Package ‘spray’

January 29, 2025
Type Package

Title Sparse Arrays and Multivariate Polynomials
Version 1.0-27
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Sparse arrays interpreted as multivariate polynomials.
Uses 'disordR' discipline (Hankin, 2022,
<doi:10.48550/ARXIV.2210.03856>). To cite the package in
publications please use Hankin (2022) <doi:10.48550/ARXIV.2210.10848>.

License GPL (>=2)
Depends methods
Suggests polynom, testthat, covr

Imports Rcpp (>= 0.12.3), partitions, magic, disordR (>= 0.9-6),
stringr

LinkingTo Rcpp

URL https://github.com/RobinHankin/spray,
https://robinhankin.github.io/spray/

BugReports https://github.com/RobinHankin/spray/issues

NeedsCompilation yes

Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Repository CRAN

Date/Publication 2025-01-29 08:30:02 UTC

Contents

Spray-package e
ALY . . o e e e
AS.AITAY « + o o v e e e e e e e e e e e e e e
as.ccharacter

https://doi.org/10.48550/ARXIV.2210.03856
https://doi.org/10.48550/ARXIV.2210.10848
https://github.com/RobinHankin/spray
https://robinhankin.github.io/spray/
https://github.com/RobinHankin/spray/issues
https://orcid.org/0000-0001-5982-0415

2 spray-package
CONSLANE v v vt ettt e e e e e e e e e e 8
deriv e 9
EXtract.Spray o o ot e e e e 10
homog 12
knight L 13
NEETTIIS . .+« v v v v e 14
L0700 1o LA 15
OPS.SPIAY .« . v o o v e e e e e e e e e e 16
PMAX . . o L e e e e e e e e e 17
PrINELSPIAY o i e e e e e e e e e e 19
0] 01 2 21
SPIAY & o v v e e e e e e e e e e e e e e e 22
Spray-class oL L e e e e 24
SPIAYCTOSS + « v v v v v e 24
SPIAY_CPP + « v v e 25
SPray_MiSSING_ACCESSOT . « . v v v v v v v e e e e e e e e e e e e e e e e 27
SUDS . . . 27
SUMMATY.SPIAY + « o v v v v e 28
7o R 29
73 (< 30

Index 32

spray-package Sparse arrays and multivariate polynomials
Description

Functionality for sparse arrays, with emphasis on their interpretation as multivariate polynomials.

Details

Base R has the capability of dealing with arbitrary dimensioned numerical arrays, with the array
class.

A sparse array is a type of array in which nonzero elements are stored along with an index vector
describing their coordinates. This allows for efficient storage and manipulation as base arrays often
require the storing of many zero elements which consume computational and memory resources.

In the package, sparse arrays are represented as objects of class spray. They use the C++ standard
template library (STL) map class, with keys being (unsigned) integer vectors, and values floats.

One natural application of sparse arrays, for which the package was written, is multivariate poly-
nomials and the package vignette presents an extended discussion. Note that other interpretations
exist: the stokes and weyl packages interpret spray objects as differential forms and elements of a
Weyl algebra respectively.

Author(s)
Robin K. S. Hankin

https://CRAN.R-project.org/package=stokes
https://CRAN.R-project.org/package=weyl

arity 3

Examples

define a spray using a matrix of indices and a vector of values:
M <- matrix(sample(@:3,21,replace=TRUE),ncol=3)
a <- spray(M,sample(7))

there are many pre-defined simple sprays:
b <- homog(3,4)

arithmetic operators work:
a + 2%b
a - a*b*2/4

a+b

we can sum over particular dimensions:
asum(a+b, 1)

differentiation is supported:
deriv(a”6,2)

extraction and replacement work as expected:

b[1,2,1]
b[1,2,1,drop=TRUE]

b[diag(3)] <- 3

arity The arity of a spray object

Description
The arity of a spray object: the number of indices needed to retrieve an entry, or the number of
columns in the index matrix.

Usage

arity(S)

Arguments

S a spray object

Value

Returns an integer

4 as.array

Author(s)
Robin K. S. Hankin

Examples

(a <= rspray())
arity(a)

as.array Coerce spray objects to arrays

Description

Coerces spray objects to arrays. Includes off-by-one functionality via option of fbyone.

Usage
S3 method for class 'spray'
as.array(x, offbyone=FALSE, compact=FALSE, ...)
S3 method for class 'spray'
dim(x)
Arguments
X spray object
offbyone Boolean with default FALSE meaning to interpret the index entries as positions

in their dimension, and TRUE meaning to add one to index values so that zero
entries appear in the first place

compact Boolean with default FALSE meaning to translate the spray as is, and TRUE mean-
ing to add constants to each column of the index matrix so that the resulting array
is as small as possible

Further arguments, currently ignored

Details

Argument of fbyone defaults to FALSE; but if it is set to TRUE, it effectively adds one from the index
matrix, so a zero entry in the index matrix means the first position in that dimension.

After the subtraction, if performed, the function will not operate if any index is less than 1.

