances to be classified.

Following the S3 class style, the object argument determines the function used to classify. The
x argument depends on the training phase. If the model was trained from a distance (kernel) matrix
then the expected value of x is a distance (kernel) matrix between the instances to be classified
and the training instances included in the model. Otherwise, the model was trained from a matrix
of instances and therefore the expected value of x is the matrix of instances to be classified. The
predict function returns a factor with the classes predicted by the model.

In the case of the generic interface, the classification task is straightforward for the methods
selfTraining and setred. To classify new instances, it is sufficient to use the predict function
associated with the final base classifier obtained during the training phase. This base classifier
is returned as the model attribute of the semi-supervised model trained. For the multi-classifiers
methods, the model attribute contains a list of base classifiers instead of a single classifier. To
classify new instances it is required to classify first those new instances with each base classifier,
independently. Then, the final classification is obtained by combining the predictions of each classifier.
For this task, we offer a dedicated combination function for each multi-classifier method:

- coBCCombine

- democraticCombine

- triTrainingCombine

6

Examples of usage

This section presents various examples that illustrate the main functionalities of the ssc package.
We can install it from CRAN executing the following function in the R environment:

install.packages(ssc)

Setting up the data

Two example datasets have been included in the ssc package: wine (Lichman, 2013) and coffee
(Chen et al., 2015). The first is the result of a chemical analysis of wines to determine the type
of wine (three classes). The second dataset represents a binary classification problem that stems
from the temporal domain. We illustrate the use of the functions in the ssc package using the wine
dataset. We can obtain a partition that simulates the semi-supervised context with the following
code:

library(ssc)

data(wine) # load the Wine dataset

cls <- which(colnames(wine) == "Wine")

x <- wine[, -cls] # instances without classes

y <- wine[, cls] # the classes

x <- scale(x) # scale the attributes for distance calculations

set.seed(3)

Use 50% of instances for training

tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))

xtrain <- x[tra.idx,] # training instances

ytrain <- y[tra.idx] # classes of training instances

Use 70% of train instances as unlabeled set

tra.na.idx <- sample(x = length(tra.idx),

size = ceiling(length(tra.idx) * 0.7))

ytrain[tra.na.idx] <- NA # remove class of unlabeled instances

Use the other 50% of instances for inductive test

tst.idx <- setdiff(1:length(y), tra.idx)

xitest <- x[tst.idx,] # test instances

yitest <- y[tst.idx] # classes of instances in xitest

Use the unlabeled examples for transductive test

xttest <- x[tra.idx[tra.na.idx],] # transductive test instances

yttest <- y[tra.idx[tra.na.idx]] # classes of instances in xttest

The training set xtrain includes 50% of all instances and the test set (xitest) contains the rest.
In the xtrain set only the 30% of the instances are labeled. This information is included in the
factor ytrain where the positions that have the value NA correspond to the unlabeled instances in
xtrain. The labeled instances in xtrain are randomly selected with only one restriction: all classes
must be represented by at least two instances.

The variables xitest and xttest are two matrices of instances stored row-wise that are used
to test the prediction capabilities of the model. Specifically, xitest and xttest are used to test
inductive and transductive prediction, respectively. In addition, the variables yitest and yttest

correspond to the class information of the instances in xitest and xttest, respectively.

We compute the matrices required to use additional training options from a precomputed distance
or kernel matrix, when the argument x.inst = FALSE. The following code computes the distance
matrix using the Euclidean method implemented in the proxy package and the kernel matrix using
the Gaussian radial basis function (RBF) with a fixed value of sigma.

computing distance and kernel matrices

dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))

ditest <- as.matrix(proxy::dist(x = xitest, y = xtrain, method = "euclidean",

by_rows = TRUE))

7

ktrain <- as.matrix(exp(- 0.048 * dtrain^2))

kitest <- as.matrix(exp(- 0.048 * ditest^2))

The matrices dtrain and ktrain are used in the training phase, and the matrices ditest and
kitest are used in the inductive prediction phase. We highlight the order of the arguments x and y

passed in the second call to the dist function. It is important to guarantee that x takes the test set
and y takes the training set. The goal is to obtain a distance matrix with the following dimensions:
the number of rows is equal to the size of the test set and the number of columns is equal to the size
of the training set.

Training the model

We illustrate different ways of training a semi-supervised model depending on the base classifier spec-
ified and the option used for the x.inst argument. We include some examples of the selfTraining

function to show the available options.

