Package ‘sqlhelper’

January 21, 2024

Title Easier 'SQL' Integration
Version 0.2.1

Description
Execute files of 'SQL' and manage database connections. 'SQL' statements and queries may be in-
terpolated with string literals. Execution of individual statements and queries may be con-
trolled with keywords. Multiple connections may be defined with "YAML' and accessed by name.

Depends R (>=4.1.0)

Imports DBI, yaml, rappdirs, stringr, glue, pool, methods, tibble,
tidyr, purrr (>= 1.0.0), sf, rlang

License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.1

Suggests dplyr, rmarkdown, knitr, testthat (>= 3.0.0), odbc, RSQLite,
RPostgres, RMariaDB, bigrquery, spData

Config/testthat/edition 3
VignetteBuilder knitr

URL https://majerr.github.io/sqlhelper/dev/,
https://github.com/majerr/sqlhelper/

BugReports https://github.com/majerr/sqlhelper/issues
NeedsCompilation no

Author Matthew Roberts [aut, cre, cph]

Maintainer Matthew Roberts <matthew@zsmr . uk>

Repository CRAN

Date/Publication 2024-01-21 20:40:02 UTC

R topics documented:

config_examples 2
COMNECT .« v v v v vt it e et e e e e e e e e e e e e e e 3

https://majerr.github.io/sqlhelper/dev/
https://github.com/majerr/sqlhelper/
https://github.com/majerr/sqlhelper/issues

2 config_examples

connection_info e e 4
default_conn e 5
diSCONNECt e e 6
is_connected e e e 6
Live connection i e e e 7
prepare_sql 8
read_sql e e e 9
run_files e 11
TUN_QUETIES . . o v v v e 13
set_default_conn_name e 15

Index 17

config_examples Examples of yaml configurations for database connections
Description

Provides example configurations for several databases and a range of options

Usage

config_examples(filename = NA)

Arguments

filename A string. If supplied, examples are written to a file with this name.

Details

Irrespective of whether a filename is supplied, yaml configuration examples will be returned invisi-
bly as a single string and printed if the session is interactive.

Value

A yaml string of database configuration examples, invisibly.

Examples

config_examples()

write the examples to a temporary file called 'examples.yml'
config_examples(file.path(tempdir(), "examples.yml"))

connect 3

connect (Re-)Establish connections to databases

Description

Closes any open connections, reads config files as directed by config_filename and exclusive,
and creates new connections from the descriptions in those files.

Usage

connect(config_filename = NA, exclusive = FALSE)

Arguments

config_filename
String. The full name and path of a configuration file, or "site", or "user", or
"example", or NA (the default). Cannot be NA if exclusive = TRUE.

exclusive Logical. If TRUE, the file named by config_filename is treated as the only
config file. Site and user level files are not read. This parameter is ignored if
config_filename is missing.

Details

If exclusive=FALSE (the default), configuration files will be sought in the directory returned by
rappdirs::site_config_dir(), the directory returned by rappdirs: :user_config_dir(), and
finally a file named by config_filename (if not NA). If elements of those files conflict, later files
overwrite the elements of earlier files.

If exclusive=TRUE, only 1 file, indicated by the config_filename parameter, will be read.
* If config_filename = "site"”, a config file called sqlhelper_db_conf.yml will be sought
in the directory returned by rappdirs::site_config_dir()

e If config_filename = "user”, a config file called sqlhelper_db_conf.yml will be sought
in the directory returned by rappdirs: :user_config_dir()

e If config_filename is not NULL (but not "site" or "user"), it is assumed to name a file.

A warning is raised if no valid configurations are found (e.g. connect() is called without arguments
and no site- or user-wide files are present, or the connections in those files are invalid)

vignette("connections”) explains how to write a config file and how to access the created con-
nections.

Value

NULL, invisibly

4 connection_info

Examples

library(sqglhelper)

example_filename <- system.file("examples”,
"sqlhelper_db_conf.yml",
package = "sqglhelper”)

Search for config files in rappdirs::site_config_dir(),
rappdirs::user_config_dir(), and read from example_filename
connect (example_filename)

Read only the named example file
connect(example_filename, exclusive=TRUE)

connection_info Browse available connections

Description

Provides information about created connections.