Value

Returns an array of dimension dim(S). The “meat” of the function is

out <- array(@, dS)
out[ind] <- coeffs(S)

as.character

Author(s)
Robin K. S. Hankin

Examples

(M <- matrix(sample(@:4,28,replace=TRUE),ncol=4))
(S <- spray(M,sample(7),addrepeats=TRUE))
as.array(S,of fbyone=TRUE) # a large object! sprays are terse

S <- spray(matrix(sample(1:4,28,replace=TRUE),ncol=4),sample(7))
A <- as.array(S) # S has no zero indices [if it did, we would need to use offbyone=TRUE]

stopifnot(all(S[index(S),drop=TRUE] == A[index(S)1))

as.character Coerce spray objects to character

Description

Coerces spray objects to a character string or disord character vector.

Usage
S3 method for class 'spray'
as.character(x, ..., split=FALSE)
Arguments
X spray object
Further arguments, currently ignored
split Boolean with default FALSE meaning to return a length-one character vector, and
TRUE meaning to return a disord object with elements being terms, coerced to
character
Details
The method uses print_spray_polyform() and as such is sensitive to option sprayvars, but not
polyform.
Author(s)

Robin K. S. Hankin

Examples

as.character(rspray())
as.character(rspray(),split=TRUE)

6 as.function.spray

as.function.spray Coerce a spray object to a function

Description

Coerce a spray object to a function

Usage
S3 method for class 'spray'
as.function(x,...)
Arguments
X spray object, interpreted as a multivariate polynomial

Further arguments, currently ignored

Value

Returns a function; this function returns a numeric vector.

Note

Coercion is possible even if some indices are zero or negative. The function is not vectorized in the
arity of its argument.

Author(s)
Robin K. S. Hankin

Examples

(S <- spray(matrix(1:6,3,2),1:3))
(f <- as.function(S))
f(2:3) == 3%2"3%3%6 + 2x272x3*5 + 1x2*1%3%4 # should be TRUE

S1 <- spray(matrix(sample(-2:2,replace=TRUE,21),ncol=3),rnorm(7),addrepeats=TRUE)
S2 <- spray(matrix(sample(-2:2,replace=TRUE,15),ncol=3),rnorm(5),addrepeats=TRUE)

f1 <- as.function(S1)
f2 <- as.function(S2)

f3 <- as.function(S1%S2)

X <- 4:6

f1(x)*f2(x)-f3(x) # should be zero

asum 7

coercion is vectorized:

f1(matrix(1:33,ncol=3))

asum Sum over dimension margins

Description

Sum over specified dimension margins.

Usage

S3 method for class 'spray'
asum(S, dims, drop=TRUE, ...)
asum_inverted(S, dims)
process_dimensions(S,dims)

Arguments
S spray object
dims Vector of strictly positive integers corresponding to dimensions to be summed
over
drop Boolean, with default TRUE meaning to drop the summed dimensions, and FALSE
meaning to retain them.
Further arguments, currently ignored
Details

Function asum. spray() is the method for asum(). This takes a spray, and a vector of integers
corresponding to dimensions to be summed over.

Function asum_inverted() is the same, but takes a vector of integers corresponding to dimensions
not to sum over. This function is here because there is nice C++ idiom for it.

Function process_dimensions() ensures that the dims argument is consistent with the spray S
and returns a cleaned version thereof.

Value

Returns a spray object.

Author(s)
Robin K. S. Hankin

8 constant

Examples

S <- spray(matrix(sample(@:2,60,replace=TRUE),ncol=3),addrepeats=TRUE)
S

asum(S, 1)
asum(S,1:2)

asum(S,1:2,drop=FALSE)

asum(S,c(1,3)) == asum_inverted(S,2)

constant Get or set the constant term of a spray object

Description

The constant term of a spray object is the coefficient corresponding to an index of all zeros. These
functions get or set the constant of a spray object.

Usage

is.constant(x)
constant (x,drop=FALSE)
constant(x) <- value

drop(x)
Arguments
X Object of class spray
value Numeric value to set the constant coefficient to
drop Boolean, with default FALSE meaning to return a spray object and TRUE meaning
to return a numeric value
Value

In function constant (), return the coefficient, or a constant multivariate polynomial, depending on
the value of drop.

Note
The behaviour of the drop argument (sort of) matches that of the spray extractor method. Function
drop () returns the elements of the coefficients.
Function constant () ensures that zero spray objects retain the argument’s arity.

It might have been better to call is.constant() is.scalar(), for consistency with the stokes
and clifford packages. But this is not clear.

deriv 9

Author(s)
Robin K. S. Hankin

See Also

Extract
Examples
(S <- spray(partitions::blockparts(rep(2,3),3,TRUE)))

constant(S)
constant(S) <- 33

S

drop(constant (S, drop=FALSE))

deriv Partial differentiation of spray objects

Description

Partial differentiation of spray objects interpreted as multivariate polynomials

Usage

S3 method for class 'spray'
deriv(expr, i , derivative =1, ...)
aderiv(S,orders)

Arguments
expr A spray object, interpreted as a multivariate polynomial
i Dimension to differentiate with respect to
derivative How many times to differentiate
Further arguments, currently ignored
S spray object
orders The orders of the differentials
Details

Function deriv. spray() is the method for generic spray(); if S is a spray object, then spray(S,i,n)
returns 0" S/0x} = S@ii),

Function aderiv () is the generalized derivative; if S is a spray of arity 3, then aderiv(S,c(i,j,k))
gititkg

returns ———-.
Ozt oz, 61;§

10 Extract.spray

Value

Both functions return a spray object.