To perform the training phase using directly the instances in xtrain and the knn3 function from
the caret package as base classifier, we call the function as follows:

library(caret)

m.selft1 <- selfTraining(x = xtrain, y = ytrain, learner = knn3,

learner.pars = list(k = 1), pred = "predict")

Instead of using the instances in xtrain we can use a precomputed matrix in conjunction with a
distance-based classifier. In this case, we use the distance matrix dtrain and the oneNN function
available in the ssc package as follows:

m.selft2 <- selfTraining(x = dtrain, y = ytrain, x.inst = FALSE, learner = oneNN,

pred = "predict", pred.pars = list(type = "prob"))

The next example shows how to use the selfTraining function with a precomputed kernel
matrix. In this case, the selected base classifier is a Support Vector Machines (SVM) implemented
in the ksvm function from the kernlab package. In the argument learner.pars we need to specify
the values of the arguments kernel and prob.model that will be provided to each call of the ksvm

function. Furthermore, we define a wrapper for the original predict function of the “ksvm” object.
Thus, we guarantee the selection of the columns that correspond to the support vectors obtained by
the model m. Additionally, we coerce the matrix object k to “kernelMatrix” class before using the
predict function.

library(kernlab)

m.selft3 <- selfTraining(x = ktrain, y = ytrain, x.inst = FALSE, learner = ksvm,

learner.pars = list(kernel = "matrix", prob.model = TRUE),

pred = function(m, k)

predict(m, as.kernelMatrix(k[, SVindex(m)]),

type = "probabilities")

)

The training process with other methods in the ssc package is quite similar. In the next code
snippet we train SETRED, SNNRCE, tri-training, and co-bagging models using the training instances
in xtrain. For the setred, triTraining, and CoBC methods, we use the ksvm function as base
classifier. The snnrce method has a fixed base classifier.

m.snnrce <- snnrce(x = xtrain, y = ytrain, dist = "Euclidean")

m.setred <- setred(x = xtrain, y = ytrain, dist = "Euclidean", learner = ksvm,

learner.pars = list(prob.model = TRUE), pred = predict,

pred.pars = list(type = "probabilities"))

m.trit <- triTraining(x = xtrain, y = ytrain, learner = ksvm,

learner.pars = list(prob.model = TRUE), pred = predict,

pred.pars = list(type = "probabilities"))

8

m.cobc <- coBC(x = xtrain, y = ytrain, N = 5, learner = ksvm,

learner.pars = list(prob.model = TRUE), pred = predict,

pred.pars = list(type = "probabilities"))

Training with Democratic-Co

In the ssc package, only the democratic method requires the specification of more than one base
classifier. For that reason, the arguments learners and preds must be a list of functions instead
of a single value. democratic assumes that the classifiers provided are from different learning
paradigms. We show an example using three different base classifiers: 1NN, SVM and decision trees
(implemented in the C5.0 function from the C50 package). To perform the training process with
democratic, we use the following code:

library(C50)

m.demo <- democratic(x = xtrain, y = ytrain, learners = list(knn3, ksvm, C5.0),

learners.pars = list(list(k=1), list(prob.model = TRUE), NULL),

preds = list(predict, predict, predict), preds.pars =

list(NULL, list(type = "probabilities"), list(type = "prob"))

)

In the next example, we show how to use the generic interface for the democratic-Co method.
The target is to train from precomputed matrices two base classifiers: SVM and 1NN. The specific
interface allows only a single precomputed matrix as argument. To obtain the functionality desired,
we need to use the generic interface. At first, we define the learner and prediction functions for
each base classifier according to the interfaces introduced in Section 2.2.1. The tindexes attribute
incorporated in both trained models is used to specify the training instances included in the trained
model. The last step is the call of the democraticG function:

l1nn <- function(indexes, cls){

m <- oneNN(y = cls)

attr(m, "tindexes") <- indexes

m

}

l1nn.prob <- function(m, indexes) {

predict(m, dtrain[indexes, attr(m, "tindexes")], type = "prob")

}

lsvm <- function(indexes, cls){

m = ksvm(ktrain[indexes, indexes], cls, kernel = "matrix", prob.model = TRUE)

attr(m, "tindexes") <- indexes[SVindex(m)]

m

}

lsvm.prob <- function(m, indexes) {

k <- as.kernelMatrix(ktrain[indexes, attr(m, "tindexes")])

predict(m, k, type = "probabilities")

}

m.demoG <- democraticG(y = ytrain, gen.learners = list(l1nn, lsvm),

gen.preds = list(l1nn.prob, lsvm.prob))

Classifying seen and unseen instances

In the following we explain how to classify new instances. We illustrate this with various examples.
The models used in the following examples were trained previously in Section 2.3.2.