Usage
connection_info(name_str = ".*" exact = TRUE)
Arguments
name_str A regular expression to be used to identify connection names to include. The
default (’.*’) returns all of them.
exact TRUE or FALSE. Should name_str match the name of a connection exactly?
TRUE will identify only 1 connection if name_str does not contain any metachar-
acters
Value

Null, or a tibble with 1 row per identified connection and the following fields:

name identifier (character)

description a description of the connection, if found in the conf file (character)
live is this connection valid and live? (logical)

driver the name of the driver function (character)

conn_str the string used to parameterize the connection (character)

pool is this a pool connection? (logical)

If no connection names matched name_str, the tibble will be empty. If no connections have been
configured (e.g. connect () has not been called), NULL is returned.

default_conn

Examples

library(sqlhelper)

connect(
system.file(
"examples/sqlhelper_db_conf.yml",
package="sqlhelper”
),
exclusive=TRUE

)
connection_info()

connection_info("pool_sqlite")

default_conn Return the default connection

Description

A convenience wrapper around live_connection() and get_default_conn_name()

Usage

default_conn()

Value

A database connection returned by DBI: : dbConnect () or pool: :dbPool ()

Examples

library(sqglhelper)

connect(
system.file(
"examples/sqlhelper_db_conf.yml",
package="sqlhelper”
),

exclusive=TRUE

)

default_conn()

6 is_connected

disconnect Close all connections and remove them from the connections cache

Description

Close all connections and remove them from the connections cache

Usage

disconnect()

Value

NULL, invisibly

Examples

library(sqglhelper)
connect(
system.file("examples”,
"sqlhelper_db_conf.yml",
package="sqlhelper")
)

disconnect()

is_connected Test whether a database is connected

Description

Test whether a database is connected

Usage
is_connected(conn_name)
not_connected(conn_name)

Arguments

conn_name Character. The name of a connection (run connection_info() for options)

Value

Logical, or NULL if conn_name does not identify exactly 1 connection

live_connection 7

Examples

library(sqlhelper)

connect(
system.file("examples/sqlhelper_db_conf.yml",
package="sqlhelper")
)

connection_info()

is_connected("simple_sqlite”)

is_connected("foo")

DBI: :dbDisconnect(live_connection("”simple_sqlite"”))
is_connected("simple_sqlite”)
not_connected(”simple_sqlite")

disconnect()

is_connected("simple_sqlite”)
not_connected("simple_sqlite")

live_connection Return the named connection or NULL

Description

Return the named connection or NULL

Usage

live_connection(conn_name)

Arguments
conn_name Chr. The name of the live connection you want (use connection_info to get
names of available connections).
Value

A live connection to a database, or NULL, invisibly, if conn_name is not the name of a live connec-
tion

Examples

library(sqglhelper)
connect(
system.file("examples/sqlhelper_db_conf.yml",
package="sqlhelper")
)

connection_info()

conn <- live_connection("simple_sqlite")

8 prepare_sql
conn
DBI: :dbDisconnect(conn)
is.null(live_connection("simple_sqlite"))
is.null(live_connection("fo0"))
prepare_sql prepare queries and assemble meta data prior to execution
Description
Except for sql, parameters are default values to be used when none are supplied in sql (i.e. when
sql is a tibble returned by read_sql()).
Usage
prepare_sql(
sal,
quotesqgl = "yes",
values = parent.frame(),
execmethod = "get",
geometry = NA,
default.conn = default_conn()
)
Arguments
sql An optionally-named list or character vector containing sql commands, or a tib-
ble returned by read_sql ()
quotesql "yes" or "no" - should interpolated characters be quoted by default? Anything
that isn’t "no" is treated as "yes".
values An environment containing variables to interpolate into the SQL. Pass any object
that is not an environment (commonly-used options include "no", NA, FALSE
or NULL) if interpolation is to be skipped, or another environment containing
values to interpolate to avoid using .GlobalEnv.
execmethod One of "get", "execute", "sendq", "sends" or "spatial" - which method should
be used to execute the query? "get" means DBI::dbGetQuery(); "execute"
means DBI: :dbExecute(); "sendq" means DBI::dbSendQuery; "sends" means
DBI::dbSendStatement(); "spatial" means sf::st_read().
geometry If execmethod is "spatial", which column contains the geometry? Ignored if

default.conn

execmethod is not "spatial".