Author(s)

Robin K. S. Hankin

See Also

asum

Examples

(S <- spray(matrix(sample(-2:2,15,replace=TRUE),ncol=3),addrepeats=TRUE))

deriv(s,1)
deriv(s,2,2)

differentiation is invariant under order:
aderiv(S,1:3) == deriv(deriv(deriv(S,1,1),2,2),3,3)

Leibniz's rule:
S1 <- spray(matrix(sample(@:3,replace=TRUE,21),ncol=3),sample(7),addrepeats=TRUE)
S2 <- spray(matrix(sample(@:3,replace=TRUE,15),ncol=3),sample(5),addrepeats=TRUE)

S1xderiv(S2,1) + deriv(S1,1)*S2 == deriv(S1%xS2,1)

Generalized Leibniz:
aderiv(S1%S2,c(1,1,0)) ==
aderiv(S1,c(0,0,0))*aderiv(S2,c(1,1,0)) +
aderiv(S1,c(@,1,0))*aderiv(S2,c(1,0,0)) +
aderiv(S1,c(1,0,0))*aderiv(S2,c(0,1,0)) +
aderiv(S1,c(1,1,0))*aderiv(S2,c(0,0,0))

)

Extract.spray Extract or Replace Parts of a spray

Description

Extract or replace subsets of sprays.

Extract.spray 11

Usage
S3 method for class 'spray'
S[..., drop=FALSE]
S3 replacement method for class 'spray'
S[index, ...J] <- value
Arguments
S A spray object
index elements to extract or replace
value replacement value

Further arguments

drop Boolean, with default FALSE meaning to return a spray object and TRUE meaning
to drop the spray structure and return a numeric vector

Details

These methods should work as expected, although the off-by-one issue might be a gotcha. disordR
discipline is enforced where appropriate.

In S[index, ...], argument drop is FALSE by default, in which case a spray object is returned.
If drop is TRUE a numeric vector is returned, with elements corresponding to the rows of index.
Compare coeffs(S), which returns a disord object; in S[index, drop=TRUE], the rows of index
specify a unique order for the return value.

If a <- spray(diag(3)), for example, then idiom such as alc(1, 2, 3)] cannot work, because one
would like a[1,2,3] and a[1:3, 2, 3] to work.

If p <- 1:3, then one might expect idiom such as S[1, ,p, 1:3] to work but this is problematic and
a discussion is given in inst/missing_accessor. txt.

Functions spray_extract_disord() and spray_replace_disord() are low-level helper func-
tions which implement idiom such as a[coeffs(a) < 3] anda[coeffs(a) < 3] <-99.

Examples
(a <- spray(diag(5)))

alrbind(rep(1,5))] <- 5
a

al3,4,5,3,1] # the NULL polynomial

al0,1,0,0,0]
al0,1,0,0,0,drop=TRUE]

al2,3:5,4,3,3] <- 9
a

options(polyform = TRUE) # print as a multivariate polynomial
a

https://CRAN.R-project.org/package=disordR

12 homog

options(polyform = FALSE) # print in sparse array form
a

(S1 <- spray(diag(5),1:5))
(S2 <- spray(1-diag(5),11:15))
(S3 <- spray(rbind(c(1,0,0,0,0),c(1,2,1,1,1))))

S1[] <= 3
S1[] <- S2

ST[S3]1 <- 99
S1

S <- rspray()
S[coeffs(S) > 4]
S[coeffs(S) < 6] <- 99
S

homog Various functions to create simple spray objects

Description

Various functions to create simple spray objects such as single-term, homogeneous, and constant
multivariate polynomials.

Usage

product (power)
homog (d, power=1)
linear(x,power=1)
lone(n,d=n)
one(d)

as.id(S)

xyz(d)

Arguments

d An integer; generally, the dimension or arity of the resulting spray object
power Integer vector of powers

X Numeric vector of coefficients

S A spray object

n In function lone(), the term to raise to power 1

knight 13

Value

All functions documented here return a spray object

Note

The functions here are related to their equivalents in the multipol package, but are not exactly the
same.

Function zero() is documented at zero.Rd, but is listed below for convenience.

Author(s)
Robin K. S. Hankin

See Also

constant, zero

Examples
product(1:3) # X * y*2 * z*3
homog(3) # X+y+z
homog (3, 2) # X2 + xy + xz + y*2 + yz + z*2
linear(1:3) # 1%x + 2%y + 3%z
linear(1:3,2) # T*X"2 + 2%xy*2 + 3%z*2
lone(3) # z
lone(2,3) # y
one(3) # 1
zero(3) # 0
xyz(3) # Xyz
knight Generating function for a chess knight and king
Description

Generating function for a chess knight and king on an arbitrarily-dimensioned chessboard

Usage
knight(d=2)
king(d=2)

Arguments

d Dimensionality of the board, defaulting to 2

Value

Returns the generating function of the piece in question.

https://CRAN.R-project.org/package=multipol

14 nterms

Note

The pieces are forced to move; if they have the option of not moving, add 1 to the returned spray.
The vignette contains a short discussion.