In the first example we use the model m.selft1 to perform inductive classification. Because this
model was trained using an instance matrix, we need the instance matrix xitest to classify new
instances. We predict the classes of the test instances with the following code:

p.selft1 <- predict(m.selft1, xitest)

Now, we use the models m.selft2 and m.selft3 that were trained using precomputed distance
and kernel matrices, respectively. Therefore, we provide the precomputed test matrices (ditest

9

and kitest) to perform inductive classification. The classification obtained is stored in the vector
p.selft1.

p.selft2 <- predict(m.selft2, ditest[, m.selft2$instances.index])

p.selft3 <- predict(m.selft3, as.kernelMatrix(kitest[, m.selft3$instances.index]))

The internal attribute instances.index in the objects m.selft2 and m.selft3 stores the indexes
of the training instances used in the built model. During the training phase, the learning function
selects the instances that will be included in the returned model. According to this, for each
precomputed matrix we select the sub matrix corresponding to the unseen test instances and the
selected training instances.

On the other hand, we illustrate with the m.selft3 model how to perform transductive classifica-
tion. Here, to predict the classes of the unlabeled training instances (referenced by the tra.na.idx

variable) we pass directly the matrix ktrain, used during the training phase:

p.selft3transd <- predict(m.selft3, as.kernelMatrix(ktrain[tra.na.idx,

m.selft3$instances.index]))

For the rest of the single classifier models, we perform inductive classification of the test instances
provided in the matrix xitest.

p.snnrce <- predict(m.snnrce, xitest)

p.setred <- predict(m.setred, xitest)

p.trit <- predict(m.trit, xitest)

p.cobc <- predict(m.cobc, xitest)

Classifying with Democratic-Co

For the specific interface, the classification task using the democratic function is similar to the
previous examples. We predict the classes of the test instances as follows:

p.demo <- predict(m.demo, xitest)

However, this task using the generic interface requires a previous step, consisting in the prediction
of the test instances by each base classifier contained in the ensemble. Subsequently, we use the
democraticCombine function to create the final hypotheses.

m1.pred1 <- predict(m.demoG$model[[1]], ditest[, m.demoG$model.index[[1]]],

type ="class")

m1.pred2 <- predict(m.demoG$model[[2]],

as.kernelMatrix(kitest[, m.demoG$model.index[[2]]]))

p.demoG <- democraticCombine(pred = list(m1.pred1, m1.pred2), m.demoG$W,

m.demoG$classes)

Comparison between the models trained

In this example we perform a comparison between a selection of the trained models to determine
the most competitive one for the wine classification problem.

p <- list(p.selft3, p.snnrce, p.setred, p.trit, p.cobc, p.demo)

acc <- sapply(X = p, FUN = function(i) {caret::confusionMatrix(table(i,

yitest))$overall[1]})

names(acc) <- c("SelfT","SNNRCE","SETRED","TriT", "coBC","Demo")

barplot(acc, beside = T, ylim = c(0.80,1), xpd = FALSE, las = 2,

col=rainbow(n = 6, start = 3/6, end = 4/6, alpha = 0.6) ,

ylab = "Accuracy")

The bar plot generated with the evaluation is shown in Figure 3. Tri-training obtains the most
accurate results for the wine problem.

10

Another useful analysis is the comparison with the supervised paradigm. For this we train a
supervised classifier (for simplicity SVM) to obtain a baseline of the classification results. The
SVM classifier trained from the initial labeled instances in xtrain can be used as a lower bound of
accuracy. We evaluate the supervised classifier in the test set xitest and compare this result with
the semi-supervised performance. In the following code we train and evaluate the SVM classifier:

labeled.idx <- which(!is.na(ytrain))# indices of the initially labeled instances

xilabeled <- xtrain[labeled.idx,] # labeled instances

yilabeled <- ytrain[labeled.idx] # related classes

svmBL <- ksvm(x = xilabeled, y = yilabeled, prob.model = TRUE) # build SVM

p.svmBL <- predict(object = svmBL, newdata = xitest) # classify with SVM

abline(h = caret::confusionMatrix(table(p.svmBL, yitest))$overall[1], col = "red",

lwd = 2)

legend(x = 2, y = 1.0, col = c("red"), legend=c("Base line"), lty = 1, lwd = 2)

The baseline generated is shown in Figure 3. Most self-labeled methods obtain an accuracy
gain by taking into account the unlabeled instances during the training. In particular, triTraining

obtains an accuracy gain of 0.05.