Either the name of a sqlhelper connection, or a database connection returned
by DBI::dbConnect() or pool: :pool(), or NA. This connection is only used
by glue::glue_sql() to quote SQL interpolations; prepare_sql() does not
execute any SQL code.

read_sql 9

Details

The default.conn parameter may be used to supply a connection object that is not a configured
sqlhelper connection which can then be used to interpolate quoted strings.

Value

A tibble containing 1 row per query with the following fields:

gname character. A name for this query

quotesql "yes" or "no". Should parameterized character values be quoted for this query?

interpolate "yes" or "no". Should this query be parameterized with values from R?

execmethod The method to execute this query. One of "get" (DBI::dbGetQuery()), "execute"
(DBI: :dbExecute()), "sendq" (DBI: :dbSendQuery()), "sends" (DBI: :dbSendStatement())
or "spatial” (sf::st_read())

geometry character. If execmethod is "spatial”, which is the geometry column?

conn_name character. The name of the database connection to use for this query. Must be the
name of a configured sqlhelper connection.

sql The sql query as entered

filename The value of file_name

prepared_sql The sql query to be executed, i.e. with interpolations and quoting in place

Examples

library(sqlhelper)
connect(
system.file("examples/sqlhelper_db_conf.yml",
package="sqlhelper"),
exclusive = TRUE

)

n<-5

foo <- 'bar'

prepped <- prepare_sql(c("select {‘foo*}", "select {n}"))
prepped

prepped$prepared_sql

read_sql Read a sql file and return it’s contents as a tibble

Description

Read a sql file and return it’s contents as a tibble

Usage

read_sql(file_name, cascade = TRUE)

10 read_sql

Arguments
file_name Full name and path of a file to read
cascade Parameters for executing each query may be specified as comments in the SQL
file. If cascade=TRUE, execution parameters specified in the file will be cas-
caded to subsequent queries where that parameter is not specified. This enables
you to set a parameter (e.g. the connection name) once, for the first query in a
file, and use it for all the subsequent queries.
Details

Multiple SQL queries in files should be terminated by semi-colons (;), as usual.

The values of gname, quotesql, interpolate, execmethod, geometry, and conn_name in the
output may be specified with comments immediately preceding each query (see examples).

With the exception of gname, the value of each interpreted comment is cascaded to subsequent
queries (assuming cascade=TRUE). This means you may set values once for the first query in the
file and they will apply to all the queries thereafter.

See run_queries() for the implications of setting execution parameters. See prepare_sql() for
the treatment of missing values in the output and their defaults. The article vignette("execution")
has further examples of using these parameters to control execution.

Value
A tibble containing 1 row per query with the following fields:

gname character. A name for this query
quotesql "yes" or "no". Should parameterized character values be quoted for this query?
interpolate "yes" or "no". Should this query be parameterized with values from R?

execmethod The method to execute this query. One of "get" (DBI::dbGetQuery()), "execute"
(DBI::dbExecute()), "sendq" (DBI: :dbSendQuery()), "sends" (DBI: :dbSendStatement())
or "spatial” (sf::st_read())

geometry character. If execmethod is "spatial”, which is the geometry column?

conn_name character. The name of the database connection to use for this query. Must be the
name of a configured sqlhelper connection.

sql The sql query to be executed

filename The value of file_name

Examples

library(sqlhelper)
fn <- system.file("examples/read_sqgl_execution_params.SQL",
package="sqlhelper”)

readLines(fn) |> writeLines()

sql_tibble <- read_sql(fn)

run_files 11

sql_tibble
sqgl_tibble$sql

fn <- system.file("examples/read_sqgl_comments.SQL", package="sqlhelper”)
readLines(fn) |> writeLines()

sql_tibble <- read_sql(fn)
sql_tibble
sql_tibble$sql

run_files Read, prepare and execute .SQL files

Description

Accepts a character vector of SQL file names and attempts to execute the queries in each one.