Author(s)
Robin K. S. Hankin

Examples
knight() # default 2D chess board
king() # ditto

knight()*2 # generating function for two knight's moves

How many ways can a knight return to its starting square in 6 moves?
constant(knight()”*6)

How many in 6 or fewer?
constant((1+knight())*6)

Where does a randomly-moving knight end up?
d <- xyz(2)

kt <= (1+knight())*d*2/9
persp(1:25,1:25,as.array(dxkt*6))

what is the probability that a 4D king is a knight's move from
(0,0,0,0) after 6 moves?

sum(coeffs(((king(4)/80)*4)[knight(4)1))

nterms Number of nonzero terms in a spray object

Description

Number of nonzero terms in a spray object

Usage
nterms(x)
S3 method for class 'spray'
length(x)

Arguments

X Object of class spray

ooom 15

Details
Number of nonzero terms in a spray object. Function length() is defined so that seq_along()
works as expected

Author(s)
Robin K. S. Hankin

Examples

(a <= rspray())
nterms(a)

seq_along(a)

ooom One-over-one-minus for spray objects

Description

One-over-one-minus for spray objects; the nearest to ‘division’ that we can get.

Usage

ooom(S, n)

Arguments

S object of class spray

n Order of the approximation

Details

Returns the Taylor expansion to order n of 1/(1 — S), thatis, 1 + S + S + S% + ... + S™.

Value

Returns a spray object of the same arity as S.

Note

Uses Horner’s method for efficiency

Author(s)
Robin K. S. Hankin

16 Ops.spray

Examples

(x <= spray(matrix(1)))
ooom(x,5) # 1 + x + X2 + x*3 + x"4 + x*5

(a <- homog(4,2))
d <- (1-a)*ooom(a,3)

constant(d) # should be 1
rowSums(index(d)) # a single @ and lots of 8s.

Ops.spray Arithmetic Ops Group Methods for sprays

Description

Allows arithmetic operators to be used for spray calculations, such as addition, multiplication, divi-
sion, integer powers, etc. Objects of class spray are interpreted as sparse multivariate polynomials.

Usage

S3 method for class 'spray'
Ops(el, e2 = NULL)
spray_negative(S)
spray_times_spray(S1,S2)
spray_times_scalar(S,x)
spray_plus_spray(S1,S2)
spray_plus_scalar(S,x)
spray_power_scalar(S,n)
spray_power_scalar_stla(S,n)
spray_eq_spray(S1,S2)
spray_eq_numeric(S1,x)

Arguments

el,e2,S,S1,S2 Objects of class spray, here interpreted as sparse multivariate polynomials

X Real valued scalar
n Non-negative integer
Details
The function Ops. spray() passes unary and binary arithmetic operators (“+7, “=7, “x”, “/” “==",

and “*”) to the appropriate specialist function.

The most interesting operators are “*” and “+” which execute multivariate polynomial multiplica-
tion and addition respectively.

Testing for equality uses spray_eq_spray(). Note that spray_eq_spray(S1,S2) is algebraically
equivalent to is.zero(S1-S2), but faster (FALSE is returned as soon as a mismatch is found).

pmax 17

Function spray_power_scalar() is the functional representation for powers: spray_power_scalar(X,n)
is the same as X*n.

Function spray_power_scalar_stla() is an experimental replacement for spray_power_scalar()
that may offer speed advantages. It is based on code by Stephane Laurent.
Value

The functions all return spray objects except “==", which returns a logical.

Author(s)
Robin K. S. Hankin

See Also

ooom
Examples

M <- matrix(sample(@:3,21,replace=TRUE),ncol=3)
a <- spray(M,sample(7))
b <- homog(3,4)

arithmetic operators mostly work as expected:
a + 2*b

a - a*b*2/4

atb

S1 <- spray(partitions::compositions(4,3))
S2 <- spray(diag(3)) # S2 = xty+z

stopifnot((S1+S2)*3 == S173 + 3*%S172%S2 + 3*S1*xS2%2 + S2%3)

pmax Parallel maxima and minima for sprays

Description

Parallel (pairwise) maxima and minima for sprays.

18 pmax

Usage

maxpair_spray(S1,S2)
minpair_spray(S1,S2)
S3 method for class 'spray

pmax(x, ...)
S3 method for class 'spray'
pmin(x, ...)
Arguments
X, S1, S2 Spray objects
spray objects to be compared
Details

Function maxpair_spray() finds the pairwise maximum for two sprays. Specifically, if S3 <-
maxpair_spray(S1,S2), then S3[v] ==max(S1[v],S2[v]) for every index vector v.

Function pmax.spray() is the method for the generic pmax (), which takes any number of argu-
ments. If S3 <-maxpair_spray(S1,S2,...), then S3[v] ==max(S1[v],S2[v],...) for every
index vector v.

Function pmax. spray() operates right-associatively:

pmax(S1,S2,53,S4) == f(S1,f(S2,f(S3,54))) where f() is short for maxpair_spray(). So if
performance is important, put the smallest spray (in terms of number of nonzero entries) last.

In these functions, a scalar is interpreted as a sort of global maximum. Thus if S3 <- pmax(S, x)
we have S3[v] ==max(S[v],x) for every index v. Observe that this operation is not defined if
x>0, for then there would be an infinity of v for which S3[v] != 0, an impossibility (or at least
counter to the principles of a sparse array). The frab package discussses this issue in vignette
inst/wittgenstein.Rmd. Note also that x cannot have length > 1 as the elements of a spray
object are stored in an arbitrary order, following disordR discipline.

Functions minpair_spray() and pmin. spray() are analogous. Note that minpair_spray(S1,S2)
is algebraically equivalent to -pmax_spray(-S1,-S2); see the examples.