S
e
lf
T

S
N
N
R
C
E

S
E
T
R
E
D

T
ri
T

c
o
B
C

D
e
m
o

A
c
c
u
ra
c
y

0.80

0.85

0.90

0.95

1.00
Baseline

Figure 3: Comparison between various semi-supervised models evaluated for the wine problem.

Empirical evaluation of performance

In this section, we illustrate the performance of some methods implemented in the ssc package.
We show the comparison between the baseline and the semi-supervised accuracy results applied
to five datasets taken from the UCI repository. The SVM with the RBF kernel function is used as
base classifier and benchmark supervised classifier in all comparisons. The semi-supervised methods
evaluated are: selfTraining, setred, coBC and triTraining.

In the preparation process, we follow the same procedure used in Section 2.3.1 to split the wine
dataset: 50% of the instances to train (L ∪ U) and 50% of the instances to test (T). The set L

represents 30% of the training instances. To train the supervised method we use only the avaliable
instances from L. To test all methods we use the set T .

The results of our experiment are shown in Table 3. All results that represent an accuracy gain
in the semi-supervised paradigm are printed in a boldface font. The results show that, in general,

11

Datasets SVM selfTraining setred coBC triTraining

Iris 0.68 0.88 0.88 0.88 0.90

Parkinsons 0.86 0.86 0.87 0.87 0.86

Wine 0.95 0.97 0.97 0.95 0.97

Vertebral column 0.77 0.75 0.77 0.78 0.78

Fertility 0.90 0.90 0.90 0.72 0.90

Table 3: Accuracy classification results.

self-labeled techniques show competitive results to face classification problems from diverse domains.
Specifically, in the presence of a reduced set of labeled examples.

Conclusions

We have presented the R package ssc which provides a collection of self-labeled techniques to deal
with the semi-supervised classification problem that occurs in multiple domains. The implemented
techniques can take advantage of partially labeled datasets during the training phase to create
a classifier. The classifiers obtained can be used to perform either transductive or inductive
classification. The ssc package offers a wrapper framework to train models. Depending on the base
classifier selected, the models can be trained from instances or directly from a precomputed distance
or kernel matrix. In addition, the ssc package supports a generic interface for base classifiers with
other specifications, increasing the flexibility of this approach. We have shown in the experimental
results that these techniques can provide better results than supervised classification at low ratios of
labeled data.

Acknowledgments

This work was supported in part by “Proyecto de Investigación de Excelencia de la Junta de Andalucía,
P12-TIC-2958” and “Proyecto de Investigación del Ministerio de Economía y Competitividad,
TIN2013-47210-P”. This work was partly performed while M. González held a travel grant from the
Asociación Iberoamericana de Postgrado (AUIP), supported by Junta de Andalucía, to undertake a
research stay at University of Granada.

Bibliography

P. Biecek, E. Szczurek, M. Vingron, and J. Tiuryn. The R package bgmm: Mixture modeling with
uncertain knowledge. Journal of Statistical Software, 47(3):1–32, 2012. [p3]

A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In 18th
International Conference on Machine Learning, 2001. [p1]

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Eleventh
Annual Conference on Computational Learning Theory, COLT’ 98, pages 92–100, New York, NY,
USA, 1998. ACM. ISBN 1-58113-057-0. doi: 10.1145/279943.279962. [p1, 2, 3]

O. Chapelle, B. Schölkopf, A. Zien, et al., editors. Semi-supervised learning. MIT press Cambridge,
2006. [p1, 2]

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista. The ucr time series
classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/. [p6]

M. Culp. spa: Semi-supervised semi-parametric graph-based estimation in r. Journal of Statistical
Software, 40(1):1–29, 2011. ISSN 1548-7660. doi: 10.18637/jss.v040.i10. [p3]

A. Fujino, N. Ueda, and K. Saito. Semisupervised learning for a hybrid generative/discriminative
classifier based on the maximum entropy principle. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(3):424–437, March 2008. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.
70710. [p1]

12

T. Joachims. Transductive inference for text classification using support vector machines. In 16th
International Conference on Machine Learning, ICML ’99, pages 200–209, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-612-2. [p1]

J. H. Krijthe. Rssl: Semi-supervised learning in r. In B. Kerautret, M. Colom, and P. Monasse,
editors, Reproducible Research in Pattern Recognition, pages 104–115, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-56414-2. [p3]