Usage
run_files(filenames, ..., include_params = FALSE)
runfiles(filenames, ..., include_params = FALSE)
Arguments
filenames name, or vector of names, of file(s) to be executed

Arguments to be passed to run_queries(), prepare_sqgl(), or read_sql()

include_params TRUE or FALSE. Should the parameters be included in the output?

Details

If no default connection is supplied via default.conn and no connections have been configured
using connect (), an attempt will be made to configure connections via connect () using the con-
figuration search path. If no database connections are available after this attempt, an error will be
raised. See vignette("”connections”) for details about the configuration search path.

run_files() calls read_sql() on each file, and prepare_sql() on the queries read from those
files. Prepared queries are executed with run_queries(). The behaviour of those functions can be
controlled by passing the relevant parameters to run_files() as the ... argument.

run_files() also enables control of the arguments accepted by run_queries() on a per-query
basis, by interpreting comments in SQL files as described for read_sql(). Interpreted comments
precede the sql query to which they refer. Each interpretable comment must be on a line by itself
and take the form:

-- keyword = value

Keywords and possible values for interpretable comments are:

12 run_files

gname A name for this query
quotesql "yes" or "no" - should interpolated characters be quoted?
interpolate "yes" or "no" - should sql be interpolated?

non non non

execmethod One of "get", "execute", "sendq", "sends" or "spatial" - which method should be used
to execute the query? "get" means DBI: : dbGetQuery(); "execute" means DBI: :dbExecute();
"sendq" means DBI: : dbSendQuery; "sends" means DBI : : dbSendStatement (); "spatial" means
sf::st_read().

geometry The name of a spatial column. Ignored if execmethod is not ’spatial’

conn_name The name of a connection to execute this query against

All interpreted comments except qname are cascaded within their file, meaning that if you want to
use the same values throughout, you need only set them for the first query. See read_sql() for
details.

Value

A list of results of sql queries found in files

See Also
read_sql(), prepare_sql()

Other SQL runners: run_queries()
Examples
library(sqlhelper)

config_filename <- system.file("examples/sqlhelper_db_conf.yml",
package="sqlhelper")

readLines(config_filename) |> writelLines()
connect(

config_filename,

exclusive=TRUE)

DBI: :dbWriteTable(default_conn(), "iris", iris)

sf::st_write(spData::congruent, default_conn(), "congruent")
sf::st_write(spData::incongruent, live_connection("pool_sqlite”), "incongruent"”)

run_files_ex1 <- system.file("examples/run_files_ex1.sql"”, package="sqglhelper")
readLines(run_files_ex1) |> writelLines()

run_files_ex2 <- system.file("examples/run_files_ex2.sql", package="sqglhelper")
readLines(run_files_ex2) |> writelLines()

n_longest_petals <- 5
results <- run_files(c(run_files_ex1, run_files_ex2))

run_queries

names(results)

13

results$how_many_irises

results$n_longest_setosa_petal_lengths

plot(results$get_congruent, border = "orange")

plot(results$get_

incongruent, border = "blue"”, add=TRUE)

run_queries

Execute a sequence of SQL queries

Description

Accepts a character vector of SQL queries and attempts to execute each

Usage
run_queries(sql, ..., default.conn = default_conn(), include_params = FALSE)
runqueries(sql, ., default.conn = default_conn(), include_params = FALSE)
Arguments
sql An optionally-named list or character vector containing sql strings, or a tibble

default.conn

include_params

Details

returned by read_sql() or prepare_sql().
Arguments to be passed to read_sql () or prepare_sql()

Either the name of a sqlhelper connection, or a database connection returned
by DBI::dbConnect() or pool::dbPool(). This connection is used as a fall-
back when the sql parameter is a tibble and no per-query connection name is
supplied, or the connection name is default (see prepare_sql()). It may be
used by glue: :glue_sql() to interpolate SQL strings, and as the connection
against which to execute SQL queries.

TRUE or FALSE. Should the parameters be included in the output? Mainly useful
for debugging.

If no default connection is supplied via default.conn and no connections have been configured
using connect (), an attempt will be made to configure connections via connect () using the con-
figuration search path. If no database connections are available after this attempt, an error will be
raised. See vignette("connections") for details about the configuration search path.