The value of pmax(S) is problematic. Suppose all(coeffs(S)<@); the current implementation
returns pmax (S)==S but there is a case for returning the null polynomial.
Value

Returns a spray object

Author(s)
Robin K. S. Hankin

Examples

S1 <- rspray(100,vals=sample(100)-50)
S2 <- rspray(100,vals=sample(100)-50)
S3 <- rspray(100,vals=sample(100)-50)

https://CRAN.R-project.org/package=frab

print.spray 19

following comparisons should all be TRUE:
jj <- pmax(S1,S2,53)

jj == maxpair_spray(S1,maxpair_spray(S2,S3))
jj == maxpair_spray(maxpair_spray(S1,S2),S3)

pmax(S1,S2,S3) == -pmin(-S1,-S2,-S3)
pmin(S1,S2,S3) == -pmax(-S1,-S2,-S3)

pmax(S1,-Inf) == S1
pmin(S1, Inf) == S2
pmax(S1,-3)

Not run:
pmax(S1,3) # not defined

End(Not run)

print.spray Print methods for spray objects

Description

Print methods for spray objects with options for printing in matrix form or multivariate polynomial
form

Usage

S3 method for class 'spray'
print(x, ...)
print_spray_matrixform(S)
print_spray_polyform(S,give=FALSE)

printedvalue(v)
Arguments
X, S spray object
give Boolean, with default FALSE meaning to print the value of S, and TRUE meaning

to return a string (without nice formatting); used in as.character.spray()
% Numeric vector

Further arguments (currently ignored)

20 print.spray

Details

The print method, print.spray(), dispatches to helper functions print_spray_matrixform()
and print_spray_polyform() depending on the value of option polyform; see the examples sec-
tion.

Option sprayvars is a character vector with entries corresponding to the variable names for print-
ing. The sprayvars option has no algebraic significance: all it does is affect the print method.

Function printedvalue() is a low-level helper function that takes a numeric argument and returns
the value as printed (thus respecting options scipen and digits). It uses gsub() to remove the
“[1]” produced by capture.output(). The code is not perfect and sometimes fails (for reasons
that are not clear to me) when applied to large objects on the Rstudio console.

Note that printing a spray object (in either matrix form or polynomial form) generally takes much
longer than calculating it.
Value

Returns its argument invisibly.

Note

There are a couple of hard-wired symbols for multiplication and equality which are defined near the
top of the helper functions.

There are no checks for option sprayvars being sensible. For example, repeated entries, or entries
with zero length, are acceptable but the output might be confusing or uninformative.

Author(s)
Robin K. S. Hankin

Examples

(a <- spray(diag(3)))

options(polyform
a*3

FALSE)

options(polyform = TRUE)
a”3

options(sprayvars=letters)
a <- diag(26)
spray(a)

Following example from mpoly:
all + cbind(0:25, 1:26) %% 26] <- 2
spray(a)

rspray 21

rspray Random spray objects

Description

Creates random spray objects as quick-and-dirty examples of multivariate polynomials

Usage

rspray(n=9 , vals = seq_len(n), arity = 3, powers = 0:
rsprayy(n=30, vals = seq_len(n), arity = 7, powers = 0:8)

|
N
~

Arguments
n Number of distinct rows (maximum); repeated rows are merged (argument addrepeats
is TRUE)
vals Values to use for coefficients
arity Arity of the spray; the number of columns in the index matrix
powers Set from which to sample the entries of the index matrix
Value

Returns a spray object

Note

If the index matrix contains repeated rows, the returned spray object will contain fewer than n
entries

Author(s)
Robin K. S. Hankin

See Also
spray

Examples
rspray()
rspray(4)*rspray(3,rnorm(3))
rspray(3,arity=7,powers=-2:2)"3

rspray(1000,vals=rnorm(1000))

22 spray

spray Sparse arrays: spray objects

Description

Create, coerce, and test for sparse array objects

Usage

spray(M, x, addrepeats=FALSE)

spraymaker (L, addrepeats=FALSE, arity=ncol(L[[11]))
is.spray(S)

as.spray(argl, arg2, addrepeats=FALSE, offbyone=FALSE)
index(S)

coeffs(S)

coeffs(S) <- value

is_valid_spray(L)

Arguments
M Integer matrix with rows corresponding to index positions
X Numeric value with elements corresponding to spray entries
S Object to be tested for being a spray
L A list, nominally of two elements (index matrix and value) which is to be tested
for acceptability to be coerce to class spray
argl, arg? Various arguments to be coerced to a spray
addrepeats Boolean, with default FALSE meaning to check for repeated index rows and, if
any are found, return an error
value In the assignment operator coeffs<-(), a disord object (or a length-one nu-
meric vector), so that coeffs(S) <- x works as expected
offbyone In function as. spray(), when converting from an array. Argument of fbyone
is Boolean with default FALSE meaning to insert array elements in positions
corresponding to index elements, and TRUE meaning to add one
arity In function spraymaker (), integer specifying the arity (number of columns of
the index matrix LL[1]]); ignored if L is non-empty. See details
Details

Spray objects are sparse arrays interpreted as multivariate polynomials. They can be added and
subtracted; “#” is interpreted as polynomial multiplication.

