Package ‘sqlscore’

October 14, 2022
Version 0.1.4
Title Utilities for Generating SQL Queries from Model Objects

Description Provides utilities for generating SQL queries (particularly CREATE
TABLE statements) from R model objects. The most important use case is
generating SQL to score a generalized linear model or related model
represented as an R object, in which case the package handles parsing
formula operators and including the model's response function.

License MIT + file LICENSE
URL https://github.com/wwbrannon/sqlscore/

BugReports https://github.com/wwbrannon/sqlscore/issues
Depends R (>=3.3.0)

Imports dbplyr (>=1.0.0)

Suggests testthat, arm, glmnet, mboost, covr

RoxygenNote 6.1.1

NeedsCompilation no

Author William Brannon [aut, cre]

Maintainer William Brannon <wwbrannon@email.wm.edu>
Repository CRAN

Date/Publication 2019-03-17 06:40:03 UTC

R topics documented:

create_statement L L L L L e e e e e e e e e e e e e e e e e
linpred
SCOIE_EXPIESSION .« . . v v v v v e ittt e e e e e e e e e e
select_Statement e e e e e e e e
SQISCOTE

Index

https://github.com/wwbrannon/sqlscore/
https://github.com/wwbrannon/sqlscore/issues

2 create_statement

create_statement Generate a CREATE TABLE statement from a model

Description

Generate a CREATE TABLE statement to score the passed model on a preexisting database table.
The statement will generate predictions entirely in the database, with no need to fetch data into R.
Models need not be GLMs, but their prediction steps must consist of applying a response function
to a linear predictor.

Usage

create_statement(mod, dest_table, src_table, dest_schema = NULL,
dest_catalog = NULL, src_schema = NULL, src_catalog = NULL,
drop = FALSE, temporary = FALSE, pk = c("id"), response = NULL,
con = dbplyr::simulate_dbi())

Arguments
mod A supported model object.
dest_table The unqualified DB name of the destination table.
src_table The unqualified DB name of the source table.

dest_schema
dest_catalog
src_schema

src_catalog

The DB schema of the destination table.
The DB catalog of the destination table.
The DB schema of the source table.

The DB catalog of the source table.

drop Whether to generate a DROP TABLE IF EXISTS before the CREATE TABLE.
temporary Whether the destination table should be a temporary table.
pk A vector of primary key column names.
response The name of a custom response function to apply to the linear predictor.
con A DBI connection to control the details of SQL generation; defaults to db-
plyr::simulate_dbi() for the best guess at portable SQL.
Details

An open database connection can be passed as the ‘con‘ argument, or the ‘dbplyr::simulate_**
functions can be used in applications which don’t have a DB connection when they need to generate
SQL.

Value

A dbplyr SQL object representing the SELECT statement.

linpred 3

Supported packages

Specific packages and models that are known to work include: glm and Im from package:stats,
cv.glmnet from package:glmnet, glmboost from package:mboost, and bayesglm from package:arm.

Default S3 methods are for objects structured like those of class "glm", so models not listed here
may work if they resemble those objects, but are not guaranteed to.

Warning

Note that if the model object transformed its training data before fitting (e.g., centering and scaling
predictors), the generated SQL statement will not include those transformations. A future release
may include that functionality, but centering and scaling in particular are difficult to do efficiently
and portably in SQL.

Examples

Basic create statements
mod <- glm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris)

create_statement(mod, src_table="tbl_name”, dest_table="target_tbl")

create_statement(mod, src_table="tbl_name"”, src_schema="schema_name",
src_catalog="catalog_name"”, dest_table="target_tbl")

create_statement(mod, src_table="tbl_name"”, src_schema="schema_name",
src_catalog="catalog_name”, dest_table="target_tbl",
dest_schema="target_schema"”, dest_catalog="target_catalog”,
pk=c("lab", "specimen_id"))

#With a custom response function
create_statement(mod, src_table="tbl_name"”, src_schema="schema_name",
dest_table="target_tbl", response="probit")

With a model-derived non-identity response function

mod <- glm(Sepal.Length > 5.0 ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris, family=binomial("logit"))

create_statement(mod, src_table="tbl_name”, dest_table="target_tbl")

#With formula operators

x <- matrix(rnorm(100%20),100,20)

colnames(x) <- sapply(1:20, function(x) paste@("X", as.character(x)))

X <- as.data.frame(x)

mod <- glm(X2 ~ X3 + X5 + X15%xX8, data=x)

create_statement(mod, src_table="tbl_name”, dest_table="target_tbl")

create_statement(mod, src_table="tbl_name"”, dest_table="target_tbl",
response="cauchit")

linpred Unevaluated prediction expressions for models

4 linpred

Description

Generate an unevaluated call corresponding to the predict step of the passed model. The call repre-
sents the linear predictor in terms of elementary functions on the underlying column names. Before
translation into SQL, it should have a response function applied by score_expression (which may
be a no-op in the case of the identity response).

Usage

linpred(mod)

Arguments

mod A supported model object.

Value

An unevaluated R call object representing the linear predictor.

Warning

The Binomial models in glmboost return coefficients which are 1/2 the coefficients fit by a call
to glm(..., family=binomial(...)), because the response variable is internally recoded to -1 and +1.
sqlscore multiplies the returned coefficients by 2 to put them back on the same scale as glm, and
adds the glmboost offset to the intercept before multiplying.