R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The r
package of the model-based unsupervised, supervised, and semi-supervised classification mixmod
library. Journal of Statistical Software, 67(1):1–29, 2015. ISSN 1548-7660. doi: 10.18637/jss.v067.
i06. [p3]

M. Li and Z. Zhou. Setred: Self-training with editing. In Advances in Knowledge Discovery and
Data Mining, volume 3518 of Lecture Notes in Computer Science, pages 611–621. Springer Berlin
Heidelberg, 2005. ISBN 978-3-540-26076-9. doi: 10.1007/11430919_71. [p1, 3]

M. Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml. [p6]

N. Russell, L. Cribbin, and T. B. Murphy. upclass: Updated Classification Methods using Unlabeled
Data, 2014. URL http://CRAN.R-project.org/package=upclass. R package version 2.0. [p3]

L. Torgo. Data Mining with R, learning with case studies. Chapman and Hall/CRC, 2010. [p3]

I. Triguero, S. García, and F. Herrera. Self-labeled techniques for semi-supervised learning: taxonomy,
software and empirical study. Knowledge and Information Systems, 42(2):245–284, 2015. ISSN
0219-1377. doi: 10.1007/s10115-013-0706-y. [p1, 2, 3]

J. Wang. SSL: Semi-Supervised Learning, 2016. URL https://CRAN.R-project.org/package=SSL.
R package version 0.1. [p3]

Y. Wang, X. Xu, H. Zhao, and Z. Hua. Semi-supervised learning based on nearest neighbor
rule and cut edges. Knowledge-Based Systems, 23(6):547–554, 2010. ISSN 0950-7051. doi:
http://dx.doi.org/10.1016/j.knosys.2010.03.012. [p1, 3]

I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, Boston, third edition edition, 2011. ISBN 978-0-12-374856-0. doi:
http://dx.doi.org/10.1016/B978-0-12-374856-0.00018-3. [p1]

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of
the 33rd annual meeting on Association for Computational Linguistics, pages 189–196. Association
for Computational Linguistics, 1995. [p1, 3]

Y. Zhou and S. Goldman. Democratic co-learning. In IEEE 16th International Conference on Tools
with Artificial Intelligence (ICTAI), pages 594–602. IEEE, Nov 2004. doi: 10.1109/ICTAI.2004.48.
[p1, 3]

Z. Zhou and M. Li. Tri-training: exploiting unlabeled data using three classifiers. IEEE Transactions
on Knowledge and Data Engineering, 17(11):1529–1541, Nov 2005. ISSN 1041-4347. doi: 10.1109/
TKDE.2005.186. [p1, 3]

X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised Learning. Morgan & Claypool
Publishers, 2009. [p1, 2]

Mabel González
Department of Computer Science, Universidad Central “Marta Abreu" de Las Villas
Camajuaní road Km. 5 y 1/2, Santa Clara 50100
Cuba
ORCiD 0000-0003-0152-444X
mabelc@correo.ugr.es

Osmani Rosado
Department of Computer Science, Universidad Central “Marta Abreu" de Las Villas
Camajuaní road Km. 5 y 1/2, Santa Clara 50100
Cuba
ORCiD 0000-0002-2639-3354
osmanir@uclv.cu

13

José D. Rodríguez
Department of Computer Science, Universidad Central “Marta Abreu" de Las Villas
Camajuaní road Km. 5 y 1/2, Santa Clara 50100
Cuba
ORCiD 0000-0002-8489-4106
josedaniel@uclv.cu

Christoph Bergmeir
Faculty of Information Technology, Monash University, Melbourne
P.O. Box 63 Monash University, Victoria 3800
Australia
ORCiD 0000-0002-3665-9021
christoph.bergmeir@monash.edu

Isaac Triguero
School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB
United Kingdom
ORCiD 0000-0002-0150-0651
isaac.triguero@nottingham.ac.uk

José M. Benítez
Department of Computer Science and Artificial Intelligence, University of Granada
C/ Periodista Daniel Saucedo Aranda s/n, 18071, Granada
Spain
ORCiD 0000-0002-2346-0793
j.m.benitez@decsai.ugr.es

	ssc: An R Package for Semi-Supervised Classification
	Introduction
	Semi-supervised Classification
	Related packages

	Package functionalities
	Training functions
	Classification functions

	Examples of usage
	Setting up the data
	Training the model
	Classifying seen and unseen instances
	Comparison between the models trained
	Empirical evaluation of performance

	Conclusions
	Acknowledgments