To create a spray object the user should use spray(), if a matrix of indices and vector of values is
available, or as. spray() which tries hard to do the Right Thing (tm).

Function spraymaker() is the formal creator function, and it is written to take the output of the
C++ routines and return a spray object. The reason this needs an arity argument is that C++

spray 23

sometimes returns NULL (in lieu of a zero-row matrix, which it cannot deal with). In this case, we
need some way to tell R the arity of the corresponding spray object.

Rownames and colnames of the index matrix are removed by spraymaker () [C++ routine spray_maker ()
discards the dimnames attribute of matrix M], but the print method might add colnames to printed
output, via option sprayvars.

Functions index() and coeffs() are accessor methods. Function index() returns an integer-
valued matrix with rows corresponding to variable powers.

There is an extensive vignette available; type vignette(”spray"”) at the command line.

Note

Function coeffs() was formerly known as value().

Technically, index () breaks disordR discipline.

Author(s)

Robin K. S. Hankin

See Also

Ops,spray-package

Examples

S <- spray(diag(5)) # missing second argument interpreted as '1'.
as.array(S,offbyone=TRUE) # zero indices interpreted as ones.

M <- matrix(1:5,6,5) # note first row matches the sixth row

Not run: spray(M,1:6) # will not work because addrepeats is not TRUE

spray(M,1:6,addrepeats=TRUE) # 7=1:6

S <- spray(matrix(1:7,5,7))

a <- as.array(S) # will not work if any(M<1)
S1 <- as.spray(a)

stopifnot(5==S1)

a <- rspray(20)
coeffs(a)[coeffs(a) %% 2 == 1] <- 99 # every odd coefficient -> 99

24 spraycross

spray-class Class “spray”

Description

The formal S4 class for sprays.

Objects from the Class

Objects can be created by calls of the form new("spray”, ...) but this is not encouraged. Use
functions spray() or as.spray() instead.

Slots

index: Index matrix

value: Numeric vector holding coefficients

Author(s)

Robin K. S. Hankin

See Also

spray

spraycross Cross product for spray objects

Description

Provides a natural cross product for spray objects, useful for tensors and k-forms

Usage
spraycross(S, ...)
spraycross2(S1,S2)
Arguments

S,S1,S2, ... spray objects

spray_cpp 25

Details

Tensor products for sprays. This is not an algebraic product of sprays interpreted as multivariate
polynomials. The function is used in the stokes package, in which vignette tensorprod() gives a
use-case.

Function spraycross2() is a helper function that takes exactly two arguments. Function spraycross()
is a more general function that takes any number of arguments.

Value

Returns a spray object

Author(s)
Robin K. S. Hankin

Examples

a <- spray(matrix(1:4,2,2),c(2,5))

b <- spray(matrix(c(10,11,12,13),2,2),c(7,11))
a

b

spraycross2(a,b)

spraycross2(b,a)

spraycross(a,b,b)

spray_cpp Low-level functions that call C++ source code

Description

Low-level functions that call C++ source code, as detailed in the automatically generated RcppExports.R
file.

Usage

spray_maker(M, d)

spray_add(M1, d1, M2, d2)
spray_mult(M1, d1, M2, d2)
spray_overwrite(M1, d1, M2, d2)
spray_accessor(M, d, Mindex)
spray_setter(M1, d1, M2, d2)
spray_equality(M1, di1, M2, d2)
spray_asum_include(M,d,n)
spray_asum_exclude(M,d,n)
spray_deriv(M,d,n)

https://CRAN.R-project.org/package=stokes

26

spray_pmax(M1,d1,M2,d2)
spray_pmin(M1,d1,M2,d2)
spray_power (M, d, pow)
spray_spray_accessor()
spray_spray_add()
spray_spray_asum_exclude()
spray_spray_asum_include()
spray_spray_deriv()
spray_spray_equality()
spray_spray_maker ()
spray_spray_mult()
spray_spray_overwrite()
spray_spray_pmax()
spray_spray_pmin()
spray_spray_setter()
spray_spray_power ()

Arguments

M, M1, M2, Mindex Integer valued matrices with rows corresponding to array indices

d, d1,d2 Vector of values corresponding to nonzero array entries

spray_cpp

n Integer vector corresponding to dimensions to sum over for the sum functions

pow Nonnegative integer for spray_power ()

Value

These functions return a two-element list which is coerced to an object of class spray by function

spraymaker().

Note

These functions aren’t really designed for the end-user.

Function spray_equality() cannot simply check for equality of $value because the order of the
index rows is not specified in a spray object. Function spray_crush() has been removed as it is

redundant.

Author(s)

Robin K. S. Hankin

See Also

spraymaker,spray

spray_missing_accessor 27

spray_missing_accessor
Discussion document

Description

Discussion about the difficulties of implementing idiom like S[1,,5,,] in the package

Usage

spray_missing_accessor (S, dots)

Arguments
S Object of class spray
dots further arguments
Details

File inst/missing_accessor.txt presents an extended discussion of the difficulties of imple-
menting idiom like S[1,,5,,] in the package.

Author(s)
Robin K. S. Hankin

subs Substitute values into a spray object

Description

Substitute values into a spray object, interpreted as a multivariate polynomial

Usage
subs(S, dims, x, drop=TRUE)

Arguments
S spray object
dims Integer or logical vector with entries corresponding to the dimensions to be sub-
stituted
X Numeric vector of values to be substituted
drop Boolean, with default TRUE meaning to return the drop() of the result, and

FALSE meaning to return a spray object consistently

28 summary.spray

Note

It is much easier if argument dims is sorted into increasing order. If not, caveat emptor!