Examples

A Gaussian GLM including factors

mod <- glm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris)

linpred(mod)

A binomial GLM - linear predictor is unaffected

mod <- glm(Sepal.Length > 5.0 ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris, family=binomial("logit"))

linpred(mod)

#With formula operators

X <- matrix(rnorm(100%20),100,20)

colnames(x) <- sapply(1:20, function(x) paste@("X", as.character(x)))
x <- as.data.frame(x)

mod <- glm(X2 ~ X3 + X5 + X15%X8, data=x)

linpred(mod)

score_expression 5

score_expression Unevaluated prediction expressions for models

Description

Generate an unevaluated call corresponding to the predict step of the passed model. The call repre-
sents the response function of the linear predictor in terms of elementary functions on the underlying
column names, and is suitable for direct translation into SQL.

Usage

score_expression(mod, response = NULL)

Arguments

mod A supported model object.

response The name of a custom response function to apply to the linear predictor.
Value

An unevaluated R call object representing the response function of the linear predictor.

Warning

The Binomial models in glmboost return coefficients which are 1/2 the coefficients fit by a call
to glm(..., family=binomial(...)), because the response variable is internally recoded to -1 and +1.
sqlscore multiplies the returned coefficients by 2 to put them back on the same scale as glm, and
adds the glmboost offset to the intercept before multiplying.

Examples

A Gaussian GLM including factors

mod <- glm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris)

score_expression(mod)

A binomial GLM - linear predictor is unaffected

mod <- glm(Sepal.Length > 5.0 ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris, family=binomial("”logit"))

score_expression(mod)

#With a hand-specified response function
score_expression(mod, response="probit")

#With formula operators

x <- matrix(rnorm(100x20),100,20)

colnames(x) <- sapply(1:20, function(x) paste@("X", as.character(x)))
X <- as.data.frame(x)

mod <- glm(X2 ~ X3 + X5 + X15%X8, data=x)

6 select_statement

score_expression(mod)

select_statement Generate a SELECT statement from a model

Description

Generate a SELECT statement to score the passed model on a preexisting database table. The
statement will generate predictions entirely in the database, with no need to fetch data into R.
Models need not be GLMs, but their prediction steps must consist of applying a response function
to a linear predictor.

Usage

select_statement(mod, src_table, src_schema = NULL, src_catalog = NULL,
pk = c("id"), response = NULL, con = dbplyr::simulate_dbi())

Arguments
mod A supported model object.
src_table The unqualified DB name of the source table.
src_schema The DB schema of the source table.

src_catalog The DB catalog of the source table.

pk A vector of primary key column names.
response The name of a custom response function to apply to the linear predictor.
con A DBI connection to control the details of SQL generation; defaults to db-

plyr::simulate_dbi() for the best guess at portable SQL.

Details

An open database connection can be passed as the ‘con‘ argument, or the ‘dbplyr::simulate_**
functions can be used in applications which don’t have a DB connection when they need to generate
SQL.

Value

A dbplyr SQL object representing the SELECT statement.

Supported packages

Specific packages and models that are known to work include: glm and Im from package:stats,
cv.glmnet from package:glmnet, glmboost from package:mboost, and bayesglm from package:arm.

Default S3 methods are for objects structured like those of class "glm", so models not listed here
may work if they resemble those objects, but are not guaranteed to.

sqlscore 7

Warning

Note that if the model object transformed its training data before fitting (e.g., centering and scaling
predictors), the generated SQL statement will not include those transformations. A future release
may include that functionality, but centering and scaling in particular are difficult to do efficiently
and portably in SQL.

Examples

Basic select statements
mod <- glm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris)

select_statement(mod, src_table="tbl_name")

select_statement(mod, src_table="tbl_name”, src_schema="schema_name”,
src_catalog="catalog_name")

select_statement(mod, src_table="tbl_name”, src_schema="schema_name",
src_catalog="catalog_name", pk=c("lab", "specimen_id"))

#With a custom response function
select_statement(mod, src_table="tbl_name"”, src_schema="schema_name”,
response="probit")

With a model-derived non-identity response function

mod <- glm(Sepal.Length > 5.0 ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data=datasets::iris, family=binomial("logit"))

select_statement(mod, src_table="tbl_name")

#With formula operators

X <- matrix(rnorm(100x20),100,20)

colnames(x) <- sapply(1:20, function(x) paste@("X", as.character(x)))
X <- as.data.frame(x)

mod <- glm(X2 ~ X3 + X5 + X15%X8, data=x)

select_statement(mod, src_table="tbl_name")

select_statement(mod, src_table="tbl_name"”, response="cauchit")

sglscore sqlscore: Utilities to score GLMs and related models in SQL.

Description

The sqlscore package provides utilities for generating sql queries (particularly CREATE TABLE
statements) from R model objects. The most important use case is generating SQL to score a GLM
or related model represented as an R object, in which case the package handles parsing formula
operators and including the model’s response function. The models scored need not be generalized
linear models, strictly speaking, but their prediction steps must consist of applying a response func-
tion to a linear predictor. The package handles escaping and dealing with formula operators, and
provides a way to use a custom response function if desired.

8 sqlscore

Function overview

The SQL-generating functions create_statement and select_statement do what their names sug-
gest and generate CREATE TABLE and SELECT statements for model scoring. Helper func-
tions include linpred(), which generates an R call object representing the linear predictor, and
score_expression, an S3 generic that handles wrapping the linear predictor in the response func-
tion.

Supported models

Specific packages and models that are known to work include: glm and Im from package:stats,
cv.glmnet from package:glmnet, glmboost from package:mboost, and bayesglm from package:arm.

Default S3 methods are for objects structured like those of class "glm", so models not listed here
may work if they resemble those objects, but are not guaranteed to.

Index

create_statement, 2
linpred, 3

score_expression, 5
select_statement, 6
sqlscore, 7

sqlscore-package (sqlscore), 7

	create_statement
	linpred
	score_expression
	select_statement
	sqlscore
	Index