14 run_queries

Value
* If include_params is FALSE and the sql argument is a vector, a list containing the results of
each query; element names will be taken from the sql argument.

o If the length of the sql argument is 1 and is not named, the result of that query is returned
as-is (e.g. a data.frame), not as a 1-element list.

* If include_params is TRUE, a tibble is returned containing 1 row per query with the following
fields:

gname character. A name for this query
quotesql "yes" or "no". Should parameterized character values be quoted for this query?
interpolate "yes" or "no". Should this query be parameterized with values from R?

execmethod The method to execute this query. One of "get" (DBI: :dbGetQuery()), "execute"
(DBI: :dbExecute()), "sendq" (DBI: :dbSendQuery()), "sends" (DBI: :dbSendStatement())
or "spatial” (sf::st_read())

geometry character. If execmethod is "spatial”, this should be the name of the geometry column.

conn_name character. The name of the database connection against which to execute this query.
Must be the name of a configured sqlhelper connection.

sql The sql query to be executed
filename The value of file_name
prepared_sql The sql query to be executed, i.e. with interpolations and quoting in place

result The result of the query

See Also

read_sql(), prepare_sql()
Other SQL runners: run_files()

Examples

library(sqglhelper)

readLines(
system.file("examples/sqlhelper_db_conf.yml",
package="sqlhelper")
) 1>

writeLines()

connect(
system.file("examples/sqlhelper_db_conf.yml"”, package="sqlhelper”),
exclusive=TRUE)

DBI: :dbWriteTable(default_conn(),
"iris",
iris)

set_default_conn_name

run_queries(
c(top_n = "select * from iris limit {n}",
unigs = "select distinct species as species from iris")

use include_params to review the execution context
run_queries(
c(top_n = "select * from iris limit {n}",
unigs = "select distinct species as species from iris"),
include_params = TRUE

pass an env of interpolation values to the 'values' parameter
result of a single, unnamed query is returned as an object, not a
1-element list
e <- new.env()
e$n <- 2
run_queries(
"select * from iris limit {n}",

values = e
)
Use the execmethod parameter for statements
run_queries("”create table iris_setosa as select * from iris where species = 'setosa'",
execmethod = 'execute')

run_queries("”select distinct species as species from iris_setosa"”)

15

set_default_conn_name Set/get the name of the default connection to use

Description

Set/get the name of the default connection to use

Usage

set_default_conn_name(conn_name)

get_default_conn_name()

Arguments

conn_name Character string. The name a connection

Value

get returns the name of the default connection; set returns NULL, invisibly.

16 set_default_conn_name

Examples

library(sqglhelper)
connect(
system.file("examples/sqlhelper_db_conf.yml",
package="sqlhelper"”),
exclusive = TRUE

)

connection_info()
get_default_conn_name()
set_default_conn_name("pool_sqlite”)
connection_info()

get_default_conn_name()

Index

+* SQL runners runfiles (run_files), 11
run_files, 11 runqueries (run_queries), 13

run_queries, 13
set_default_conn_name, 15

config_examples, 2 sf::st_read(), 8-10, 12, 14
connect, 3

connection_info, 4,7

connection_info(), 6

DBI::dbConnect(), 8, 13

DBI: :dbExecute(), 8-10, 12, 14

DBI: :dbGetQuery(), 8-10, 12, 14

DBI: :dbSendQuery, 8

DBI: :dbSendQuery(), 9, 10, 14

DBI: :dbSendStatement(), 8-10, 12, 14
default_conn, 5

disconnect, 6

get_default_conn_name
(set_default_conn_name), 15
glue::glue_sql(), 8, 13

is_connected, 6
live_connection, 7
not_connected (is_connected), 6

pool: :dbPool(), I3
pool::pool(), 8
prepare_sql, 8
prepare_sql(), 8, 10-14

rappdirs::site_config_dir(), 3
rappdirs: :user_config_dir(), 3
read_sql, 9

read_sql(), 8, 11-14
run_files, 11, /4
run_files(), 11
run_queries, 12, 13
run_queries(), 10, 11

17

	config_examples
	connect
	connection_info
	default_conn
	disconnect
	is_connected
	live_connection
	prepare_sql
	read_sql
	run_files
	run_queries
	set_default_conn_name
	Index