Author(s)
Robin K. S. Hankin

See Also

process_dimensions

Examples
(S <- spray(matrix(sample(@:3,60,replace=TRUE),nrow=12)))
subs(S,c(2,5),1:2)

P <- homog(3,3)
subs(P,1,2)

summary . spray Summaries of spray objects

Description

A summary method for spray objects, and a print method for summaries.

Usage
S3 method for class 'spray'
summary(object, ...)
S3 method for class 'summary.spray'
print(x, ...)

Arguments
object, x Object of class spray

Further arguments, passed to head ()

Details

A summary . spray object is summary of a spray object x: a list with first element being a summary ()
of the coefficients (which is a disord object), and the second being a spray object comprising a
few selected index-coefficient pairs. The selection is done by head ().

Note

The “representative selection” is impementation-specific, as it uses disordR: :elements() to ex-
tract rows of the index matrix and coefficients.

zap 29

Author(s)
Robin K. S. Hankin

Examples

a <- rspray()*2
a

summary (a)
summary(a, 2)

options(polyform=TRUE)
summary(a*4,3)
options(polyform=FALSE) # restore default

zap Zap small values in a spray object

Description

Generic version of zapsmall ()

Usage

zap(x, digits = getOption("digits"))
S4 method for signature 'spray'
zapsmall(x, digits = getOption("digits"))

Arguments

X spray object

digits number of digits to retain
Details

Given a spray object, coefficients close to zero are ‘zapped’, i.e., replaced by ‘0’, using base: : zapsmall().
Function zap() is an easily-typed alias; zapsmall() is the S4 generic.

Note, zap() actually changes the numeric value, it is not just a print method.

Author(s)
Robin K. S. Hankin

Examples
(S <- spray(matrix(sample(1:50),ncol=2),10*-(1:25)))
zap(S)

S-zap(S) # print method will probably print zeros...
coeffs(S-zap(S)) # ...but they are nevertheless nonzero

30

Zero

zero The zero polynomial

Description

Test for the zero, or empty, polynomial

Usage

zero(d)
is.zero(x)
is.empty(L)

Arguments

L, x A two-element list of indices and values, possibly a spray object or numeric
vector

d Integer specifying dimensionality of the spray (the arity)

Details

Functions is.empty() and is.zero() are synonyms. If spray objects are interpreted as mul-
tivariate polynomials, “is.zero()” is more intuitive, if sprays are interpreted as sparse arrays,
“is.empty()” is better (for me).

Passing a zero-row index matrix can have unexpected effects:

> dput(spray(matrix(0,9,5),9))
structure(list(structure(numeric(®), .Dim = c(@L, 5L)), numeric(®)), class = "spray")

Above, the index matrix has zero rows (and no elements) but the fact that it has five columns is
retained. Arguably spray() should return an error here, as the number of rows of the index matrix
should match the length of the coefficient vector and they do not: the index has zero rows and
the coefficient vector has length 1 (although they match in the returned value). The returned spray
object has no coefficients [specifically, numeric(@)]; this is consistent with the index matrix having
ZEro TOWS.

Zero coefficients are discarded by the back end:

> spray(matrix(1,1,5),0)

empty sparse array with 5 columns

> dput(spray(matrix(1,1,5),0))

structure(list(structure(numeric(@), dim = c(QL, 5L)), numeric(®@)), class = "spray")

Above, the index matrix given to spray() has one row but the coefficient is a length-one vector
with element zero. The resulting spray object has a NULL index matrix [because rows with zero
coefficients are removed] and a NULL coefficient. It is also permissible to pass a a zero-row matrix:

Zero 31

spray(matrix(0,0,5),0)
empty sparse array with 5 columns

dput (spray(matrix(0,0,5),0))
structure(list(structure(numeric(@), dim = c(@L, 5L)), numeric(®)), class = "spray")

In previous versions of the package, the index matrix in the returned spray object could be NULL
under some circumstances. If so, the arity of the spray object is lost. It is probably worth noting
that spray(), given a zero-row index matrix, loses a length one coefficients vector, but complains
about a length-two coefficient vector:

> dput(spray(matrix(0,0,5),0))
structure(list(structure(numeric(@), dim
> dput(spray(matrix(0,0,5),3))
structure(list(structure(numeric(@), dim
> dput(spray(matrix(0,0,5),1:2))

Error in is_valid_spray(L) : nrow(L[[11]1) == length(L[[2]]1) is not TRUE
>

> identical(spray(matrix(0,0,5),0),spray(matrix(@,0,5),3))

[1] TRUE

c(oL, 5L)), numeric(@)), class = "spray")

c(@L, 5L)), numeric(@)), class = "spray")

Examples

(a <= lone(1,3))
is.zero(a-a) # should be TRUE
is.zero(zero(6))

X <- spray(t(0:1))
y <- spray(t(1:0))

is.zero((x+ty)*(x-y)-(x*2-y*2)) # TRUE

Index

* classes
spray-class, 24

+ datasets
zero, 30

+* mathsymbol
deriv, 9

* package
spray-package, 2

* symbolmath
arity, 3
as.array, 4
as.character, 5
as.function.spray, 6
asum, 7
constant, 8
Extract.spray, 10
homog, 12
ooom, 15
Ops.spray, 16
print.spray, 19
rspray, 21
spray, 22
spray_cpp, 25
spraycross, 24
subs, 27

[.spray (Extract.spray), 10
[<-.spray (Extract.spray), 10

aderiv (deriv), 9
arity, 3

as.array, 4
as.character, 5
as.function.spray, 6
as.id (homog), 12
as.spray (spray), 22
asum, 7, 10
asum_inverted (asum), 7

chess_knight (knight), 13
coeff (spray), 22

32

coeffs (spray), 22

coeffs, spray-method (spray), 22
coeffs.spray (spray), 22

coeffs<- (spray), 22
coeffs<-,spray-method (spray), 22
coeffs<-.spray (spray), 22

const (constant), 8

constant, 8, 13

constant, spray-method (constant), 8
constant.spray (constant), 8
constant<- (constant), 8
constant<-, spray-method (constant), 8
constant<-.spray (constant), 8
cross (spraycross), 24
cross_product (spraycross), 24

deriv, 9

dim.spray (as.array), 4

drop (constant), 8

drop, spray-method (constant), 8

empty (zero), 30

Extract, 9

extract (Extract.spray), 10
Extract.spray, 10

homog, 12

index (spray), 22
is.constant (constant), 8
is.empty (zero), 30
is.scalar (constant), 8
is.spray (spray), 22
is.zero(zero), 30
is_valid_spray (spray), 22

king (knight), 13
knight, 13

length (nterms), 14
linear (homog), 12

INDEX

lone (homog), 12

maxpair_spray (pmax), 17
minpair_spray (pmax), 17

nterms, 14

one (homog), 12
ooom, 15, 17

Ops, 23

Ops (Ops.spray), 16
Ops.spray, 16

pmax, 17

pmin (pmax), 17

print.spray, 19

print.summary.spray (summary.spray), 28
print_spray_matrixform (print.spray), 19
print_spray_polyform (print.spray), 19
printedvalue (print.spray), 19
process_dimensions, 28
process_dimensions (asum), 7

product (homog), 12

replace (Extract.spray), 10
rspray, 21
rsprayy (rspray), 21

scalar (constant), 8

spray, 21,22, 24, 26

spray-class, 24

spray-package, 2

spray_accessor (spray_cpp), 25
spray_add (spray_cpp), 25
spray_asum_exclude (spray_cpp), 25
spray_asum_include (spray_cpp), 25
spray_cpp, 25

spray_crush (spray_cpp), 25
spray_deriv (spray_cpp), 25
spray_eq_numeric (Ops.spray), 16
spray_eq_spray (Ops.spray), 16
spray_equality (spray_cpp), 25
spray_extract_disord (Extract.spray), 10
spray_maker (spray_cpp), 25
spray_missing_accessor, 27
spray_mult (spray_cpp), 25
spray_negative (Ops.spray), 16
spray_overwrite (spray_cpp), 25
spray_plus_scalar (Ops.spray), 16
spray_plus_spray (Ops.spray), 16

33

spray_pmax (spray_cpp), 25

spray_pmin (spray_cpp), 25

spray_power (spray_cpp), 25
spray_power_scalar (Ops.spray), 16
spray_power_scalar_stla (Ops.spray), 16
spray_power_stla (spray_cpp), 25
spray_rcpp (spray_cpp), 25
spray_replace_disord (Extract.spray), 10
spray_setter (spray_cpp), 25
spray_spray_accessor (spray_cpp), 25
spray_spray_add (spray_cpp), 25
spray_spray_asum_exclude (spray_cpp), 25
spray_spray_asum_include (spray_cpp), 25
spray_spray_crush (spray_cpp), 25
spray_spray_deriv (spray_cpp), 25
spray_spray_equality (spray_cpp), 25
spray_spray_maker (spray_cpp), 25
spray_spray_mult (spray_cpp), 25
spray_spray_overwrite (spray_cpp), 25
spray_spray_pmax (spray_cpp), 25
spray_spray_pmin (spray_cpp), 25
spray_spray_power (spray_cpp), 25
spray_spray_setter (spray_cpp), 25
spray_times_scalar (Ops.spray), 16
spray_times_spray (Ops.spray), 16
spraycross, 24

spraycross?2 (spraycross), 24

spraymaker, 26

spraymaker (spray), 22

sprayvars (print.spray), 19

subs, 27

substitute (subs), 27

summary (summary.spray), 28
summary.spray, 28

value (spray), 22

value, spray-method (spray), 22
value.spray (spray), 22
value<- (spray), 22

values (spray), 22

xyz (homog), 12

zap, 29

zapsmall (zap), 29
zapsmall,ANY-method (zap), 29
zapsmall, spray-method (zap), 29
zapsmall.spray (zap), 29
zaptiny (zap), 29

zero, 13,30

	spray-package
	arity
	as.array
	as.character
	as.function.spray
	asum
	constant
	deriv
	Extract.spray
	homog
	knight
	nterms
	ooom
	Ops.spray
	pmax
	print.spray
	rspray
	spray
	spray-class
	spraycross
	spray_cpp
	spray_missing_accessor
	subs
	summary.spray
	zap
	zero
	Index

